The motion of the moored ship in the harbor is a classical hydrodynamics problem that still faces many challenges in naval operations,such as cargo transfer and ship pairings between a big transport ship and some smal...The motion of the moored ship in the harbor is a classical hydrodynamics problem that still faces many challenges in naval operations,such as cargo transfer and ship pairings between a big transport ship and some small ships.A mathematical model is presented based on the Laplace equation utilizing the porous breakwater to investigate the moored ship motion in a partially absorbing/reflecting harbor.The motion of the moored ship is described with the hydrodynamic forces along the rotational motion(roll,pitch,and yaw)and translational motion(surge,sway,and heave).The efficiency of the numerical method is verified by comparing it with the analytical study of Yu and Chwang(1994)for the porous breakwater,and the moored ship motion is compared with the theoretical and experimental data obtained by Yoo(1998)and Takagi et al.(1993).Further,the current numerical scheme is implemented on the realistic Visakhapatnam Fishing port,India,in order to analyze the hydrodynamic forces on moored ship motion under resonance conditions.The model incorporates some essential strategies such as adding a porous breakwater and utilizing the wave absorber to reduce the port’s resonance.It has been observed that these tactics have a significant impact on the resonance inside the port for safe maritime navigation.Therefore,the current numerical model provides an efficient tool to reduce the resonance within the arbitrarily shaped ports for secure anchoring.展开更多
Accurate prediction of shipmotion is very important for ensuringmarine safety,weapon control,and aircraft carrier landing,etc.Ship motion is a complex time-varying nonlinear process which is affected by many factors.T...Accurate prediction of shipmotion is very important for ensuringmarine safety,weapon control,and aircraft carrier landing,etc.Ship motion is a complex time-varying nonlinear process which is affected by many factors.Time series analysis method and many machine learning methods such as neural networks,support vector machines regression(SVR)have been widely used in ship motion predictions.However,these single models have certain limitations,so this paper adopts amulti-model prediction method.First,ensemble empirical mode decomposition(EEMD)is used to remove noise in ship motion data.Then the randomforest(RF)prediction model optimized by genetic algorithm(GA),back propagation neural network(BPNN)prediction model and SVR prediction model are respectively established,and the final prediction results are obtained by results of three models.And the weights coefficients are determined by the correlation coefficients,reducing the risk of prediction and improving the reliability.The experimental results show that the proposed combined model EEMD-GARF-BPNN-SVR is superior to the single predictive model and more reliable.The mean absolute percentage error(MAPE)of the proposed model is 0.84%,but the results of the single models are greater than 1%.展开更多
The numerical prediction of added resistance and vertical ship motions of one ITTC (Intemational Towing Tank Conference) S-175 containership in regular head waves by our own in-house unsteady RANS solver naoe-FOAM-S...The numerical prediction of added resistance and vertical ship motions of one ITTC (Intemational Towing Tank Conference) S-175 containership in regular head waves by our own in-house unsteady RANS solver naoe-FOAM-SJTU is presented in this paper. The development of the solver naoe-FOAM-SJTU is based on the open source CFD tool, OpenFOAM. Numerical analysis is focused on the added resistance and vertical ship motions (heave and pitch motions) with four very different wavelengths ( 0.8Lpp 〈 2 〈 1.5L ) in regular head waves. Once the wavelength is near the length of the ship model, the responses of the resistance and ship motions become strongly influenced by nonlinear factors, as a result difficulties within simulations occur. In the paper, a comparison of the experimental results and the nonlinear strip theory was reviewed and based on the findings, the RANS simulations by the solver naoe-FOAM-SJTU were considered competent with the prediction of added resistance and vertical ship motions in a wide range of wave lengths.展开更多
In this paper, the neural network technology is combined with the fuzzy set theory to model the wave-induced ship motions in irregular seas. This combination makes possible the handling of a non-linear dynamic system ...In this paper, the neural network technology is combined with the fuzzy set theory to model the wave-induced ship motions in irregular seas. This combination makes possible the handling of a non-linear dynamic system with insufficient input information. The numerical results from the strip theory are used to train the networks and to demonstrate the validity of the proposed procedure.展开更多
Severe wind-wave due to tropical cyclone Linda can cause port downtime which affects port operations such as berthing, mooting and (un)loading of the ship. The ship motions are criteria for limiting the port operati...Severe wind-wave due to tropical cyclone Linda can cause port downtime which affects port operations such as berthing, mooting and (un)loading of the ship. The ship motions are criteria for limiting the port operations, human safety and preventing the damage of port equipment and furniture. Therefore, this study discusses moored ship motions due to severe wind-wave during the tropical cyclone Linda which entered the Gulf of Thailand in November 1997. The ship motions are represented in the moored ship analysis at SRH (Sriracha Harbour Port) and BLCP (BLCP Coal-Fired Power Plant Port), and are subject to the static environmental load on the ship in accordance with Spanish Standard (ROM 0.2-1990) [1]. The environment in numerical model is derived from the wave model and hydrodynamics model using the application of Delft3D-WAVE and Delft3D-FLOW. The model location includes Ao Udom Bay and Rayong Sea. The model results represent the environment at Rayong Sea which is more severe than Ao Udom Bay. The ship motions at BLCP are mostly larger than SRH.展开更多
The effect of coupling between sloshing and ship motions in the evaluation of slosh-induced interior pressures is studied. The coupling between sloshing loads and ship motions is modelled through a hybrid algorithm wh...The effect of coupling between sloshing and ship motions in the evaluation of slosh-induced interior pressures is studied. The coupling between sloshing loads and ship motions is modelled through a hybrid algorithm which combines a potential flow solution based on transient Green function for the external ship hydrodynamics with a viscous flow solution based on a multiphase interface capturing volume of fluid(VOF) technique for the interior sloshing motion. The coupled algorithm accounts for full nonlinear slosh forces while the external forces on the hull are determined through a blended scheme of linear radiationdiffraction with nonlinear Froude-Krylov and restoring forces. Consideration of this level of nonlinearities in ship motions is found to have non-negligible effects on the slosh-coupled responses and slosh-induced loads. A scheme is devised to evaluate the statistical measure of the pressures through long-duration simulation studies in extreme irregular waves. It is found that coupling significantly influences the tank interior pressures, and the differences in the pressures between coupled and uncoupled cases can be as much as 100% or more. To determine the RAO over the frequency range needed for the simulation studies in irregular waves, two alternative schemes are proposed, both of which require far less computational time compared to the conventional method of finding RAO at each frequency, and the merits of these are discussed.展开更多
In this paper a 3-D panoramic simulation system of a ship is described which is developed with the MAXSCRIPT language and VC++ as programming tools on the platform of 3Dsmax. The strip theory method is applied to the ...In this paper a 3-D panoramic simulation system of a ship is described which is developed with the MAXSCRIPT language and VC++ as programming tools on the platform of 3Dsmax. The strip theory method is applied to the motion prediction of the mono-hull. The time history solutions of heave and pitch are obtained in the condition of head sea to provide the primary data on panoramic simulation. The simulation system has following functions: 1)digital simulation;2) panoramic simulation; 3) environmental set-up; 4) render preview and output.展开更多
The constant panel method within the framework of potential flow theory in the time domain is developed for solving the hydrodynamic interactions between two parallel ships with forward speed.When solving problems wit...The constant panel method within the framework of potential flow theory in the time domain is developed for solving the hydrodynamic interactions between two parallel ships with forward speed.When solving problems within a time domain framework,the free water surface needs to simultaneously satisfy both the kinematic and dynamic boundary conditions of the free water surface.This provides conditions for adding artificial damping layers.Using the Runge−Kutta method to solve equations related to time.An upwind differential scheme is used in the present method to deal with the convection terms on the free surface to prevent waves upstream.Through the comparison with the available experimental data and other numerical methods,the present method is proved to have good mesh convergence,and satisfactory results can be obtained.The constant panel method is applied to calculate the hydrodynamic interaction responses of two parallel ships advancing in head waves.Numerical simulations are conducted on the effects of forward speed,different longitudinal and lateral distances on the motion response of two modified Wigley ships in head waves.Then further investigations are conducted on the effects of different ship types on the motion response.展开更多
During ship operations,frequent heave movements can pose significant challenges to the overall safety of the ship and completion of cargo loading.The existing heave compensation systems suffer from issues such as dead...During ship operations,frequent heave movements can pose significant challenges to the overall safety of the ship and completion of cargo loading.The existing heave compensation systems suffer from issues such as dead zones and control system time lags,which necessitate the development of reasonable prediction models for ship heave movements.In this paper,a novel model based on a time graph convolutional neural network algorithm and particle swarm optimization algorithm(PSO-TGCN)is proposed for the first time to predict the multipoint heave movements of ships under different sea conditions.To enhance the dataset's suitability for training and reduce interference,various filter algorithms are employed to optimize the dataset.The training process utilizes simulated heave data under different sea conditions and measured heave data from multiple points.The results show that the PSO-TGCN model predicts the ship swaying motion in different sea states after 2 s with 84.7%accuracy,while predicting the swaying motion in three different positions.By performing a comparative study,it was also found that the present method achieves better performance that other popular methods.This model can provide technical support for intelligent ship control,improve the control accuracy of intelligent ships,and promote the development of intelligent ships.展开更多
A time domain prediction of wave-induced ship motions by a Rankine panel method is investigated. Linear boundary conditions on free surface and mean wetted body surface are adopted, while the numerical damping method ...A time domain prediction of wave-induced ship motions by a Rankine panel method is investigated. Linear boundary conditions on free surface and mean wetted body surface are adopted, while the numerical damping method is used for the radiation conditions. The motions of two ships in regular head waves are computed by the present method. The related numerical results are compared with the experiment data and those from linear strip theory. The comparison shows satisfactory agreements for pitch and heave transfer functions.展开更多
In this paper, numerical prediction of ship motion responses in long-crest irregular waves by the URANS-VOF method is presented. A white noise spectrum is applied to generate the incoming waves to evaluate the motion ...In this paper, numerical prediction of ship motion responses in long-crest irregular waves by the URANS-VOF method is presented. A white noise spectrum is applied to generate the incoming waves to evaluate the motion responses. The procedure can replace a decade of simulations in regular wave with one single run to obtain a complete curve of linear motion response, considerably reducing computation time. A correction procedure is employed to adjust the wave generation signal based on the wave spectrum and achieves fairly better results in the wave tank. Three ship models with five wave conditions are introduced to validate the method. The computations in this paper are completed by using the solver naoe-FOAM-SJTU, a solver developed for ship and ocean engineering based on the open source code OpenFOAM. The computational motion responses by the irregular wave procedure are compared with the results by regular wave, experiments and strip theory. Transfer functions by irregular wave closely agree with the data obtained in the regular waves, showing negligible difference. The comparison between computational results and experiments also show good agreements. The results better predicted by CFD method than strip theories indicate that this method can compensate for the inaccuracy of the strip theories. The results confirm that the irregular wave procedure is a promising method for the accurate prediction of motion responses with less accuracy loss and higher efficiency compared with the regular wave procedure.展开更多
A domain decomposition and matching method in the time-domain is outlined for simulating the motions of ships advancing in waves. The flow field is decomposed into inner and outer domains by an imaginary control surfa...A domain decomposition and matching method in the time-domain is outlined for simulating the motions of ships advancing in waves. The flow field is decomposed into inner and outer domains by an imaginary control surface, and the Rankine source method is applied to the inner domain while the transient Green function method is used in the outer domain. Two initial boundary value problems are matched on the control surface. The corresponding numerical codes are developed, and the added masses, wave exciting forces and ship motions advancing in head sea for Series 60 ship and S175 containership, are presented and verified. A good agreement has been obtained when the numerical results are compared with the experimental data and other references. It shows that the present method is more efficient because of the panel discretization only in the inner domain during the numerical calculation, and good numerical stability is proved to avoid divergence problem regarding ships with flare.展开更多
The time-domain calculations of retard function and ship motions in waves by the direct time-domain method (DTM) and the frequency to time-domain transformation method (FTTM) are compared and analyzed. A Wigley-hu...The time-domain calculations of retard function and ship motions in waves by the direct time-domain method (DTM) and the frequency to time-domain transformation method (FTTM) are compared and analyzed. A Wigley-hull-form ship and an $60 ship moving in waves are examined, and the corresponding retard functions are in good agreement with those given by DTM and FTTM. The comparison of retard functions in different forward speeds by the two methods is observed, and the results of ship motions in forward speed are also compared with the experimental data. On this basis, the advantage and disadvantage of them are discussed.展开更多
A frequency domain analysis method based on the three-dimensional translating-pulsating (3DTP) source Green function is developed to investigate wave loads and free motions of two ships advancing on parallel course ...A frequency domain analysis method based on the three-dimensional translating-pulsating (3DTP) source Green function is developed to investigate wave loads and free motions of two ships advancing on parallel course in waves. Two experiments are carried out respectively to mea- sure the wave loads and the free motions for a pair of side-by- side arranged ship models advancing with an identical speed in head regular waves. For comparison, each model is also tested alone. Predictions obtained by the present solution are found in favorable agreement with the model tests and are more accurate than the traditional method based on the three dimensional pulsating (3DP) source Green function. Numer- ical resonances and peak shift can be found in the 3DP pre- dictions, which result from the wave energy trapped in the gap between two ships and the extremely inhomogeneous wave load distribution on each hull. However, they can be eliminated by 3DTP, in which the speed affects the free sur- face and most of the wave energy can be escaped from the gap. Both the experiment and the present prediction show that hydrodynamic interaction effects on wave loads and free motions are significant. The present solver may serve as a validated tool to predict wave loads and motions of two ves- sels under replenishment at sea, and may help to evaluate the hydrodynamic interaction effects on the ships safety in replenishment operation.展开更多
Time-domain analysis is used to predict wave loading and motion responses for a ship travelling at a constant speed in regular oblique waves. The combined diffraction and radiation perturbations, caused by the steady ...Time-domain analysis is used to predict wave loading and motion responses for a ship travelling at a constant speed in regular oblique waves. The combined diffraction and radiation perturbations, caused by the steady forward speed of the ship and her motions , are considered as a distribution of normal velocities on the wetted hull surface. The ship-hull boundary condition is exactly fulfilled by expressing the fluid normal velocities as a finite series in terms of the body geometry and the incident wave potential. As far as the authors are aware, no similar work is published todate.The new theory is applied to predict forces and motions at forward speed for a Wigley ship-hull in head waves and a catamaran-ferry in oblique waves. Predictions are compared with published theoretical and experimental results for the Wigley ship-hull, and the comparison is good. For the catamaran, a self-propelled model is built and tested in the large towing tank and seakeeping basin of the China Ship Scientific Research Centre, Wuxi, China, in order to measure the six-degrees-of-freedom forces, moments and motions at forward speed in waves of different directions. Measurements are compared with predictions, and the comparison is generally good for the longitudinal motions thus verifying the analysis. For the transverse motions, acceptable discrepancies exist due to the non-inclusion in the analysis of rudder forces and viscous damping, and due differences in structural inertia properties between the physical model and the corresponding data used in the analysis. The inclusion of viscous damping in the time domain involves complex analysis and this problem is left to a future research.展开更多
This study aims to investigate the nonlinear added mass moment of inertia and damping moment characteristics of largeamplitude ship roll motion based on transient motion data through the nonparametric system identific...This study aims to investigate the nonlinear added mass moment of inertia and damping moment characteristics of largeamplitude ship roll motion based on transient motion data through the nonparametric system identification method.An inverse problem was formulated to solve the first-kind Volterra-type integral equation using sets of motion signal data.However,this numerical approach leads to solution instability due to noisy data.Regularization is a technique that can overcome the lack of stability;hence,Landweber’s regularization method was employed in this study.The L-curve criterion was used to select regularization parameters(number of iterations)that correspond to the accuracy of the inverse solution.The solution of this method is a discrete moment,which is the summation of nonlinear restoring,nonlinear damping,and nonlinear mass moment of inertia.A zero-crossing detection technique is used in the nonparametric system identification method on a pair of measured data of the angular velocity and angular acceleration of a ship,and the detections are matched with the inverse solution at the same discrete times.The procedure was demonstrated through a numerical model of a full nonlinear free-roll motion system in still water to examine and prove its accuracy.Results show that the method effectively and efficiently identified the functional form of the nonlinear added moment of inertia and damping moment.展开更多
We first analyzed the force and motion of naval aircraft during launching process.Further,we investigated the ship deck with the form of a ramp and established deck motion model and ship airwake model.Finally,we condu...We first analyzed the force and motion of naval aircraft during launching process.Further,we investigated the ship deck with the form of a ramp and established deck motion model and ship airwake model.Finally,we conducted simulations at medium sea.Results showed that the effects of deck motion on takeoff varied with initial phases,and airwake could help reducing aircraft′s sinkage.We also found that the deck motion played a major role in the effects caused by the interaction of deck motion and ship airwake.展开更多
In order to damp the heave motion of surface effect ships(SESs),a sliding mode controller with a disturbance observer was designed.At first,a disturbance observer was proposed to estimate the unknown time-varying dist...In order to damp the heave motion of surface effect ships(SESs),a sliding mode controller with a disturbance observer was designed.At first,a disturbance observer was proposed to estimate the unknown time-varying disturbance acting on SESs due to waves.Then,based on the disturbance,a slide mode controller was designed to minimize the magnitude of SES's heave motion position.It was theoretically proved that the designed sliding mode controller with the disturbance observer could guarantee the stability of the closed-loop heave motion control system of SESs.Simulations on a Norwegian Navy's SES were carried out and the simulation results illustrated the effectiveness of the proposed controller with the disturbance observer.展开更多
文摘The motion of the moored ship in the harbor is a classical hydrodynamics problem that still faces many challenges in naval operations,such as cargo transfer and ship pairings between a big transport ship and some small ships.A mathematical model is presented based on the Laplace equation utilizing the porous breakwater to investigate the moored ship motion in a partially absorbing/reflecting harbor.The motion of the moored ship is described with the hydrodynamic forces along the rotational motion(roll,pitch,and yaw)and translational motion(surge,sway,and heave).The efficiency of the numerical method is verified by comparing it with the analytical study of Yu and Chwang(1994)for the porous breakwater,and the moored ship motion is compared with the theoretical and experimental data obtained by Yoo(1998)and Takagi et al.(1993).Further,the current numerical scheme is implemented on the realistic Visakhapatnam Fishing port,India,in order to analyze the hydrodynamic forces on moored ship motion under resonance conditions.The model incorporates some essential strategies such as adding a porous breakwater and utilizing the wave absorber to reduce the port’s resonance.It has been observed that these tactics have a significant impact on the resonance inside the port for safe maritime navigation.Therefore,the current numerical model provides an efficient tool to reduce the resonance within the arbitrarily shaped ports for secure anchoring.
文摘Accurate prediction of shipmotion is very important for ensuringmarine safety,weapon control,and aircraft carrier landing,etc.Ship motion is a complex time-varying nonlinear process which is affected by many factors.Time series analysis method and many machine learning methods such as neural networks,support vector machines regression(SVR)have been widely used in ship motion predictions.However,these single models have certain limitations,so this paper adopts amulti-model prediction method.First,ensemble empirical mode decomposition(EEMD)is used to remove noise in ship motion data.Then the randomforest(RF)prediction model optimized by genetic algorithm(GA),back propagation neural network(BPNN)prediction model and SVR prediction model are respectively established,and the final prediction results are obtained by results of three models.And the weights coefficients are determined by the correlation coefficients,reducing the risk of prediction and improving the reliability.The experimental results show that the proposed combined model EEMD-GARF-BPNN-SVR is superior to the single predictive model and more reliable.The mean absolute percentage error(MAPE)of the proposed model is 0.84%,but the results of the single models are greater than 1%.
基金Foundation item: Supported by the National Natural Science Foundation of China (Grant No. 50739004 and 11072154)
文摘The numerical prediction of added resistance and vertical ship motions of one ITTC (Intemational Towing Tank Conference) S-175 containership in regular head waves by our own in-house unsteady RANS solver naoe-FOAM-SJTU is presented in this paper. The development of the solver naoe-FOAM-SJTU is based on the open source CFD tool, OpenFOAM. Numerical analysis is focused on the added resistance and vertical ship motions (heave and pitch motions) with four very different wavelengths ( 0.8Lpp 〈 2 〈 1.5L ) in regular head waves. Once the wavelength is near the length of the ship model, the responses of the resistance and ship motions become strongly influenced by nonlinear factors, as a result difficulties within simulations occur. In the paper, a comparison of the experimental results and the nonlinear strip theory was reviewed and based on the findings, the RANS simulations by the solver naoe-FOAM-SJTU were considered competent with the prediction of added resistance and vertical ship motions in a wide range of wave lengths.
文摘In this paper, the neural network technology is combined with the fuzzy set theory to model the wave-induced ship motions in irregular seas. This combination makes possible the handling of a non-linear dynamic system with insufficient input information. The numerical results from the strip theory are used to train the networks and to demonstrate the validity of the proposed procedure.
文摘Severe wind-wave due to tropical cyclone Linda can cause port downtime which affects port operations such as berthing, mooting and (un)loading of the ship. The ship motions are criteria for limiting the port operations, human safety and preventing the damage of port equipment and furniture. Therefore, this study discusses moored ship motions due to severe wind-wave during the tropical cyclone Linda which entered the Gulf of Thailand in November 1997. The ship motions are represented in the moored ship analysis at SRH (Sriracha Harbour Port) and BLCP (BLCP Coal-Fired Power Plant Port), and are subject to the static environmental load on the ship in accordance with Spanish Standard (ROM 0.2-1990) [1]. The environment in numerical model is derived from the wave model and hydrodynamics model using the application of Delft3D-WAVE and Delft3D-FLOW. The model location includes Ao Udom Bay and Rayong Sea. The model results represent the environment at Rayong Sea which is more severe than Ao Udom Bay. The ship motions at BLCP are mostly larger than SRH.
文摘The effect of coupling between sloshing and ship motions in the evaluation of slosh-induced interior pressures is studied. The coupling between sloshing loads and ship motions is modelled through a hybrid algorithm which combines a potential flow solution based on transient Green function for the external ship hydrodynamics with a viscous flow solution based on a multiphase interface capturing volume of fluid(VOF) technique for the interior sloshing motion. The coupled algorithm accounts for full nonlinear slosh forces while the external forces on the hull are determined through a blended scheme of linear radiationdiffraction with nonlinear Froude-Krylov and restoring forces. Consideration of this level of nonlinearities in ship motions is found to have non-negligible effects on the slosh-coupled responses and slosh-induced loads. A scheme is devised to evaluate the statistical measure of the pressures through long-duration simulation studies in extreme irregular waves. It is found that coupling significantly influences the tank interior pressures, and the differences in the pressures between coupled and uncoupled cases can be as much as 100% or more. To determine the RAO over the frequency range needed for the simulation studies in irregular waves, two alternative schemes are proposed, both of which require far less computational time compared to the conventional method of finding RAO at each frequency, and the merits of these are discussed.
文摘In this paper a 3-D panoramic simulation system of a ship is described which is developed with the MAXSCRIPT language and VC++ as programming tools on the platform of 3Dsmax. The strip theory method is applied to the motion prediction of the mono-hull. The time history solutions of heave and pitch are obtained in the condition of head sea to provide the primary data on panoramic simulation. The simulation system has following functions: 1)digital simulation;2) panoramic simulation; 3) environmental set-up; 4) render preview and output.
基金supported by the National Natural Science Foundation of China(Grant Nos.52271278 and 52111530137)the Natural Science Found of Jiangsu Province(Grant No.BK20221389)the Newton Advanced Fellowships(Grant No.NAF\R1\180304)by the Royal Society.
文摘The constant panel method within the framework of potential flow theory in the time domain is developed for solving the hydrodynamic interactions between two parallel ships with forward speed.When solving problems within a time domain framework,the free water surface needs to simultaneously satisfy both the kinematic and dynamic boundary conditions of the free water surface.This provides conditions for adding artificial damping layers.Using the Runge−Kutta method to solve equations related to time.An upwind differential scheme is used in the present method to deal with the convection terms on the free surface to prevent waves upstream.Through the comparison with the available experimental data and other numerical methods,the present method is proved to have good mesh convergence,and satisfactory results can be obtained.The constant panel method is applied to calculate the hydrodynamic interaction responses of two parallel ships advancing in head waves.Numerical simulations are conducted on the effects of forward speed,different longitudinal and lateral distances on the motion response of two modified Wigley ships in head waves.Then further investigations are conducted on the effects of different ship types on the motion response.
基金financially supported by the National Key Research and Development Program of China (Grant No.2022YFE010700)the National Natural Science Foundation of China (Grant No.52171259)+1 种基金the High-Tech Ship Research Project of Ministry of Industry and Information Technology (Grant No.[2021]342)Foundation of State Key Laboratory of Ocean Engineering in Shanghai Jiao Tong University (Grant No.GKZD010086-2)。
文摘During ship operations,frequent heave movements can pose significant challenges to the overall safety of the ship and completion of cargo loading.The existing heave compensation systems suffer from issues such as dead zones and control system time lags,which necessitate the development of reasonable prediction models for ship heave movements.In this paper,a novel model based on a time graph convolutional neural network algorithm and particle swarm optimization algorithm(PSO-TGCN)is proposed for the first time to predict the multipoint heave movements of ships under different sea conditions.To enhance the dataset's suitability for training and reduce interference,various filter algorithms are employed to optimize the dataset.The training process utilizes simulated heave data under different sea conditions and measured heave data from multiple points.The results show that the PSO-TGCN model predicts the ship swaying motion in different sea states after 2 s with 84.7%accuracy,while predicting the swaying motion in three different positions.By performing a comparative study,it was also found that the present method achieves better performance that other popular methods.This model can provide technical support for intelligent ship control,improve the control accuracy of intelligent ships,and promote the development of intelligent ships.
文摘A time domain prediction of wave-induced ship motions by a Rankine panel method is investigated. Linear boundary conditions on free surface and mean wetted body surface are adopted, while the numerical damping method is used for the radiation conditions. The motions of two ships in regular head waves are computed by the present method. The related numerical results are compared with the experiment data and those from linear strip theory. The comparison shows satisfactory agreements for pitch and heave transfer functions.
基金supported by the National Natural Science Foundation of China(Grant Nos.51379125,11272120)the National Key Basic Research Development Program of China(973Program,Grant No.2013CB036103)the High Technology of Marine Research Project of the Ministry of Industry and Information Technology of China
文摘In this paper, numerical prediction of ship motion responses in long-crest irregular waves by the URANS-VOF method is presented. A white noise spectrum is applied to generate the incoming waves to evaluate the motion responses. The procedure can replace a decade of simulations in regular wave with one single run to obtain a complete curve of linear motion response, considerably reducing computation time. A correction procedure is employed to adjust the wave generation signal based on the wave spectrum and achieves fairly better results in the wave tank. Three ship models with five wave conditions are introduced to validate the method. The computations in this paper are completed by using the solver naoe-FOAM-SJTU, a solver developed for ship and ocean engineering based on the open source code OpenFOAM. The computational motion responses by the irregular wave procedure are compared with the results by regular wave, experiments and strip theory. Transfer functions by irregular wave closely agree with the data obtained in the regular waves, showing negligible difference. The comparison between computational results and experiments also show good agreements. The results better predicted by CFD method than strip theories indicate that this method can compensate for the inaccuracy of the strip theories. The results confirm that the irregular wave procedure is a promising method for the accurate prediction of motion responses with less accuracy loss and higher efficiency compared with the regular wave procedure.
基金financially supported by the National Basic Research Program of China(973 Program,Grant No.2014CB046203)
文摘A domain decomposition and matching method in the time-domain is outlined for simulating the motions of ships advancing in waves. The flow field is decomposed into inner and outer domains by an imaginary control surface, and the Rankine source method is applied to the inner domain while the transient Green function method is used in the outer domain. Two initial boundary value problems are matched on the control surface. The corresponding numerical codes are developed, and the added masses, wave exciting forces and ship motions advancing in head sea for Series 60 ship and S175 containership, are presented and verified. A good agreement has been obtained when the numerical results are compared with the experimental data and other references. It shows that the present method is more efficient because of the panel discretization only in the inner domain during the numerical calculation, and good numerical stability is proved to avoid divergence problem regarding ships with flare.
文摘The time-domain calculations of retard function and ship motions in waves by the direct time-domain method (DTM) and the frequency to time-domain transformation method (FTTM) are compared and analyzed. A Wigley-hull-form ship and an $60 ship moving in waves are examined, and the corresponding retard functions are in good agreement with those given by DTM and FTTM. The comparison of retard functions in different forward speeds by the two methods is observed, and the results of ship motions in forward speed are also compared with the experimental data. On this basis, the advantage and disadvantage of them are discussed.
基金supported by the National Natural Science Foundation of China(50879090)the Key Research Program of Hydrodynamics of China(9140A14030712JB11044)
文摘A frequency domain analysis method based on the three-dimensional translating-pulsating (3DTP) source Green function is developed to investigate wave loads and free motions of two ships advancing on parallel course in waves. Two experiments are carried out respectively to mea- sure the wave loads and the free motions for a pair of side-by- side arranged ship models advancing with an identical speed in head regular waves. For comparison, each model is also tested alone. Predictions obtained by the present solution are found in favorable agreement with the model tests and are more accurate than the traditional method based on the three dimensional pulsating (3DP) source Green function. Numer- ical resonances and peak shift can be found in the 3DP pre- dictions, which result from the wave energy trapped in the gap between two ships and the extremely inhomogeneous wave load distribution on each hull. However, they can be eliminated by 3DTP, in which the speed affects the free sur- face and most of the wave energy can be escaped from the gap. Both the experiment and the present prediction show that hydrodynamic interaction effects on wave loads and free motions are significant. The present solver may serve as a validated tool to predict wave loads and motions of two ves- sels under replenishment at sea, and may help to evaluate the hydrodynamic interaction effects on the ships safety in replenishment operation.
文摘Time-domain analysis is used to predict wave loading and motion responses for a ship travelling at a constant speed in regular oblique waves. The combined diffraction and radiation perturbations, caused by the steady forward speed of the ship and her motions , are considered as a distribution of normal velocities on the wetted hull surface. The ship-hull boundary condition is exactly fulfilled by expressing the fluid normal velocities as a finite series in terms of the body geometry and the incident wave potential. As far as the authors are aware, no similar work is published todate.The new theory is applied to predict forces and motions at forward speed for a Wigley ship-hull in head waves and a catamaran-ferry in oblique waves. Predictions are compared with published theoretical and experimental results for the Wigley ship-hull, and the comparison is good. For the catamaran, a self-propelled model is built and tested in the large towing tank and seakeeping basin of the China Ship Scientific Research Centre, Wuxi, China, in order to measure the six-degrees-of-freedom forces, moments and motions at forward speed in waves of different directions. Measurements are compared with predictions, and the comparison is generally good for the longitudinal motions thus verifying the analysis. For the transverse motions, acceptable discrepancies exist due to the non-inclusion in the analysis of rudder forces and viscous damping, and due differences in structural inertia properties between the physical model and the corresponding data used in the analysis. The inclusion of viscous damping in the time domain involves complex analysis and this problem is left to a future research.
文摘This study aims to investigate the nonlinear added mass moment of inertia and damping moment characteristics of largeamplitude ship roll motion based on transient motion data through the nonparametric system identification method.An inverse problem was formulated to solve the first-kind Volterra-type integral equation using sets of motion signal data.However,this numerical approach leads to solution instability due to noisy data.Regularization is a technique that can overcome the lack of stability;hence,Landweber’s regularization method was employed in this study.The L-curve criterion was used to select regularization parameters(number of iterations)that correspond to the accuracy of the inverse solution.The solution of this method is a discrete moment,which is the summation of nonlinear restoring,nonlinear damping,and nonlinear mass moment of inertia.A zero-crossing detection technique is used in the nonparametric system identification method on a pair of measured data of the angular velocity and angular acceleration of a ship,and the detections are matched with the inverse solution at the same discrete times.The procedure was demonstrated through a numerical model of a full nonlinear free-roll motion system in still water to examine and prove its accuracy.Results show that the method effectively and efficiently identified the functional form of the nonlinear added moment of inertia and damping moment.
基金supported by the National Natural Science Foundation of China(No.61304223)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20123218120015)
文摘We first analyzed the force and motion of naval aircraft during launching process.Further,we investigated the ship deck with the form of a ramp and established deck motion model and ship airwake model.Finally,we conducted simulations at medium sea.Results showed that the effects of deck motion on takeoff varied with initial phases,and airwake could help reducing aircraft′s sinkage.We also found that the deck motion played a major role in the effects caused by the interaction of deck motion and ship airwake.
基金National Natural Science Foundations of China(Nos.51579026,51079013)Program for Excellent Talents in Universities of Liaoning Province,China(No.LR2015007)+1 种基金Project of Resource and Social Security of Ministry of Human Province,ChinaFundamental Research Funds for the Central Universities,China(No.3132016020)
文摘In order to damp the heave motion of surface effect ships(SESs),a sliding mode controller with a disturbance observer was designed.At first,a disturbance observer was proposed to estimate the unknown time-varying disturbance acting on SESs due to waves.Then,based on the disturbance,a slide mode controller was designed to minimize the magnitude of SES's heave motion position.It was theoretically proved that the designed sliding mode controller with the disturbance observer could guarantee the stability of the closed-loop heave motion control system of SESs.Simulations on a Norwegian Navy's SES were carried out and the simulation results illustrated the effectiveness of the proposed controller with the disturbance observer.