期刊文献+
共找到3,443篇文章
< 1 2 173 >
每页显示 20 50 100
Effects of sintering atmosphere on the microstructure and mechanical property of sintered 316L stainless steel
1
作者 李松林 黄伯云 +4 位作者 李益民 梁叔全 李笃信 范景莲 姜峰 《Journal of Central South University of Technology》 2003年第1期1-6,共6页
In the present work, N 2, N 2+H 2, Ar and Ar+H 2, were used as the sintering atmosphere of Metal Injection Molded 316L stainless steel respectively. The influences of the sintering atmospheres on C, O, N contents of t... In the present work, N 2, N 2+H 2, Ar and Ar+H 2, were used as the sintering atmosphere of Metal Injection Molded 316L stainless steel respectively. The influences of the sintering atmospheres on C, O, N contents of the sintered specimens, sintered density, grain morphology and mechanical properties were investigated. The results show that C, O, N contents of the sintered specimens can be controlled in permitted low values. The ultimate tensile strength and elongation of the specimen sintered in N 2+H 2 atmosphere are 765 MPa and 32% respectively. Using Ar and Ar+H 2 as the sintering atmosphere, the density of the sintered specimens is 98% of the theoretical density; the pores are uniformly distributed as small spherical shape and the grain size is about 50 μm. The mechanical properties of the specimen, i.e. ultimate tensile strength 630 MPa, yield strength 280 MPa, elongation 52%, HRB 71, are much better than those of the American Metal Powder Industries Federation(MPIF) 35 Standard after being sintered in Ar+H 2. 展开更多
关键词 POWDER METALLURGY 316L STAINLESS steel SINTERING microstructure mechanical property
下载PDF
Mechanical Behavior and Microstructure Evolution during Tensile Deformation of Twinning Induced Plasticity Steel Processed by Warm Forgings
2
作者 王文 ZHAO Modi +2 位作者 WANG Xingfu 汪聃 韩福生 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期417-424,共8页
The mechanical behavior and microstructural evolution of an Fe-30Mn-3Al-3Si twinninginduced plasticity(TWIP)steel processed using warm forging was investigated.It is found that steel processed via warm forging improve... The mechanical behavior and microstructural evolution of an Fe-30Mn-3Al-3Si twinninginduced plasticity(TWIP)steel processed using warm forging was investigated.It is found that steel processed via warm forging improves comprehensive mechanical properties compared to the TWIP steel processed via cold rolling,with a high tensile strength(R_(m))of 793 MPa,a yield strength(R_(P))of 682 MPa,an extremely large R_(P)/R_(m)ratio as high as 0.86 as well as an excellent elongation rate of 46.8%.The microstructure observation demonstrates that steel processed by warm forging consists of large and elongated grains together with fine,equiaxed grains.Complicated micro-defect configurations were also observed within the steel,including dense dislocation networks and a few coarse deformation twins.As the plastic deformation proceeds,the densities of dislocations and deformation twins significantly increase.Moreover,a great number of slip lines could be observed in the elongated grains.These findings reveal that a much more dramatic interaction between microstructural defect and dislocations glide takes place in the forging sample,wherein the fine and equiaxed grains propagated dislocations more rapidly,together with initial defect configurations,are responsible for enhanced strength properties.Meanwhile,larger,elongated grains with more prevalently activated deformation twins result in high plasticity. 展开更多
关键词 TWIP steel TWINNING mechanical property deformation mechanism microstructure
下载PDF
Effect of Mn addition on microstructure and mechanical properties of GX40CrNiSi25-12 austenitic heat resistant steel
3
作者 Guan-yu Jiang Meng-wu Wu +2 位作者 Xiao-guang Yang Hui Wang Yu-yuan Zhu 《China Foundry》 SCIE EI CAS CSCD 2024年第3期205-212,共8页
Three types of steels were designed on the basis of GX40CrNiSi25-12 austenitic heat resistant steel by adding different Mn contents(2wt.%,6wt.%,and 12wt.%).Thermodynamic calculation,microstructure characterization and... Three types of steels were designed on the basis of GX40CrNiSi25-12 austenitic heat resistant steel by adding different Mn contents(2wt.%,6wt.%,and 12wt.%).Thermodynamic calculation,microstructure characterization and mechanical property tests were conducted to investigate the effect of Mn addition on the microstructure and mechanical properties of the austenitic heat resistant steel.Results show that the matrix structure in all the three types of steels at room temperature is completely austenite.Carbides NbC and M_(23)C_(6)precipitate at grain boundaries of austenite matrix.With the increase of Mn content,the number of carbides increases and their distribution becomes more uniform.With the Mn content increases from 1.99%to 12.06%,the ultimate tensile strength,yield strength and elongation increase by 14.6%,8.0%and 46.3%,respectively.The improvement of the mechanical properties of austenitic steels can be explained by utilizing classic theories of alloy strengthening,including solid solution strengthening,precipitation strengthening,and grain refinement.The increase in alloy strength can be attributed to solid solution strengthening and precipitation strengthening caused by the addition of Mn.The improvement of the plasticity of austenitic steels can be explained from two aspects:grain refinement and homogenization of precipitated phases. 展开更多
关键词 austenitic heat resistant steel MANGANESE microstructure mechanical properties
下载PDF
Effect of nitrogen content on the microstructure and mechanical properties of titanium-bearing nonquenched and tempered steel after hot forging
4
作者 YU Dajiang GAO Jiaqiang ZHAO Sixin 《Baosteel Technical Research》 CAS 2023年第2期1-6,共6页
The microstructure and mechanical properties of titanium(Ti)-bearing medium-carbon nonquenched and tempered steel with different nitrogen content before and after hot forging were investigated through smelting,forging... The microstructure and mechanical properties of titanium(Ti)-bearing medium-carbon nonquenched and tempered steel with different nitrogen content before and after hot forging were investigated through smelting,forging,and laboratory tests.The results show that the grain size of nonquenched and tempered steel was gradually refined,and the ferrite content gradually increased with an increase in nitrogen content.The grain size of the material with low nitrogen content increased abnormally,and its impact properties significantly decreased after hot forging.The grain size of nonquenched and tempered steel with higher nitrogen content was slightly larger than that before forging,and the tensile and yield strength increased,but the impact toughness was not significantly reduced.The Ti-bearing nonquenched and tempered steel showed better strength and toughness after hot forging with the addition of 0.010%0.015%nitrogen. 展开更多
关键词 nonquenched and tempered steel nitrogen content TITANIUM FORGING mechanical properties microstructure
下载PDF
Microstructure and mechanical property of resistance spot welded joint of aluminum alloy to high strength steel with especial electrodes 被引量:2
5
作者 张伟华 孙大千 +3 位作者 殷世强 韩立军 高阳 邱小明 《China Welding》 EI CAS 2011年第2期1-6,共6页
关键词 焊接接头 高强度钢 平头电极 电阻点焊 铝合金 力学性能 显微组织 金属间化合物层
下载PDF
Achieving Fine-Grained Microstructure and Superior Mechanical Property in a Plain Low-Carbon Steel Using Heavy Cold Rolling Combined with Short-Time Heat Treatment
6
作者 Yuxuan Liu Shichang Liu +4 位作者 Liming Fu Huanrong Wang Wei Wang Mao Wen Aidang Shan 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2023年第10期1719-1734,共16页
A new thermomechanical process consisting of heavy cold rolling(HCR)and short-time heat treatment(STH)is developed to fabricate fine-grained martensite microstructure in a low-cost plain low-carbon steel.To achieve th... A new thermomechanical process consisting of heavy cold rolling(HCR)and short-time heat treatment(STH)is developed to fabricate fine-grained martensite microstructure in a low-cost plain low-carbon steel.To achieve the optimal mechanical properties after STH,three different ferrite-pearlite(F-P)dual-phase microstructures are prepared via hot rolling(HR),HR and austenitizing,and HR and HCR.The microstructure evolution and the comprehensive mechanical properties of the alloy during STH are then investigated.We find that the volume fractions of transformed martensite after STH increase with decreasing grain sizes of the pre-STH F-P dual phases.The rapid heating and short-time holding of STH promote grain nucleation and inhibit grain growth,resulting in microstructure refinement.The formation of martensites with different morphologies and different carbon concentrations in the HR and HCR+STH alloy is identified,owing to the inhomogeneous carbon distribution by STH.Tensile experiments demonstrate that STH greatly improves the comprehension mechanical properties of the alloy.Excellent mechanical properties,with a yield strength of 1224 MPa,a tensile strength of 1583 MPa,a uniform elongation of 4.0%and a total elongation of 7.3%are achieved in the HR and HCR+STH alloy.These excellent mechanical properties are principally attributed to the microstructure refinement and martensite formation induced by STH,with a yield strength improvement of 134%and a tensile strength improvement of 150%relative to the HR alloy. 展开更多
关键词 Heat treatment microstructure Plain low-carbon steel mechanical properties
原文传递
Comprehensive study of microstructure and mechanical properties of friction stir welded 5182-O/HC260YD+Z lap joint
7
作者 邓建峰 郭伟强 +4 位作者 徐晓霞 王博 灰辉 窦思忠 黄望业 《China Welding》 CAS 2023年第1期46-52,共7页
The welding of aluminum(Al)and steel has attracted more and more interest due to the weight reduction trend in vehicle and aerospace manufacturing industries.5182-O/HC260YD+Z lap joint was produced by friction stir we... The welding of aluminum(Al)and steel has attracted more and more interest due to the weight reduction trend in vehicle and aerospace manufacturing industries.5182-O/HC260YD+Z lap joint was produced by friction stir welding(FSW),and the microstructure and mechanical property of the joint were systemically characterized.The microstructure in horizontal direction of the Al and steel near interface was similar to their corresponding conventional friction stir welded joint.The joint was divided into stir zone of Al(ST-Al),stir zone of interface(ST-I),thermal-mechanically affected zone of steel(TMAZ-Fe)and base material of steel(BM-Fe)according to their distinct microstructure vertically.Three kinds of intermetallic compounds(IMCs)of FeAl_(3),FeAl and Fe_(3)Al were formed at the interface.The horizontal micro hardness distribution exhibited a hat shape and“M”shape in Al and steel,respectively.The hardest region of the joint was located at the ST-I,with a hardness of 175 HV−210 HV.The joint was fractured along the hook structure,with an average shear strength of 73.9 MPa.Fractural morphology of Al and steel indicted a cleavage fracture mode. 展开更多
关键词 LIGHTWEIGHT aluminum/steel lap joint friction stir welding interfacial microstructure mechanical property
下载PDF
Heterogeneous Microstructure-Induced Mechanical Responses in Various Sub-Zones of EH420 Shipbuilding Steel Welded Joint Under High Heat Input Electro-Gas Welding 被引量:2
8
作者 Xu Xie Tan Zhao +2 位作者 Heming Zhao Song Li Cong Wang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2021年第10期1427-1433,共7页
Heterogeneous microstructure-induced mechanical responses in EH420 shipbuilding steel welded joint by electro-gas welding processed have been systematically studied by scanning electron microscopy,electron backscatter... Heterogeneous microstructure-induced mechanical responses in EH420 shipbuilding steel welded joint by electro-gas welding processed have been systematically studied by scanning electron microscopy,electron backscatter diffraction and mechanical testing.Comparing with the coarse-grained heat-affected zone(CGHAZ),the weld metal presents higher toughness(129.3 J vs.37.3 J)as it contains a large number of acicular ferrites with high-angle grain boundaries(frequency 79.2%)and special grain boundary∑3(frequency 55.3%).Moreover,coarse austenite grains in CGHAZ and slender martensite–austenite constituents between bainite laths may likely facilitate crack propagation.Polygonal ferrites and tempered pearlites formed at the junction of the fine-grained heat-affected zone and the intercritical heat-affected zone induced a softened zone with an average hardness of 185 HV0.5,which is the main reason for the occurrence of tensile fracture. 展开更多
关键词 Heterogeneous microstructure mechanical properties Electro-gas welding High heat input shipbuilding steel
原文传递
Effects of Nb on the microstructure and mechanical properties of 38MnB5 steel 被引量:8
9
作者 Li Lin Bao-shun Li +2 位作者 Guo-ming Zhu Yong-lin Kang Ren-dong Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2018年第10期1181-1190,共10页
The effects of the microalloying element niobium(Nb) on the microstructure and mechanical properties of the hot stamped steel 38 Mn B5 were investigated. The impact of Nb addition on the microstructure was studied thr... The effects of the microalloying element niobium(Nb) on the microstructure and mechanical properties of the hot stamped steel 38 Mn B5 were investigated. The impact of Nb addition on the microstructure was studied through scanning electron microscopy(SEM), transmission electron microscopy(TEM), and X-ray diffraction(XRD). The experimental results indicated that the microstructures of the steel containing Nb were finer than those of the steel without Nb. Moreover, Nb mainly presented as a second-phase particle in 38MnB5 steel, and the particles included Nb carbonitrides. In addition, the tensile strength and elongation of the hot rolled and hot stamped steels were also measured, and they demonstrated that the appropriate addition of Nb was beneficial to the mechanical properties of 38 MnB5. Under the same conditions, the tensile strength of 38 MnB5 Nb was higher than that of 38 MnB5, which increased from 2011 to 2179 MPa. The yield strength also increased from 1316 to 1476 MPa, and the elongation increased from 5.92% to 6.64%. Overall, Nb had a positive effect on the performance of the hot stamped steel. 展开更多
关键词 HOT STAMPING steel CCT CURVE microstructure mechanical properties PRECIPITATION
下载PDF
Tempering microstructure and mechanical properties of pipeline steel X80 被引量:7
10
作者 牛靖 齐丽华 +3 位作者 刘迎来 马蕾 冯耀荣 张建勋 《中国有色金属学会会刊:英文版》 CSCD 2009年第S3期573-578,共6页
The tempering microstructure and mechanical properties of X80 steel used for heating-bent pipe were analyzed. The results show that the microstructure of X80 steel tempered at 550 ℃ and 600 ℃ is bainitic ferrite (BF... The tempering microstructure and mechanical properties of X80 steel used for heating-bent pipe were analyzed. The results show that the microstructure of X80 steel tempered at 550 ℃ and 600 ℃ is bainitic ferrite (BF)+granular bainite (GB), and partial ferrite laths in BF merge and broaden. The interior sub-lath boundary of some GB begins to disappear due to merging, the M/A constituent (a mixture of martensite plus retained austenite) in GB is orbicular. At the two tempering temperatures the tested X80 steel shows a certain degree of tempering stability. After being tempered at 650 ℃, the microstructure of X80 steel is GB+quasi-polygonal ferrite(QF), and the original BF laths have merged to form smaller GB crystal grains. The reason is that the steel shows better match of strength and toughness. After being tempered at 700 ℃ , the microstructure of X80 steel is composed mainly of QF, which can improve the plasticity but decline severely the yield strength of X80, and the M/A constituent assembles and grows up at the grain boundary of QF, resulting in excellent lower low-temperature toughness of X80. 展开更多
关键词 X80 steel microstructure TEMPERING temperature mechanical property
下载PDF
Effect of cryogenic rolling and annealing on the microstructure evolution and mechanical properties of 304 stainless steel 被引量:4
11
作者 Jin-tao Shi Long-gang Hou +2 位作者 Jin-rong Zuo Lin-zhong Zhuang Ji-shan Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第6期638-645,共8页
Metastable 304 austenitic stainless steel was subjected to rolling at cryogenic and room temperatures, followed by annealing at different temperatures from 500 to 950°C. Phase transition during annealing was stud... Metastable 304 austenitic stainless steel was subjected to rolling at cryogenic and room temperatures, followed by annealing at different temperatures from 500 to 950°C. Phase transition during annealing was studied using X-ray diffractometry. Transmission electron microscopy and electron backscattered diffraction were used to characterize the martensite transformation and the distribution of austenite grain size after annealing. The recrystallization mechanism during cryogenic rolling was a reversal of martensite into austenite and austenite growth. Cryogenic rolling followed by annealing refined grains to 4.7 μm compared with 8.7 μm achieved under room-temperature rolling, as shown by the electron backscattered diffraction images. Tensile tests showed significantly improved mechanical properties after cryogenic rolling as the yield strength was enhanced by 47% compared with room-temperature rolling. 展开更多
关键词 stainless steel CRYOGENIC ROLLING ANNEALING MICROSTRUCTURAL evolution mechanical properties RECRYSTALLIZATION
下载PDF
Mechanical properties and microstructure of 3D-printed high Co–Ni secondary hardening steel fabricated by laser melting deposition 被引量:5
12
作者 Hui-ping Duan Xiao Liu +2 位作者 Xian-zhe Ran Jia Li Dong Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第9期1027-1033,共7页
The mechanical properties and microstructure of the 3D-printed high Co–Ni secondary hardening steel fabricated by the laser melting deposition technique was investigated using a material testing machine and electron ... The mechanical properties and microstructure of the 3D-printed high Co–Ni secondary hardening steel fabricated by the laser melting deposition technique was investigated using a material testing machine and electron microscopy. A microstructure investigation revealed that the samples consist of martensite laths, fine dispersed precipitates, and reverted austenite films at the martensite lath boundaries. The precipitates are enriched with Co and Mo. Because the sample tempered at 486°C has smaller precipitates and a higher number of precipitates per unit area, it exhibits better mechanical properties than the sample tempered at 498°C. Although the 3D-printed samples have the same phase constituents as Aer Met 100 steel, the mechanical properties are slightly worse than those of the commercial wrought Aer Met 100 steel because of the presence of voids. 展开更多
关键词 laser deposition high strength steel mechanical properties microstructure
下载PDF
Effect of hot-dip galvanizing processes on the microstructure and mechanical properties of 600-MPa hot-dip galvanized dual-phase steel 被引量:3
13
作者 Chun-fu Kuang Zhi-wang Zheng +2 位作者 Min-li Wang Quan Xu Shen-gen Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第12期1379-1383,共5页
A C–Mn dual-phase steel was soaked at 800°C for 90 s and then either rapidly cooled to 450°C and held for 30 s(process A) or rapidly cooled to 350°C and then reheated to 450°C(process B) to simula... A C–Mn dual-phase steel was soaked at 800°C for 90 s and then either rapidly cooled to 450°C and held for 30 s(process A) or rapidly cooled to 350°C and then reheated to 450°C(process B) to simulate the hot-dip galvanizing process. The influence of the hot-dip galvanizing process on the microstructure and mechanical properties of 600-MPa hot-dip galvanized dual-phase steel(DP600) was investigated using optical microscopy, scanning electron microscopy(SEM), transmission electron microscopy(TEM), and tensile tests. The results showed that, in the case of process A, the microstructure of DP600 was composed of ferrite, martensite, and a small amount of bainite. The granular bainite was formed in the hot-dip galvanizing stage, and martensite islands were formed in the final cooling stage after hot-dip galvanizing. By contrast, in the case of process B, the microstructure of the DP600 was composed of ferrite, martensite, bainite, and cementite. In addition, compared with the yield strength(YS) of the DP600 annealed by process A, that for the DP600 annealed by process B increased by approximately 50 MPa because of the tempering of the martensite formed during rapid cooling. The work-hardening coefficient(n value) of the DP600 steel annealed by process B clearly decreased because the increase of the YS affected the computation result for the n value. However, the ultimate tensile strength(UTS) and elongation(A80) of the DP600 annealed by process B exhibited less variation compared with those of the DP600 annealed by process A. Therefore, DP600 with excellent comprehensive mechanical properties(YS = 362 MPa, UTS = 638 MPa, A_(80) = 24.3%, n = 0.17) was obtained via process A. 展开更多
关键词 hot-dip GALVANIZING process DUAL-PHASE steel microstructure mechanical properties
下载PDF
Effect of the cooling rate on the microstructure and mechanical properties of high nitrogen stainless steel weld metals 被引量:5
14
作者 明珠 王克鸿 +2 位作者 刘増 王伟 王有祁 《China Welding》 EI CAS 2020年第2期48-52,共5页
The microstructure and mechanical properties of high nitrogen steel(HNS) weld metals prepared under air-and water-cooling conditions are investigated, and the effect of the cooling rate on these properties is discusse... The microstructure and mechanical properties of high nitrogen steel(HNS) weld metals prepared under air-and water-cooling conditions are investigated, and the effect of the cooling rate on these properties is discussed. The results indicate that an increase in the cooling rate could significantly increase the nitrogen content in HNS weld metals, especially for weld metals with a nitrogen content of 0.85%.Moreover, increasing the cooling rate could result in an increase in the tensile strength of HNS weld metals, which is found to be strongly dependent on the nitrogen content of the HNS sample. For high nitrogen austenitic stainless steel welding wire with lower nitrogen content, increasing the cooling rate could significantly improve its tensile strength, but a higher cooling rate has no influence on weld metals with nitrogen content less than 0.58%. The tensile strength of the joint reached 850 MPa. 展开更多
关键词 high NITROGEN STAINLESS steel WELDING COOLING rate microstructure mechanical properties
下载PDF
Microstructure, Mechanical Property and Corrosion Resistance Property of Cr26Mo3.5 Super Ferritic Stainless Joints by P-TIG and Laser Welding 被引量:2
15
作者 胡绳荪 庞杰 +2 位作者 申俊琦 伍文勇 刘腊腊 《Transactions of Tianjin University》 EI CAS 2016年第5期451-457,共7页
The characteristics of microstructure, mechanical property and corrosion behavior of Cr26Mo3.5 super stainless steel joints by pulse tungsten inert gas(P-TIG)welding and laser welding were investigated. The results in... The characteristics of microstructure, mechanical property and corrosion behavior of Cr26Mo3.5 super stainless steel joints by pulse tungsten inert gas(P-TIG)welding and laser welding were investigated. The results indicate that the widths of the center equiaxed grain zone(EGZ)and the columnar grain zone(CGZ)increase with the increase of heat input in both welding processes. The precipitates of Nb and Ti carbides and nitrides are formed in the weld metal(WM)and the heat affected zone(HAZ). The joints by laser welding show better tensile and corrosion resistance properties than those by P-TIG welding due to the heat concentration and lower heat input. The tensile strength and elongation increase with the decrease of heat input, and the fracture mode of the joints turns into ductile-brittle mixed fracture from ductile fracture when the welding method turns into P-TIG welding from laser welding. Moreover, the corrosion resistance of all joints declines slightly with the increase of heat input. Hence, laser welding is more suitable for welding Cr26Mo3.5 super stainless steel in engineering applications. 展开更多
关键词 P-TIG WELDING laser WELDING super ferritic STAINLESS steel microstructure mechanical property CORROSION resistance property
下载PDF
Study on the microstructure and mechanical properties of medium carbon Cr-Si-Mn-Mo-V steel for cast inserted dies 被引量:1
16
作者 LIU Jin-hai LI Guo-lu +1 位作者 HAO Xiao-yan LIU Gen-sheng 《China Foundry》 SCIE CAS 2005年第4期260-263,共4页
The microstructure and mechanical properties of cast inserted dies for automobile covering components were studied. The results show that the as-cast microstructures of cast inserted dies are composed of pearlite, mar... The microstructure and mechanical properties of cast inserted dies for automobile covering components were studied. The results show that the as-cast microstructures of cast inserted dies are composed of pearlite, martensite, bainite, and austenite; and that the annealed microstructure is granular pearlite. The mechanical properties of cast inserted dies approach that of forged inserted dies. The tensile strength is 855 MPa, the elongation is 16%, the impact toughness is 177 J/cm2, and the hardness after annealing and quenching are HRC 19 and HRC 60-62. In addition, the cast inserted dies have good hardenability. The depth of the hardening zone and the hardness after flame quenching satisfy the operating requirements. The cast inserted dies could completely replace the forged inserted dies for making the dies of automobile covering components. 展开更多
关键词 steel CASTINGS inserted die microstructure mechanical properties FLAME QUENCHING
下载PDF
Effects of Quenching Process on Microstructure and Mechanical Properties of Low Carbon Nb-Ti Microalloyed Steel 被引量:2
17
作者 Wen-Zhen Xia Xian-Ming Zhao +1 位作者 Xiao-Ming Zhang Di Wu 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2013年第4期73-77,共5页
The low carbon Nb-Ti microalloyed tested steel was prepared by the process of vacuum induction furnace smelting,forging and hot rolling.The new steel aims to meet the demand of high strength,high toughness and high pl... The low carbon Nb-Ti microalloyed tested steel was prepared by the process of vacuum induction furnace smelting,forging and hot rolling.The new steel aims to meet the demand of high strength,high toughness and high plasticity for building facilities.The effects of quenching process on microstructure and mechanical properties of tested steel were investigated.The results showed that prior austenite grain size,phase type and precipitation behavior of(Nb,Ti)(C,N)play important roles in mechanical properties of the steel.Through modified appropriately,the model of austenite grain growth during heating and holding is d^(5.7778)=5.6478^(5.7778)+7.04×10^(22)t^(1.6136)exp(-427.15×10~3/(RT)).The grain growth activation energy is Q_g=427.15 kJ.During quenching,the microscopic structures are mainly martensite and lath bainite which contains lots of lath substructure and dislocations.The content of phases,fine and coarsening(Nb,Ti)(C,N)precipitated changes during different quenching temperatures and holding time.Finally compared with the hardness value,the best quenching process can be obtained that heating temperature and holding time are900℃and 50 mins,respectively. 展开更多
关键词 low carbon Nb-Ti microalloyed steel quenching process austenite grain growth model microstructure and mechanical properties
下载PDF
Research on microstructure and properties of boron/Q235 steel laser welded dissimilar joints under synchronous thermal field
18
作者 周广涛 黄涛 +2 位作者 郭玉龙 黄奇凡 张波 《China Welding》 CAS 2023年第4期38-48,共11页
The mechanical mismatch effect frequently occurs in the dissimilar materials welded joints, thus leading to plastic gradient at the interface between the weld and heat-affected zone(HAZ). In this work, the boron steel... The mechanical mismatch effect frequently occurs in the dissimilar materials welded joints, thus leading to plastic gradient at the interface between the weld and heat-affected zone(HAZ). In this work, the boron steel and Q235 steel were selected for laser tailor welding,which obtained boron/Q235 steel tailor-welded blanks(TWBs). The method of welding with synchronous thermal field(WSTF) was utilized to eliminate the mismatch effects in TWBs. The WSTF was employed to adjust cooling rates of welded joints, thereby intervening in the solidification behaviors and phase transition of the molten pool. Boron/Q235 steel was welded by laser under conventional and WSTF(300-600 ℃) conditions, respectively. The results show that the microstructure of weld and HAZ(boron) was adequately transitioned to ferrites and pearlites instead of abundant martensite by WSTF. Meanwhile, the discrepancy of microhardness and yield strength between various regions of welded joints was greatly reduced, and the overall plasticity of welded joints was enhanced by WSTF. It is indicated that WSTF can effectively contribute to reducing plastic gradient and achieving mechanical congruity in welded joints by restraining the generation of hardbrittle phase, which could significantly improve the formability of TWBs in subsequent hot stamping. 展开更多
关键词 dissimilar metal welding laser tailor welded blank synchronous thermal field boron steel microstructure mechanical property
下载PDF
Effects of heat treatment on the microstructures and mechanical properties of a new type of nitrogen-containing die steel 被引量:6
19
作者 Jing-yuan Li Peng Zhao +2 位作者 Jun Yanagimoto Sumio Sugiyama Yu-lai Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第6期511-517,共7页
Nitrogen can increase the strength of steels without weakening the toughness and improve the corrosion resistance at the same time. Compared with conventional nitrogen-free die steels, a new type of nitrogen-containin... Nitrogen can increase the strength of steels without weakening the toughness and improve the corrosion resistance at the same time. Compared with conventional nitrogen-free die steels, a new type of nitrogen-containing die steel was developed with many superior properties, such as high strength, high hardness, and good toughness. This paper focused on the effects of heat treatment on the microstruc-tures and mechanical properties of the new type of nitrogen-containing die steel, which were investigated by the optimized deformation process and heat treatment. Isothermal spheroidal annealing and high-temperature quenching as well as high-temperature tempering were ap-plied in the experiment by means of an orthogonal method after the steel was multiply forged. The mechanical properties of nitro-gen-containing die steel forgings are better than the standard of NADCA #207-2003. 展开更多
关键词 力学性能 模具钢 热处理 含氮 显微组织 等温球化退火 正交试验法 耐腐蚀性
下载PDF
Effect of hot stamping parameters on the mechanical properties and microstructure of cold-rolled 22MnB5 steel strips 被引量:7
20
作者 Jing Zhou Bao-yu Wang +1 位作者 Ming-dong Huang Dong Cui 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第6期544-555,共12页
Thermomechanical experiments were carried out to reproduce the hot stamping process and to investigate the effects of process parameters on the microstructure and mechanical properties of stamped parts. The process pa... Thermomechanical experiments were carried out to reproduce the hot stamping process and to investigate the effects of process parameters on the microstructure and mechanical properties of stamped parts. The process parameters, such as austenitizing temperature,soaking time, initial deformation temperature and cooling rate, are studied. The resulting microstructures of specimens were observed and analyzed. To evaluate the mechanical properties of specimens, tensile and hardness tests were also performed at room temperature. The optimum parameters to achieve the highest tensile strength and the desired microstructure were acquired by comparing and analyzing the results. It is indicated that hot deformation changes the transformation characteristics of 22MnB5 steel. Austenite deformation promotes the austenite-to-ferrite transformation and elevates the critical cooling rate to induce a fully martensitic transformation. 展开更多
关键词 微观结构 力学性能 烫印工艺 钢带 冷轧 奥氏体化温度 临界冷却速率 工艺参数
下载PDF
上一页 1 2 173 下一页 到第
使用帮助 返回顶部