In ship-borne radar, because of the influence of interference factors such as the correlation of background array noise and the coherence of targets and so on, the performance of high-resolution algorithms such as MUS...In ship-borne radar, because of the influence of interference factors such as the correlation of background array noise and the coherence of targets and so on, the performance of high-resolution algorithms such as MUSIC is degraded. In this document by pre-whitening of background array color noise, de-correlation of coherent targets, compensation of amplitude-phase mismatch, pre-whitened-constrained-MUSIC algorithm in ship-borne radar effectively resolutes ship target and first-order sea echo. Furthermore, the algorithm performance is compared with other algorithms, result shows that pre-whitened-constrained-MUSIC can be applied effectively in high-resolution processing in ship-borne radar.展开更多
The maritime administrative department employs synthetic aperture radar (SAR) satellite remote sensing technology to obtain evidence of illegal discharge of ships. If the ship is discharged during navigation, it forms...The maritime administrative department employs synthetic aperture radar (SAR) satellite remote sensing technology to obtain evidence of illegal discharge of ships. If the ship is discharged during navigation, it forms a long dark wake on the SAR image due to the suppression of the Bragg wave by the oil fi lm. This study investigates key techniques for rapid detection of long ship wakes, thereby providing law enforcement agencies with candidate ships for possible discharge. This paper presents a rapid long ship wake detection method that uses satellite imaging parameters and the axial direction of the ship in images to determine the potential detection area of the wake. Then, the threshold of long ship wake detection is determined using statistical analysis, the area is binarized, and isolated points are removed using a morphological filter operator. The method was tested with ENVISAT Synthetic Aperture Radar and GF-3 SAR data, and results showed that the method was eff ective, and the overall accuracy of the decision reaches 71%. We present two innovations;one is a method that draws a Doppler shift curve, and uses the SAR imaging parameters to determine the detection area of the long wake to achieve rapid detection and reduce the image detection area. The other is where a classical linear fitting method is used to quickly and accurately determine whether the detected dark area is a long ship wake and realizes the twisted long ship wake detection caused by the sea surface flow field, which is otherwise diffi cult to detect by the traditional Radon and Hough transform methods. This method has good suppression performance for the dark spot false alarm formed by low speed wind region or upward flow. The method is developed for maritime ship monitoring system and will promote the operational application of maritime ship monitoring system.展开更多
To dates,most ship detection approaches for single-pol synthetic aperture radar(SAR) imagery try to ensure a constant false-alarm rate(CFAR).A high performance ship detector relies on two key components:an accura...To dates,most ship detection approaches for single-pol synthetic aperture radar(SAR) imagery try to ensure a constant false-alarm rate(CFAR).A high performance ship detector relies on two key components:an accurate estimation to a sea surface distribution and a fine designed CFAR algorithm.First,a novel nonparametric sea surface distribution estimation method is developed based on n-order Bézier curve.To estimate the sea surface distribution using n-order Bézier curve,an explicit analytical solution is derived based on a least square optimization,and the optimal selection also is presented to two essential parameters,the order n of Bézier curve and the number m of sample points.Next,to validate the ship detection performance of the estimated sea surface distribution,the estimated sea surface distribution by n-order Bézier curve is combined with a cell averaging CFAR(CA-CFAR).To eliminate the possible interfering ship targets in background window,an improved automatic censoring method is applied.Comprehensive experiments prove that in terms of sea surface estimation performance,the proposed method is as good as a traditional nonparametric Parzen window kernel method,and in most cases,outperforms two widely used parametric methods,K and G0 models.In terms of computation speed,a major advantage of the proposed estimation method is the time consuming only depended on the number m of sample points while independent of imagery size,which makes it can achieve a significant speed improvement to the Parzen window kernel method,and in some cases,it is even faster than two parametric methods.In terms of ship detection performance,the experiments show that the ship detector which constructed by the proposed sea surface distribution model and the given CA-CFAR algorithm has wide adaptability to different SAR sensors,resolutions and sea surface homogeneities and obtains a leading performance on the test dataset.展开更多
This paper provides a design method based on a time-shared form, which obtains the compatibility of signal and the system for detecting both ships and airplanes. Then, it gives the structure diagram of the system and ...This paper provides a design method based on a time-shared form, which obtains the compatibility of signal and the system for detecting both ships and airplanes. Then, it gives the structure diagram of the system and the chart diagram of signal processing. Finally, the continuity problem of signal modulation for ship detection is discussed.展开更多
针对SAR图像检测船舶任务中的目标小、近岸样本目标检测困难等问题,文章提出一种名为长短路特征融合网络(Long and Short path Feature Fusion Network,LSFF-Net)的船舶检测网络。该网络通过长短路特征融合模块有效协调了大目标与小目...针对SAR图像检测船舶任务中的目标小、近岸样本目标检测困难等问题,文章提出一种名为长短路特征融合网络(Long and Short path Feature Fusion Network,LSFF-Net)的船舶检测网络。该网络通过长短路特征融合模块有效协调了大目标与小目标检测,避免小目标特征信息的丢失。网络中应用结构重参数化结构提高了模块学习能力。为了满足多尺度目标检测,加入特征金字塔网络,融合多尺度特征。为了应对近岸样本目标检测,设计数据重分配算法,提高了对近岸样本目标的检测精度。实验结果表明:在公开数据集检测时,算法的平均精度(Average Precision,AP)达到97.50%,优于主流目标检测算法。该方法为提高SAR图像中小目标和近岸样本目标检测精度提供了新的实现方案。展开更多
文摘In ship-borne radar, because of the influence of interference factors such as the correlation of background array noise and the coherence of targets and so on, the performance of high-resolution algorithms such as MUSIC is degraded. In this document by pre-whitening of background array color noise, de-correlation of coherent targets, compensation of amplitude-phase mismatch, pre-whitened-constrained-MUSIC algorithm in ship-borne radar effectively resolutes ship target and first-order sea echo. Furthermore, the algorithm performance is compared with other algorithms, result shows that pre-whitened-constrained-MUSIC can be applied effectively in high-resolution processing in ship-borne radar.
基金Supported by the National Natural Science Foundation of China(No.41476088)the National High Resolution Project of China(No.41Y30B12-9001-14/16)+1 种基金the 2016 Key Projects for Marine Environmental Security(No.2016YFC14032)the research grants of the Second Institute of Oceanography,MNR(No.JT1307)
文摘The maritime administrative department employs synthetic aperture radar (SAR) satellite remote sensing technology to obtain evidence of illegal discharge of ships. If the ship is discharged during navigation, it forms a long dark wake on the SAR image due to the suppression of the Bragg wave by the oil fi lm. This study investigates key techniques for rapid detection of long ship wakes, thereby providing law enforcement agencies with candidate ships for possible discharge. This paper presents a rapid long ship wake detection method that uses satellite imaging parameters and the axial direction of the ship in images to determine the potential detection area of the wake. Then, the threshold of long ship wake detection is determined using statistical analysis, the area is binarized, and isolated points are removed using a morphological filter operator. The method was tested with ENVISAT Synthetic Aperture Radar and GF-3 SAR data, and results showed that the method was eff ective, and the overall accuracy of the decision reaches 71%. We present two innovations;one is a method that draws a Doppler shift curve, and uses the SAR imaging parameters to determine the detection area of the long wake to achieve rapid detection and reduce the image detection area. The other is where a classical linear fitting method is used to quickly and accurately determine whether the detected dark area is a long ship wake and realizes the twisted long ship wake detection caused by the sea surface flow field, which is otherwise diffi cult to detect by the traditional Radon and Hough transform methods. This method has good suppression performance for the dark spot false alarm formed by low speed wind region or upward flow. The method is developed for maritime ship monitoring system and will promote the operational application of maritime ship monitoring system.
基金The National Natural Science Foundation of China under contract No.61471024the National Marine Technology Program for Public Welfare under contract No.201505002-1the Beijing Higher Education Young Elite Teacher Project under contract No.YETP0514
文摘To dates,most ship detection approaches for single-pol synthetic aperture radar(SAR) imagery try to ensure a constant false-alarm rate(CFAR).A high performance ship detector relies on two key components:an accurate estimation to a sea surface distribution and a fine designed CFAR algorithm.First,a novel nonparametric sea surface distribution estimation method is developed based on n-order Bézier curve.To estimate the sea surface distribution using n-order Bézier curve,an explicit analytical solution is derived based on a least square optimization,and the optimal selection also is presented to two essential parameters,the order n of Bézier curve and the number m of sample points.Next,to validate the ship detection performance of the estimated sea surface distribution,the estimated sea surface distribution by n-order Bézier curve is combined with a cell averaging CFAR(CA-CFAR).To eliminate the possible interfering ship targets in background window,an improved automatic censoring method is applied.Comprehensive experiments prove that in terms of sea surface estimation performance,the proposed method is as good as a traditional nonparametric Parzen window kernel method,and in most cases,outperforms two widely used parametric methods,K and G0 models.In terms of computation speed,a major advantage of the proposed estimation method is the time consuming only depended on the number m of sample points while independent of imagery size,which makes it can achieve a significant speed improvement to the Parzen window kernel method,and in some cases,it is even faster than two parametric methods.In terms of ship detection performance,the experiments show that the ship detector which constructed by the proposed sea surface distribution model and the given CA-CFAR algorithm has wide adaptability to different SAR sensors,resolutions and sea surface homogeneities and obtains a leading performance on the test dataset.
基金Supported by National Defense Committee of Science and Industry as a key pre-research project
文摘This paper provides a design method based on a time-shared form, which obtains the compatibility of signal and the system for detecting both ships and airplanes. Then, it gives the structure diagram of the system and the chart diagram of signal processing. Finally, the continuity problem of signal modulation for ship detection is discussed.
文摘针对SAR图像检测船舶任务中的目标小、近岸样本目标检测困难等问题,文章提出一种名为长短路特征融合网络(Long and Short path Feature Fusion Network,LSFF-Net)的船舶检测网络。该网络通过长短路特征融合模块有效协调了大目标与小目标检测,避免小目标特征信息的丢失。网络中应用结构重参数化结构提高了模块学习能力。为了满足多尺度目标检测,加入特征金字塔网络,融合多尺度特征。为了应对近岸样本目标检测,设计数据重分配算法,提高了对近岸样本目标的检测精度。实验结果表明:在公开数据集检测时,算法的平均精度(Average Precision,AP)达到97.50%,优于主流目标检测算法。该方法为提高SAR图像中小目标和近岸样本目标检测精度提供了新的实现方案。