To investigate the stability of gravity anchors of suspension bridges,in-situ tests of the vertical bearing capacity of the bedrock,shear resistance of the anchor-rock interface,shear resistance of the bedrock were co...To investigate the stability of gravity anchors of suspension bridges,in-situ tests of the vertical bearing capacity of the bedrock,shear resistance of the anchor-rock interface,shear resistance of the bedrock were conducted in a suspension bridge project.Under dry-wet cycles,the deterioration law of the mechanical properties of argillaceous sandstone was identified in laboratory tests:the elastic modulus,cohesion and friction of the argillaceous sandstone deteriorated significantly at first few dry-wet cycles and then declined slowly after 10 cycles,ultimately these three mechanical parameters were reduced to about 1/3,1/3,2/3 of the initial value respectively.Moreover,numerical simulation was used to restore in-situ shear tests and a good agreement was obtained.Base on the results of in-situ and laboratory tests,the stability of the gravity anchor foundation under natural conditions and drywet cycles was calculated and its failure modes were analyzed.The results demonstrated that the dry-wet cycles caused uneven settlement of the anchor foundation,resulting in more serious stress concentration in the substrate.The dry-wet cycles remarkably reduced the stability coefficient of the anchor foundation,whose failure mode shifted from overturning failure under natural conditions to sliding failure.When there was weak interlayer in the rock layer,the anti-sliding stability of the anchor foundation was affected drastically.展开更多
To research the anchoring effect of large deformation bolt,tensile and drawing models are established.Then,the evolution laws of drawing force,bolt axial force and interfacial shear stress are analyzed.Additionally,th...To research the anchoring effect of large deformation bolt,tensile and drawing models are established.Then,the evolution laws of drawing force,bolt axial force and interfacial shear stress are analyzed.Additionally,the influence of structure element position on the anchoring effect of large deformation bolt is discussed.At last,the energy-absorbing support mechanism is discussed.Results show that during the drawing process of normal bolt,drawing force,bolt axial force and interfacial shear stress all gradually increase as increasing the drawing displacement,but when the large deformation bolt enters the structural deformation stage,these three values will keep stable;when the structure element of large deformation bolt approaches the drawing end,the fluctuation range of drawing force decreases,the distributions of bolt axial force and interfacial shear stress of anchorage section are steady and the increasing rate of interfacial shear stress decreases,which are advantageous for keeping the stress stability of the anchorage body.During the working process of large deformation bolt,the strain of bolt body is small,the working resistance is stable and the distributions of bolt axial force and interfacial shear stress are steady.When a rock burst event occurs,the bolt and bonding interface cannot easily break,which weakens the dynamic disaster degree.展开更多
With the reduction of shallow resources,the degree of damage and the frequency of dynamic hazards,such as deep rock bursts and impact ground pressure,are increasing dramatically.However,the existing support materials ...With the reduction of shallow resources,the degree of damage and the frequency of dynamic hazards,such as deep rock bursts and impact ground pressure,are increasing dramatically.However,the existing support materials are incapable of meeting the safety require-ments of the refuges and roadways under a strong impact force.To effectively solve these problems,a novel negative Poisson’s ratio(NPR)anchor cable with excellent properties,such as impact resistance and the ability to withstand large deformation,is proposed.In the present study,a series of field tests and numerical simulations are conducted to investigate the mechanical and support charac-teristics of NPR anchor cables under blast impact.Laboratory mechanical tests show that NPR anchor cables can maintain constant resistance and produce large deformation under the action of multiple drop hammer impacts.According to the results of field tests,the roadway supported by conventional anchor cables was unable to endure the blast impact,while the roadway supported by NPR anchor cables was able to withstand the severe impact equivalent to a Class 3 mine earthquake.The dynamic response of the NPR anchor cable that supports the roadway under explosion is investigated using the innovative coupled modeling approach that combines the finite element method and the discrete element method,and the support effect of the NPR anchor cable is verified.The study shows that the NPR anchor cable has a superior impact and blast resistance performance,and a broad application prospect in the support of chambers and roadways that are at high risk of rock bursts and impact ground pressure.展开更多
为研究爆炸荷载作用下涂覆聚脲混凝土自锚式悬索桥主梁的抗爆防护效果,以山东湖南路大桥为背景,通过试验和数值模拟结合的方法对自锚式悬索桥主梁的爆炸破坏特征和动力响应进行研究。采用2发3 kg TNT和1发5 kg TNT药柱,开展1∶3缩尺节...为研究爆炸荷载作用下涂覆聚脲混凝土自锚式悬索桥主梁的抗爆防护效果,以山东湖南路大桥为背景,通过试验和数值模拟结合的方法对自锚式悬索桥主梁的爆炸破坏特征和动力响应进行研究。采用2发3 kg TNT和1发5 kg TNT药柱,开展1∶3缩尺节段箱梁试件的2发单次爆炸试验和1发重复爆炸试验,分别编号为G(未涂覆聚脲箱梁)、PCG(涂覆聚脲箱梁首次起爆)、PCGR(涂覆聚脲箱梁二次起爆),试件顶面涂覆聚脲厚度为1.5 mm。通过LS-DYNA软件进行试件爆炸响应数值模拟及验证。研究结果表明,聚脲涂层可有效增强混凝土箱梁的抗爆性能,3 kg TNT在中间箱室上方0.4 m处首次起爆时,试件G中间箱室顶板形成贯穿性椭圆形破洞;试件PCG中间箱室顶板未贯穿,仅发生轻微的局部凹陷;5 kg TNT二次起爆后,试件PCGR中间箱室顶板出现近似圆形贯穿性破洞,1号和3号箱室在支撑处出现明显裂缝。涂覆聚脲后自锚式悬索桥主梁抗爆性能得到至少20%的提升,300 kg、500 kg、800 kg、1000 kg TNT当量作用下,未涂覆聚脲主梁顶板混凝土均出现贯穿性破洞;涂覆聚脲后仅在TNT当量为1000 kg时发生轻微贯穿。展开更多
基金supported by the National Science Foundation of China(Grant No.52278469)the Natural Science Foundation of Hunan Province(Grant No.2022JJ30715)。
文摘To investigate the stability of gravity anchors of suspension bridges,in-situ tests of the vertical bearing capacity of the bedrock,shear resistance of the anchor-rock interface,shear resistance of the bedrock were conducted in a suspension bridge project.Under dry-wet cycles,the deterioration law of the mechanical properties of argillaceous sandstone was identified in laboratory tests:the elastic modulus,cohesion and friction of the argillaceous sandstone deteriorated significantly at first few dry-wet cycles and then declined slowly after 10 cycles,ultimately these three mechanical parameters were reduced to about 1/3,1/3,2/3 of the initial value respectively.Moreover,numerical simulation was used to restore in-situ shear tests and a good agreement was obtained.Base on the results of in-situ and laboratory tests,the stability of the gravity anchor foundation under natural conditions and drywet cycles was calculated and its failure modes were analyzed.The results demonstrated that the dry-wet cycles caused uneven settlement of the anchor foundation,resulting in more serious stress concentration in the substrate.The dry-wet cycles remarkably reduced the stability coefficient of the anchor foundation,whose failure mode shifted from overturning failure under natural conditions to sliding failure.When there was weak interlayer in the rock layer,the anti-sliding stability of the anchor foundation was affected drastically.
基金Project(2019SDZY02)supported by the Major Scientific and Technological Innovation Project of Shandong Provincial Key Research Development Program,ChinaProject(51904165)supported by the National Natural Science Foundation of ChinaProject(ZR2019QEE026)supported by the Shandong Provincial Natural Science Foundation,China。
文摘To research the anchoring effect of large deformation bolt,tensile and drawing models are established.Then,the evolution laws of drawing force,bolt axial force and interfacial shear stress are analyzed.Additionally,the influence of structure element position on the anchoring effect of large deformation bolt is discussed.At last,the energy-absorbing support mechanism is discussed.Results show that during the drawing process of normal bolt,drawing force,bolt axial force and interfacial shear stress all gradually increase as increasing the drawing displacement,but when the large deformation bolt enters the structural deformation stage,these three values will keep stable;when the structure element of large deformation bolt approaches the drawing end,the fluctuation range of drawing force decreases,the distributions of bolt axial force and interfacial shear stress of anchorage section are steady and the increasing rate of interfacial shear stress decreases,which are advantageous for keeping the stress stability of the anchorage body.During the working process of large deformation bolt,the strain of bolt body is small,the working resistance is stable and the distributions of bolt axial force and interfacial shear stress are steady.When a rock burst event occurs,the bolt and bonding interface cannot easily break,which weakens the dynamic disaster degree.
基金supported by the National Natural Science Foundation of China(Grant No.41941018).
文摘With the reduction of shallow resources,the degree of damage and the frequency of dynamic hazards,such as deep rock bursts and impact ground pressure,are increasing dramatically.However,the existing support materials are incapable of meeting the safety require-ments of the refuges and roadways under a strong impact force.To effectively solve these problems,a novel negative Poisson’s ratio(NPR)anchor cable with excellent properties,such as impact resistance and the ability to withstand large deformation,is proposed.In the present study,a series of field tests and numerical simulations are conducted to investigate the mechanical and support charac-teristics of NPR anchor cables under blast impact.Laboratory mechanical tests show that NPR anchor cables can maintain constant resistance and produce large deformation under the action of multiple drop hammer impacts.According to the results of field tests,the roadway supported by conventional anchor cables was unable to endure the blast impact,while the roadway supported by NPR anchor cables was able to withstand the severe impact equivalent to a Class 3 mine earthquake.The dynamic response of the NPR anchor cable that supports the roadway under explosion is investigated using the innovative coupled modeling approach that combines the finite element method and the discrete element method,and the support effect of the NPR anchor cable is verified.The study shows that the NPR anchor cable has a superior impact and blast resistance performance,and a broad application prospect in the support of chambers and roadways that are at high risk of rock bursts and impact ground pressure.
文摘为研究爆炸荷载作用下涂覆聚脲混凝土自锚式悬索桥主梁的抗爆防护效果,以山东湖南路大桥为背景,通过试验和数值模拟结合的方法对自锚式悬索桥主梁的爆炸破坏特征和动力响应进行研究。采用2发3 kg TNT和1发5 kg TNT药柱,开展1∶3缩尺节段箱梁试件的2发单次爆炸试验和1发重复爆炸试验,分别编号为G(未涂覆聚脲箱梁)、PCG(涂覆聚脲箱梁首次起爆)、PCGR(涂覆聚脲箱梁二次起爆),试件顶面涂覆聚脲厚度为1.5 mm。通过LS-DYNA软件进行试件爆炸响应数值模拟及验证。研究结果表明,聚脲涂层可有效增强混凝土箱梁的抗爆性能,3 kg TNT在中间箱室上方0.4 m处首次起爆时,试件G中间箱室顶板形成贯穿性椭圆形破洞;试件PCG中间箱室顶板未贯穿,仅发生轻微的局部凹陷;5 kg TNT二次起爆后,试件PCGR中间箱室顶板出现近似圆形贯穿性破洞,1号和3号箱室在支撑处出现明显裂缝。涂覆聚脲后自锚式悬索桥主梁抗爆性能得到至少20%的提升,300 kg、500 kg、800 kg、1000 kg TNT当量作用下,未涂覆聚脲主梁顶板混凝土均出现贯穿性破洞;涂覆聚脲后仅在TNT当量为1000 kg时发生轻微贯穿。