For qualifying the anti-shock performance of shipboard equipments and simulating actual underwater explosion environments, a novel dual-wave shock test machine is proposed to increase testing capability of shock test ...For qualifying the anti-shock performance of shipboard equipments and simulating actual underwater explosion environments, a novel dual-wave shock test machine is proposed to increase testing capability of shock test machines as well as to meet certain shock testing specification. The machine can generate a double-pulse acceleration shock for test articles according to specification defined in BV043/85. On the basis of the impact theory, a nonlinear dynamic model of the hydraulically-actuated test machine is established with thorough analysis on its mechanism which involves conversion of gas potential energy and dissipation of kinetic energy. Simulation results have demonstrated that the machine can produce a double-pulse acceleration shock in the time domain or a desired shock response spectrum in the frequency domain, which sets a theoretical base for the construction of the proposed machine.展开更多
The excellent properties of SiC bring new challenges for the device packaging.In this study,the bonding strength,fracture behaviors and microstructural evolution of micron-porous Ag joint were elevated during thermal ...The excellent properties of SiC bring new challenges for the device packaging.In this study,the bonding strength,fracture behaviors and microstructural evolution of micron-porous Ag joint were elevated during thermal cycling(–50 ℃–250 ℃) in SiC/DBC(direct bonding copper) die attachment structure for different time.During harsh thermal shock test,the strength of sintered joint deceased gradually with the increase of cycling number,and the value just was half of the value of as-sintered after 1 000 cycles.Coarsening of Ag grains was observed in micron-porous joint with the structure inhomogeneity and defects increasing,which were the reasons of the strength decease.In addition,it was also found that the fracture behavior of sintered joints was changed from ductile deformation of Ag grain to brittle fracture of crack propagation after 1 000 cycles.This study will add the understanding in the mechanical properties of Ag sinter joining and its applications at high temperature.展开更多
The beginning of failure of a (ZrO2-7%Y2O3)/(Ni-22%Co-17%Cr-12.5%Al-0.6%Y) duplex andgraded coating systems on lnconel 617 and IN738LC in burner rig tests has been characterized.The test conditions are 40 s heating up...The beginning of failure of a (ZrO2-7%Y2O3)/(Ni-22%Co-17%Cr-12.5%Al-0.6%Y) duplex andgraded coating systems on lnconel 617 and IN738LC in burner rig tests has been characterized.The test conditions are 40 s heating up to 75O℃ substrate temperature followed by 80 s aircooling. Failure is considered at the appearance of the first bright spot during heating period.Stresses due to thermal expansion mismatch strains on cooling are the probable cause of life-limiting in this conditions of testing.展开更多
A high fidelity dynamic model of a high-energy hydraulically-actuated shock test machine for heavy weight devices is presented to satisfy the newly-built shock resistance standard and simulate the actual underwater ex...A high fidelity dynamic model of a high-energy hydraulically-actuated shock test machine for heavy weight devices is presented to satisfy the newly-built shock resistance standard and simulate the actual underwater explosion environments in laboratory as well as increase the testing capability of shock test machine. In order to produce the required negative shock pulse in the given time duration, four hydraulic actuators are utilized. The model is then used to formulate an advanced feedforward controller for the system to produce the required negative waveform and to address the motion synchronization of the four cylinders. The model provides a safe and easily controllable way to perform a "virtual testing" before starting potentially destructive tests on specimen and to predict performance of the system. Simulation results have demonstrated the effectiveness of the controller.展开更多
In order to qualify shock resistance performance of shipboard equipments and simulate real underwater explosion environment,a novel dual-pulse shock test machine is proposed.The new machine will increase testing capab...In order to qualify shock resistance performance of shipboard equipments and simulate real underwater explosion environment,a novel dual-pulse shock test machine is proposed.The new machine will increase testing capability and meet special shock testing requirement.Two key parts of the machine,the velocity generator and the shock pulse regulator,play an important role in producing the positive acceleration pulse and the succeeding negative acceleration pulse,respectively.The generated dual-pulse shock for test articles is in conformity with an anti-shock test specification.Based on the impact theory,a nonlinear dynamic model of the hydraulically-actuated test machine is established with thorough analysis on its mechanism that involves conversion of gas potential energy and dissipation of kinetic energy.Simulation results have demonstrated that the proposed machine is able to produce a double-pulse acceleration shock in the time domain or a desired shock response spectrum in the frequency domain,which sets up a base for the construction of the machine.展开更多
This article reports the latest development of a wireless sensing system,named Martlet,on high-g shock acceleration measurement.The Martlet sensing node design is based on a Texas Instruments Piccolo microcontroller,w...This article reports the latest development of a wireless sensing system,named Martlet,on high-g shock acceleration measurement.The Martlet sensing node design is based on a Texas Instruments Piccolo microcontroller,with clock frequency programmable up to 90 MHz.The high clock frequency of the microcontroller enables Martlet to support high-frequency data acquisition and high-speed onboard computation.In addition,the extensible design of the Martlet node conveniently allows incorporation of multiple sensor boards.In this study,a high-g accelerometer interface board is developed to allow Martlet to work with the selected microelectromechanical system(MEMS)high-g accelerometers.Besides low-pass and highpass filters,amplification gains are also implemented on the high-g accelerometer interface board.Laboratory impact experiments are conducted to validate the performance of the Martlet wireless sensing system with the high-g accelerometer board.The results of this study show that the performance of the wireless sensing system is comparable to the cabled system.展开更多
A newly designed shock-tube for biological testing has been built in our labo-ratory.This tube is 39.34 m long.It consists of several sections:high pressure section,divergent section,transitional section,test section ...A newly designed shock-tube for biological testing has been built in our labo-ratory.This tube is 39.34 m long.It consists of several sections:high pressure section,divergent section,transitional section,test section and wave-dissipated section.In theopen condition,the maximal overpressure is about 214,3 kPa,while in the closed condi-tion,the maximal overpressure may go up to 630.3 kPa.The energy source is compres-sed air.Using this equipment,we are able to inflict blast injuries with various degreesof severity in rabbits,dogs and sheep.展开更多
A separation method is proposed to design and improve shock absorber according to the characteristics of each force. The method is validated by rig test. The force data measured during rig test is the resultant force ...A separation method is proposed to design and improve shock absorber according to the characteristics of each force. The method is validated by rig test. The force data measured during rig test is the resultant force of damping force, rebound force produced by pressed air, and friction force. Different characters of damping force, air rebound force and friction force can be applied to seperate each force from others. A massive produced air filling shock absorber is adopted for the validation. The statistic test is used to get the displacement-force curves. The data are used as the input of separation calculation. Then the tests are carried out again to obtain the force data without air rebound force. The force without air rebound is compared to the data derived from the former tests with the separation method. The result shows that this method can separate the damping force and the air elastic force.展开更多
基金supported by China Naval Armament Department (No. 05131/1046).
文摘For qualifying the anti-shock performance of shipboard equipments and simulating actual underwater explosion environments, a novel dual-wave shock test machine is proposed to increase testing capability of shock test machines as well as to meet certain shock testing specification. The machine can generate a double-pulse acceleration shock for test articles according to specification defined in BV043/85. On the basis of the impact theory, a nonlinear dynamic model of the hydraulically-actuated test machine is established with thorough analysis on its mechanism which involves conversion of gas potential energy and dissipation of kinetic energy. Simulation results have demonstrated that the machine can produce a double-pulse acceleration shock in the time domain or a desired shock response spectrum in the frequency domain, which sets a theoretical base for the construction of the proposed machine.
基金partly supported by the Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Scientific Research (Grant No. 19121587)supported by the Natural Science Foundation of Shaanxi Province (No.2021KW-25)。
文摘The excellent properties of SiC bring new challenges for the device packaging.In this study,the bonding strength,fracture behaviors and microstructural evolution of micron-porous Ag joint were elevated during thermal cycling(–50 ℃–250 ℃) in SiC/DBC(direct bonding copper) die attachment structure for different time.During harsh thermal shock test,the strength of sintered joint deceased gradually with the increase of cycling number,and the value just was half of the value of as-sintered after 1 000 cycles.Coarsening of Ag grains was observed in micron-porous joint with the structure inhomogeneity and defects increasing,which were the reasons of the strength decease.In addition,it was also found that the fracture behavior of sintered joints was changed from ductile deformation of Ag grain to brittle fracture of crack propagation after 1 000 cycles.This study will add the understanding in the mechanical properties of Ag sinter joining and its applications at high temperature.
文摘The beginning of failure of a (ZrO2-7%Y2O3)/(Ni-22%Co-17%Cr-12.5%Al-0.6%Y) duplex andgraded coating systems on lnconel 617 and IN738LC in burner rig tests has been characterized.The test conditions are 40 s heating up to 75O℃ substrate temperature followed by 80 s aircooling. Failure is considered at the appearance of the first bright spot during heating period.Stresses due to thermal expansion mismatch strains on cooling are the probable cause of life-limiting in this conditions of testing.
文摘A high fidelity dynamic model of a high-energy hydraulically-actuated shock test machine for heavy weight devices is presented to satisfy the newly-built shock resistance standard and simulate the actual underwater explosion environments in laboratory as well as increase the testing capability of shock test machine. In order to produce the required negative shock pulse in the given time duration, four hydraulic actuators are utilized. The model is then used to formulate an advanced feedforward controller for the system to produce the required negative waveform and to address the motion synchronization of the four cylinders. The model provides a safe and easily controllable way to perform a "virtual testing" before starting potentially destructive tests on specimen and to predict performance of the system. Simulation results have demonstrated the effectiveness of the controller.
文摘In order to qualify shock resistance performance of shipboard equipments and simulate real underwater explosion environment,a novel dual-pulse shock test machine is proposed.The new machine will increase testing capability and meet special shock testing requirement.Two key parts of the machine,the velocity generator and the shock pulse regulator,play an important role in producing the positive acceleration pulse and the succeeding negative acceleration pulse,respectively.The generated dual-pulse shock for test articles is in conformity with an anti-shock test specification.Based on the impact theory,a nonlinear dynamic model of the hydraulically-actuated test machine is established with thorough analysis on its mechanism that involves conversion of gas potential energy and dissipation of kinetic energy.Simulation results have demonstrated that the proposed machine is able to produce a double-pulse acceleration shock in the time domain or a desired shock response spectrum in the frequency domain,which sets up a base for the construction of the machine.
文摘This article reports the latest development of a wireless sensing system,named Martlet,on high-g shock acceleration measurement.The Martlet sensing node design is based on a Texas Instruments Piccolo microcontroller,with clock frequency programmable up to 90 MHz.The high clock frequency of the microcontroller enables Martlet to support high-frequency data acquisition and high-speed onboard computation.In addition,the extensible design of the Martlet node conveniently allows incorporation of multiple sensor boards.In this study,a high-g accelerometer interface board is developed to allow Martlet to work with the selected microelectromechanical system(MEMS)high-g accelerometers.Besides low-pass and highpass filters,amplification gains are also implemented on the high-g accelerometer interface board.Laboratory impact experiments are conducted to validate the performance of the Martlet wireless sensing system with the high-g accelerometer board.The results of this study show that the performance of the wireless sensing system is comparable to the cabled system.
文摘A newly designed shock-tube for biological testing has been built in our labo-ratory.This tube is 39.34 m long.It consists of several sections:high pressure section,divergent section,transitional section,test section and wave-dissipated section.In theopen condition,the maximal overpressure is about 214,3 kPa,while in the closed condi-tion,the maximal overpressure may go up to 630.3 kPa.The energy source is compres-sed air.Using this equipment,we are able to inflict blast injuries with various degreesof severity in rabbits,dogs and sheep.
文摘A separation method is proposed to design and improve shock absorber according to the characteristics of each force. The method is validated by rig test. The force data measured during rig test is the resultant force of damping force, rebound force produced by pressed air, and friction force. Different characters of damping force, air rebound force and friction force can be applied to seperate each force from others. A massive produced air filling shock absorber is adopted for the validation. The statistic test is used to get the displacement-force curves. The data are used as the input of separation calculation. Then the tests are carried out again to obtain the force data without air rebound force. The force without air rebound is compared to the data derived from the former tests with the separation method. The result shows that this method can separate the damping force and the air elastic force.