In different economic periods,if the government blindly adopts expansionary fiscal policy,it may not be able to effectively increase total factor productivity(TFP).Based on this,this paper constructs a factor augmente...In different economic periods,if the government blindly adopts expansionary fiscal policy,it may not be able to effectively increase total factor productivity(TFP).Based on this,this paper constructs a factor augmented vector autoregressive model with time-varying parameters and stochastic volatility(SV-TVP-FAVAR),and explores the nonlinear shock effect of China’s fiscal policy on TFP from the dual perspective of aggregate and structure.The study finds that:(1)At the aggregate level,the increase in fiscal expenditure in each period has a signifi cant inhibitory effect on TFP,while the increase in fiscal revenue has a significant promotion effect on TFP;(2)At the structural level of expenditure,in the period of economic depression and high economic growth,the increase in investment expenditure,education expenditure,technology expenditure,and public service expenditure all have a strong incentive effect on TFP,but the increase in science and technology and education expenditure in the period of economic stability has not effectively improved TFP;(3)At the structural level of tax,the increase in commodity tax,including consumption tax,value-added tax,and tariff,and individual income tax will signifi cantly inhibit the increase in TFP,but the increase in corporate income tax can signifi cantly increase TFP.Therefore,under the new economic normal,policy makers should build a two-wheel driven fiscal policy of“aggregate regulation and structural optimization”to optimize the structure of fiscal expenditure and taxation,and promote high-quality economic development.展开更多
The influence of air pressure on mechanical effect of laser plasma shock wave in a vacuum chamber produced by a Nd:YAG laser has been studied. The laser pulses with pulse width of 10ns and pulse energy of about 320mJ...The influence of air pressure on mechanical effect of laser plasma shock wave in a vacuum chamber produced by a Nd:YAG laser has been studied. The laser pulses with pulse width of 10ns and pulse energy of about 320mJ at 1.06μm wavelength is focused on the aluminium target mounted on a ballistic pendulum, and the air pressure in the chamber changes from 2.8 × 10^ 3 to 1.01 × 10^5pa. The experimental results show that the impulse coupling coefficient changes as the air pressure and the distance of the target from focus change. The mechanical effects of the plasma shock wave on the target are analysed at different distances from focus and the air pressure.展开更多
The influence of high temperature effects on the protrusion of Mach stem in strong shock reflection over a wedge was numerically investigated. A two-dimensional inviscid solver applies finite volume method and unstruc...The influence of high temperature effects on the protrusion of Mach stem in strong shock reflection over a wedge was numerically investigated. A two-dimensional inviscid solver applies finite volume method and unstructured quadrilateral grids were employed to simulate the flow. Theoretical analysis was also conducted to understand the phenomenon. Both numerical and theoretical results indicate a wall-jet penetrating forward is responsible for the occurrence of Mach stem protrusion. The protrusion degree seems to depend on the thermal energy buffer capacity of the testing gas. Approaches to increase the energy buffer capacity, such as vibrational relaxation, molecular dissociation, and increase of frozen heat caoacitv, all tend to escalate the orotrusion effect.展开更多
1 Introduction The information of the deformation and phase transformation of minerals under the impact of different intensities can be obtained from some meteorites. Therefore, meteorites are good samples for the stu...1 Introduction The information of the deformation and phase transformation of minerals under the impact of different intensities can be obtained from some meteorites. Therefore, meteorites are good samples for the study of shock effects of minerals in natural impact process. Orthopyroxene is a kind of main rock-forming mineral in chondrite. The study of展开更多
OBJECTIVE: TO summarize the relationship between heat shock protein 70 (HSP70) and cerebra ischemia. DATA SOURCES: An online search of Medline database was undertaken to identify relevant articles published in Eng...OBJECTIVE: TO summarize the relationship between heat shock protein 70 (HSP70) and cerebra ischemia. DATA SOURCES: An online search of Medline database was undertaken to identify relevant articles published in English from January 1980 to December 2005 by using the keywords of "heat shock protein 70, ischemia". Meanwhile, Chinese relevant articles published from January 2000 to December 2005 were searched in China National Knowledge Infrastructure (CNKI) database and Chinese Journal of Clinical Rehabilitation with the keywords of "heat shock protein 70, cerebral ischemia" in Chinese. STUDY SELECTION : More than 100 related articles were screened, and 29 references mainly about HSP70 and cerebral ischemia were selected, including basic and clinical researches. As to the articles with similar content, those published in the authoritative journals in recent 3 years were preferential. DATA EXTRACTION: A total of 29 articles were collected and classified according to the structure, function and clinical application of HSP70. Among them, 1 article is about the structure of HSP70, 27 about the relationship between HSP70 and cerebral ischemia, and 2 about the clinical application of HSP70. DATA SYNTHESIS: HSP70 is one of the most conservative proteins during biological evolution. Experiments in cerebral ischemia revealed that HSP70 expression was time-dependent, also correlated with the injured site and severity. The cerebral ischemia induced HSP70 gene expression in hippocampus of gerbil had protection to tolerance of fatal ischemic injury for neurons. The increase of HSP70 expression may be one of the endogenous protective mechanisms during cerebral ischemia, and can effectively alleviate cerebral ischemia. Thus HSP70 protein and HSP70 mRNA have been taken as important indexes extensively applied in the basic study of cerebral ischemia by some scholars abroad. CONCLUSION: HSP70 plays a protective role in cerebral ischemia, and a deeper research into the biological function of HSP70 will provide a new way for the therapy of cerebral ischemia.展开更多
The 3.6 km-diameter Colonia impact crater, centred at 2352'03"S and 4642'27"W,?lies 40 km to the south-west of the S?o Paulo city. The structure was formed on the crystalline basement rocks and displ...The 3.6 km-diameter Colonia impact crater, centred at 2352'03"S and 4642'27"W,?lies 40 km to the south-west of the S?o Paulo city. The structure was formed on the crystalline basement rocks and displays a bowl-shaped with steeper slope near the top that decreases gently toward the centre of the crater. Over recent years were drilled two boreholes inside the crater, which reached a maximum depth of 142 m and 197 m. Geological profile suggests four different lithological associations: 1) unshocked crystalline basement rocks (197 - 140 m);2) fractured/brecciated basement rocks (140 - 110 m);3) polymictic allochthonous breccia deposits (110 - 40 m);and 4) post-impact deposits (40 - 0 m). Petrographic characterisation of the polymictic allochthonous breccia reveals a series of distinctive shock-metamorphic features, including, among others, planar deformation features in quartz, feldspar and mica, ballen silica, granular texture in zircon and melt-bearing impact rocks. The occurrence of melt particles and very high-pressure phase transformation in suevite breccia suggest a shock pressure regime higher than 60 GPa.展开更多
A theoretical study on the nonlinear propagation of nonplanar (cylindrical and spherical) electrostatic modified ion-acoustic (mIA) shock structures has been carried out in an unmagnetized, collisionless four comp...A theoretical study on the nonlinear propagation of nonplanar (cylindrical and spherical) electrostatic modified ion-acoustic (mIA) shock structures has been carried out in an unmagnetized, collisionless four component degenerate plasma system (containing degenerate electron fluids, inertial positively as well as negatively charged light ions, and positively charged static heavy ions). This investigation is valid for both non-relativistic and ultra-relativistic limits. The modified Burgers (mB) equation has been derived by employing the reductive perturbation method, and used to numerically analyze the basic features of shock structures. It has been found that the effects of degenerate pressure and number density of electron and inertial positively as well as negatively charged light ion fluids, and various charging state of positively charged static heavy ions significantly modify the basic features of mIA shock structures. The implications of our results to dense plasmas in astrophysical compact objects (e.g., non-rotating white dwarfs, neutron stars, etc.) are briefly discussed.展开更多
Based on the theories of shock wave and energy,this paper inquires into the effect range of shock wave in rock blasting with cylindrical coupling charges, and a new method for calculating the effect range is developed...Based on the theories of shock wave and energy,this paper inquires into the effect range of shock wave in rock blasting with cylindrical coupling charges, and a new method for calculating the effect range is developed. A calculation example sbows that the new method is reasonable.展开更多
Seeds of Dodonaea viscosa (L.) Jacq, a representative species in dry and hot valleys in Southwest China, were chosen as experimental materials. In this experiment, the D. viscosa seeds were treated at 40, 60, 80 and...Seeds of Dodonaea viscosa (L.) Jacq, a representative species in dry and hot valleys in Southwest China, were chosen as experimental materials. In this experiment, the D. viscosa seeds were treated at 40, 60, 80 and 100℃ respectively before germination to study impacts of high temperature treatment on their generation rate and to further discuss the roles of fire during the process of vegetation formation in dry and hot valley areas of China. The results show that when the temperature was higher than 40 ℃, the germination rate of D. viscosa seeds was significantly higher than that of the control group, and the heat shock effect was apparent. The germination rate was the highest when the seeds were treated at 80 ℃ for 10 min, reaching 63.00%±2.55%. There was still a significant heat shock effect on the D. viscosa seeds which were stored for one year. In comparison with the conventional method of soaking seeds in hot water, the germination rate of D. viscose seeds which were treated at high temperature before germination increased significantly.展开更多
In order to investigate the thermal shock and the heat conduction property of a target under multi-pulsed laser radiation, analytic expressions of both temperature and thermal stress fields in the target are deduced o...In order to investigate the thermal shock and the heat conduction property of a target under multi-pulsed laser radiation, analytic expressions of both temperature and thermal stress fields in the target are deduced on the basis of the non-Fourier conduction law and the thermo-elastic theory. Taking a stainless steel target as an example, we can solve the analytic expressions under appropriate boundary conditions by using the finite difference method and MATLAB software, and then reveal the evolution law of both surplus temperaturt, and thermal stress in the target. The results indicate that the temperature curves in the target irradiated by a multi-pulsed laser take on a delayed character in different sections away from the boundary, which is only affected by its relaxation time. The front of the stress wave is very steep in the non-Fourier numerical solutions, which presents an obvious thermal shock, so it is necessary to consider the non-Fourier effect of semi-infinite body under the high energy laser radiation.展开更多
Culture shock is a problem that most overseas students may experience,hence the importance of analysis on culture shock and its influences.This paper firstly draws on the reasons why culture difference exists and the ...Culture shock is a problem that most overseas students may experience,hence the importance of analysis on culture shock and its influences.This paper firstly draws on the reasons why culture difference exists and the situation it brings about.The result shows that culture shock is inevitable to anyone who lives abroad,and the variability in the length of culture shock time.Therefore the only method abroad people can deal with culture shock is to release the caused effect,and communicate more until the effect recedes.At the end of this essay,it offers advice on how to get over culture shock period and obtain a better acculturation when studying abroad.展开更多
In ground tests of hypersonic scramjet, the highenthalpy airstream produced by burning hydrocarbon fuels often contains contaminants of water vapor and carbon dioxide. The contaminants may change the ignition characte...In ground tests of hypersonic scramjet, the highenthalpy airstream produced by burning hydrocarbon fuels often contains contaminants of water vapor and carbon dioxide. The contaminants may change the ignition characteristics of fuels between ground tests and real flights. In order to properly assess the influence of the contaminants on ignition characteristics of hydrocarbon fuels, the effect of water vapor and carbon dioxide on the ignition delay times of China RP-3 kerosene was studied behind reflected shock waves in a preheated shock tube. Experiments were conducted over a wider temperature range of 800-1 500 K, at a pressure of 0.3 MPa, equivalence ratios of 0.5 and 1, and oxygen concentration of 20%. Ignition delay times were determined from the onset of the excited radical OH emission together with the pressure profile. Ignition delay times were measured for four cases: (1) clean gas, (2) gas vitiated with 10% and 20% water vapor in mole, (3) gas vitiated with 10% carbon dioxide in mole, and (4) gas vitiated with 10% water vapor and 10% carbon dioxide, 20% water vapor and 10% carbon dioxide in mole. The results show that carbon dioxide produces an inhibiting effect at temperatures below 1 300 K when Ф = 0.5, whereas water vapor appears to accelerate the ignition process below a critical temperature of about 1 000 K when Ф = 0.5. When both water vapor and carbon dioxide exist together, a minor inhibiting effect is observed at Ф = 0.5, while no effect is found at Ф = 1.0. The results are also discussed preliminary by considering both the combustion reaction mechanism and the thermophysics properties of the fuel mixtures. The current measurements demonstrate vitiation effects of water vapor and carbon dioxide on the autoignition characteristics of China RP-3 kerosene at air-like O2 concentration. It is important to account for such effects when data are extrapolated from ground testing to real flight conditions.展开更多
We consider a nonlinear hyperbolic system of two conservation laws which arises in ideal magnetohydrodynamics and includes second-order terms accounting for magnetic resistivity and Hall effect. We show that the initi...We consider a nonlinear hyperbolic system of two conservation laws which arises in ideal magnetohydrodynamics and includes second-order terms accounting for magnetic resistivity and Hall effect. We show that the initial value problem for this model may lead to solutions exhibiting complex wave structures, including undercompressive nonclassical shock waves. We investigate numerically the subtle competition that takes place between the hyperbolic, diffusive, and dispersive parts of the system. Following Abeyratne, Knowles, LeFloch, and Truskinovsky, who studied similar questions arising in fluid and solid flows, we determine the associated kinetic function which characterizes the dynamics of undereompressive shocks driven by resistivity and Hall effect. To this end, we design a new class of "schemes with eontroled dissipation", following recent work by LeFloch and Mohammadian. It is now recognized that the equivalent equation associated with a scheme provides a guideline to design schemes that capture physically relevant, nonclassical shocks. We propose a new class of schemes based on high-order entropy conservative, finite differences for the hyperbolic flux, and high-order central differences for the resistivity and Hall terms. These schemes are tested for several regimes of (co-planar or not) initial data and parameter values, and allow us to analyze the properties of nonclassical shocks and establish the existence of monotone kinetic functions in magnetohydrodynamics.展开更多
The transition between regular reflection (RR) and Mach reflection (MR) of type V shock-shock interaction on a double-wedge geometry with high temperature non-equilibrium effects is investigated by extended shock-...The transition between regular reflection (RR) and Mach reflection (MR) of type V shock-shock interaction on a double-wedge geometry with high temperature non-equilibrium effects is investigated by extended shock-polar method and numerical simulation. First, the critical angles of transition from detachment criterion and yon Neumann criterion are determined by the extended shock-polar method considering the non-equilibrium effects. Then wave patterns and the transition process are numerically obtained. Results of the critical transition angles from shock-polar calculation and numerical simulation show evident disagreement, indicating transition mechanism between RR and MR of type V interaction is changed. By comparing with the frozen counterpart, it is also found that non-equilibrium effects lead to a larger critical wedge angle and a larger hysteresis interval.展开更多
Hugoniot relations of a two-dimensional axial shock with current and magnetic field in a cylindrical shock tube were investigated by a numerical method. The radial profiles of the magnetic field, electric current, pre...Hugoniot relations of a two-dimensional axial shock with current and magnetic field in a cylindrical shock tube were investigated by a numerical method. The radial profiles of the magnetic field, electric current, pressures, flow velocities and temperatures between the up- and down-stream radial force-balanced plasma of the shock were revealed by numerical analysis. It is clearly found that the axial shock can lead to two effects: one is an inverse skin effect (i.e., the current density rises towards the center of the conductor), the another is a reversed current effect which occurs near the edge and about a half radius. It is also found that the radial gradient of pressure, density and temperature all become very large near the center due to the axial shock.展开更多
The paper aims to theoretically and numerically investigate the confinement effect of inert materials on the detonation of insensitive high explosives. An improved shock polar theory based on the Zeldovich-von Neumann...The paper aims to theoretically and numerically investigate the confinement effect of inert materials on the detonation of insensitive high explosives. An improved shock polar theory based on the Zeldovich-von Neumann-Döring model of explosive detonation is established and can fully categorize the confinement interactions between insensitive high explosive and inert materials into six types for the inert materials with smaller sonic velocities than the Chapman-Jouguet velocity of explosive detonation. To confirm the theoretical categorization and obtain the flow details, a second-order, cell-centered Lagrangian hydrodynamic method based on the characteristic theory of the two-dimensional first-order hyperbolic partial differential equations with Ignition-Growth chemistry reaction law is proposed and can exactly numerically simulate the confinement interactions. The numerical result confirms the theoretical categorization and can further merge six types of interaction styles into five types for the inert materials with smaller sonic velocity, moreover, the numerical method can give a new type of interaction style existing a precursor wave in the confining inert material with a larger sonic velocity than the Chapman-Jouguet velocity of explosive detonation, in which a shock polar theory is invalid. The numerical method can also give the effect of inert materials on the edge angles of detonation wave front.展开更多
基金Youth Fund for Humanities and Social Sciences Research of the Ministry of Education“Research on Risk Shock,Government Guarantee and Optimal Macroprudential Policy:Based on the Perspective of Financial Acceleration Period”(20YJC790172).
文摘In different economic periods,if the government blindly adopts expansionary fiscal policy,it may not be able to effectively increase total factor productivity(TFP).Based on this,this paper constructs a factor augmented vector autoregressive model with time-varying parameters and stochastic volatility(SV-TVP-FAVAR),and explores the nonlinear shock effect of China’s fiscal policy on TFP from the dual perspective of aggregate and structure.The study finds that:(1)At the aggregate level,the increase in fiscal expenditure in each period has a signifi cant inhibitory effect on TFP,while the increase in fiscal revenue has a significant promotion effect on TFP;(2)At the structural level of expenditure,in the period of economic depression and high economic growth,the increase in investment expenditure,education expenditure,technology expenditure,and public service expenditure all have a strong incentive effect on TFP,but the increase in science and technology and education expenditure in the period of economic stability has not effectively improved TFP;(3)At the structural level of tax,the increase in commodity tax,including consumption tax,value-added tax,and tariff,and individual income tax will signifi cantly inhibit the increase in TFP,but the increase in corporate income tax can signifi cantly increase TFP.Therefore,under the new economic normal,policy makers should build a two-wheel driven fiscal policy of“aggregate regulation and structural optimization”to optimize the structure of fiscal expenditure and taxation,and promote high-quality economic development.
基金Project supported by the National Natural Science Foundation of China (Grant No 60578015).
文摘The influence of air pressure on mechanical effect of laser plasma shock wave in a vacuum chamber produced by a Nd:YAG laser has been studied. The laser pulses with pulse width of 10ns and pulse energy of about 320mJ at 1.06μm wavelength is focused on the aluminium target mounted on a ballistic pendulum, and the air pressure in the chamber changes from 2.8 × 10^ 3 to 1.01 × 10^5pa. The experimental results show that the impulse coupling coefficient changes as the air pressure and the distance of the target from focus change. The mechanical effects of the plasma shock wave on the target are analysed at different distances from focus and the air pressure.
文摘The influence of high temperature effects on the protrusion of Mach stem in strong shock reflection over a wedge was numerically investigated. A two-dimensional inviscid solver applies finite volume method and unstructured quadrilateral grids were employed to simulate the flow. Theoretical analysis was also conducted to understand the phenomenon. Both numerical and theoretical results indicate a wall-jet penetrating forward is responsible for the occurrence of Mach stem protrusion. The protrusion degree seems to depend on the thermal energy buffer capacity of the testing gas. Approaches to increase the energy buffer capacity, such as vibrational relaxation, molecular dissociation, and increase of frozen heat caoacitv, all tend to escalate the orotrusion effect.
基金Project supported by the Science Foundation of Guangdong Province, PRC
文摘1 Introduction The information of the deformation and phase transformation of minerals under the impact of different intensities can be obtained from some meteorites. Therefore, meteorites are good samples for the study of shock effects of minerals in natural impact process. Orthopyroxene is a kind of main rock-forming mineral in chondrite. The study of
基金a grant from Sci-entific and Technological Devel-opmental Program of Beijing E-ducation Committee, No.KM200510025004
文摘OBJECTIVE: TO summarize the relationship between heat shock protein 70 (HSP70) and cerebra ischemia. DATA SOURCES: An online search of Medline database was undertaken to identify relevant articles published in English from January 1980 to December 2005 by using the keywords of "heat shock protein 70, ischemia". Meanwhile, Chinese relevant articles published from January 2000 to December 2005 were searched in China National Knowledge Infrastructure (CNKI) database and Chinese Journal of Clinical Rehabilitation with the keywords of "heat shock protein 70, cerebral ischemia" in Chinese. STUDY SELECTION : More than 100 related articles were screened, and 29 references mainly about HSP70 and cerebral ischemia were selected, including basic and clinical researches. As to the articles with similar content, those published in the authoritative journals in recent 3 years were preferential. DATA EXTRACTION: A total of 29 articles were collected and classified according to the structure, function and clinical application of HSP70. Among them, 1 article is about the structure of HSP70, 27 about the relationship between HSP70 and cerebral ischemia, and 2 about the clinical application of HSP70. DATA SYNTHESIS: HSP70 is one of the most conservative proteins during biological evolution. Experiments in cerebral ischemia revealed that HSP70 expression was time-dependent, also correlated with the injured site and severity. The cerebral ischemia induced HSP70 gene expression in hippocampus of gerbil had protection to tolerance of fatal ischemic injury for neurons. The increase of HSP70 expression may be one of the endogenous protective mechanisms during cerebral ischemia, and can effectively alleviate cerebral ischemia. Thus HSP70 protein and HSP70 mRNA have been taken as important indexes extensively applied in the basic study of cerebral ischemia by some scholars abroad. CONCLUSION: HSP70 plays a protective role in cerebral ischemia, and a deeper research into the biological function of HSP70 will provide a new way for the therapy of cerebral ischemia.
基金supported by the FAPESP foundation,Proc.No.2006/59046-6,2011/50987-0 and 2012/50042-9
文摘The 3.6 km-diameter Colonia impact crater, centred at 2352'03"S and 4642'27"W,?lies 40 km to the south-west of the S?o Paulo city. The structure was formed on the crystalline basement rocks and displays a bowl-shaped with steeper slope near the top that decreases gently toward the centre of the crater. Over recent years were drilled two boreholes inside the crater, which reached a maximum depth of 142 m and 197 m. Geological profile suggests four different lithological associations: 1) unshocked crystalline basement rocks (197 - 140 m);2) fractured/brecciated basement rocks (140 - 110 m);3) polymictic allochthonous breccia deposits (110 - 40 m);and 4) post-impact deposits (40 - 0 m). Petrographic characterisation of the polymictic allochthonous breccia reveals a series of distinctive shock-metamorphic features, including, among others, planar deformation features in quartz, feldspar and mica, ballen silica, granular texture in zircon and melt-bearing impact rocks. The occurrence of melt particles and very high-pressure phase transformation in suevite breccia suggest a shock pressure regime higher than 60 GPa.
文摘A theoretical study on the nonlinear propagation of nonplanar (cylindrical and spherical) electrostatic modified ion-acoustic (mIA) shock structures has been carried out in an unmagnetized, collisionless four component degenerate plasma system (containing degenerate electron fluids, inertial positively as well as negatively charged light ions, and positively charged static heavy ions). This investigation is valid for both non-relativistic and ultra-relativistic limits. The modified Burgers (mB) equation has been derived by employing the reductive perturbation method, and used to numerically analyze the basic features of shock structures. It has been found that the effects of degenerate pressure and number density of electron and inertial positively as well as negatively charged light ion fluids, and various charging state of positively charged static heavy ions significantly modify the basic features of mIA shock structures. The implications of our results to dense plasmas in astrophysical compact objects (e.g., non-rotating white dwarfs, neutron stars, etc.) are briefly discussed.
文摘Based on the theories of shock wave and energy,this paper inquires into the effect range of shock wave in rock blasting with cylindrical coupling charges, and a new method for calculating the effect range is developed. A calculation example sbows that the new method is reasonable.
基金Supported by the National Water Pollution Control and Treatment Science and Technology Major Project(2012ZX07101-003-04-04)~~
文摘Seeds of Dodonaea viscosa (L.) Jacq, a representative species in dry and hot valleys in Southwest China, were chosen as experimental materials. In this experiment, the D. viscosa seeds were treated at 40, 60, 80 and 100℃ respectively before germination to study impacts of high temperature treatment on their generation rate and to further discuss the roles of fire during the process of vegetation formation in dry and hot valley areas of China. The results show that when the temperature was higher than 40 ℃, the germination rate of D. viscosa seeds was significantly higher than that of the control group, and the heat shock effect was apparent. The germination rate was the highest when the seeds were treated at 80 ℃ for 10 min, reaching 63.00%±2.55%. There was still a significant heat shock effect on the D. viscosa seeds which were stored for one year. In comparison with the conventional method of soaking seeds in hot water, the germination rate of D. viscose seeds which were treated at high temperature before germination increased significantly.
基金supported by the Chinese Natural Science Fund (No.10572020)
文摘In order to investigate the thermal shock and the heat conduction property of a target under multi-pulsed laser radiation, analytic expressions of both temperature and thermal stress fields in the target are deduced on the basis of the non-Fourier conduction law and the thermo-elastic theory. Taking a stainless steel target as an example, we can solve the analytic expressions under appropriate boundary conditions by using the finite difference method and MATLAB software, and then reveal the evolution law of both surplus temperaturt, and thermal stress in the target. The results indicate that the temperature curves in the target irradiated by a multi-pulsed laser take on a delayed character in different sections away from the boundary, which is only affected by its relaxation time. The front of the stress wave is very steep in the non-Fourier numerical solutions, which presents an obvious thermal shock, so it is necessary to consider the non-Fourier effect of semi-infinite body under the high energy laser radiation.
文摘Culture shock is a problem that most overseas students may experience,hence the importance of analysis on culture shock and its influences.This paper firstly draws on the reasons why culture difference exists and the situation it brings about.The result shows that culture shock is inevitable to anyone who lives abroad,and the variability in the length of culture shock time.Therefore the only method abroad people can deal with culture shock is to release the caused effect,and communicate more until the effect recedes.At the end of this essay,it offers advice on how to get over culture shock period and obtain a better acculturation when studying abroad.
基金supported by the National Natural Science Foundation of China(90916017)
文摘In ground tests of hypersonic scramjet, the highenthalpy airstream produced by burning hydrocarbon fuels often contains contaminants of water vapor and carbon dioxide. The contaminants may change the ignition characteristics of fuels between ground tests and real flights. In order to properly assess the influence of the contaminants on ignition characteristics of hydrocarbon fuels, the effect of water vapor and carbon dioxide on the ignition delay times of China RP-3 kerosene was studied behind reflected shock waves in a preheated shock tube. Experiments were conducted over a wider temperature range of 800-1 500 K, at a pressure of 0.3 MPa, equivalence ratios of 0.5 and 1, and oxygen concentration of 20%. Ignition delay times were determined from the onset of the excited radical OH emission together with the pressure profile. Ignition delay times were measured for four cases: (1) clean gas, (2) gas vitiated with 10% and 20% water vapor in mole, (3) gas vitiated with 10% carbon dioxide in mole, and (4) gas vitiated with 10% water vapor and 10% carbon dioxide, 20% water vapor and 10% carbon dioxide in mole. The results show that carbon dioxide produces an inhibiting effect at temperatures below 1 300 K when Ф = 0.5, whereas water vapor appears to accelerate the ignition process below a critical temperature of about 1 000 K when Ф = 0.5. When both water vapor and carbon dioxide exist together, a minor inhibiting effect is observed at Ф = 0.5, while no effect is found at Ф = 1.0. The results are also discussed preliminary by considering both the combustion reaction mechanism and the thermophysics properties of the fuel mixtures. The current measurements demonstrate vitiation effects of water vapor and carbon dioxide on the autoignition characteristics of China RP-3 kerosene at air-like O2 concentration. It is important to account for such effects when data are extrapolated from ground testing to real flight conditions.
基金The first author (PLF) was partially supported by the Centre National de la Recherche Scientifique (CNRS) the Agence Nationale de la Recherche (ANR)
文摘We consider a nonlinear hyperbolic system of two conservation laws which arises in ideal magnetohydrodynamics and includes second-order terms accounting for magnetic resistivity and Hall effect. We show that the initial value problem for this model may lead to solutions exhibiting complex wave structures, including undercompressive nonclassical shock waves. We investigate numerically the subtle competition that takes place between the hyperbolic, diffusive, and dispersive parts of the system. Following Abeyratne, Knowles, LeFloch, and Truskinovsky, who studied similar questions arising in fluid and solid flows, we determine the associated kinetic function which characterizes the dynamics of undereompressive shocks driven by resistivity and Hall effect. To this end, we design a new class of "schemes with eontroled dissipation", following recent work by LeFloch and Mohammadian. It is now recognized that the equivalent equation associated with a scheme provides a guideline to design schemes that capture physically relevant, nonclassical shocks. We propose a new class of schemes based on high-order entropy conservative, finite differences for the hyperbolic flux, and high-order central differences for the resistivity and Hall terms. These schemes are tested for several regimes of (co-planar or not) initial data and parameter values, and allow us to analyze the properties of nonclassical shocks and establish the existence of monotone kinetic functions in magnetohydrodynamics.
文摘The transition between regular reflection (RR) and Mach reflection (MR) of type V shock-shock interaction on a double-wedge geometry with high temperature non-equilibrium effects is investigated by extended shock-polar method and numerical simulation. First, the critical angles of transition from detachment criterion and yon Neumann criterion are determined by the extended shock-polar method considering the non-equilibrium effects. Then wave patterns and the transition process are numerically obtained. Results of the critical transition angles from shock-polar calculation and numerical simulation show evident disagreement, indicating transition mechanism between RR and MR of type V interaction is changed. By comparing with the frozen counterpart, it is also found that non-equilibrium effects lead to a larger critical wedge angle and a larger hysteresis interval.
基金supported by National Natural Science Foundation of China (No. 10175025)in part by the JSPS-CAS Core-University Program on Plasma and Nuclear Fusion
文摘Hugoniot relations of a two-dimensional axial shock with current and magnetic field in a cylindrical shock tube were investigated by a numerical method. The radial profiles of the magnetic field, electric current, pressures, flow velocities and temperatures between the up- and down-stream radial force-balanced plasma of the shock were revealed by numerical analysis. It is clearly found that the axial shock can lead to two effects: one is an inverse skin effect (i.e., the current density rises towards the center of the conductor), the another is a reversed current effect which occurs near the edge and about a half radius. It is also found that the radial gradient of pressure, density and temperature all become very large near the center due to the axial shock.
文摘The paper aims to theoretically and numerically investigate the confinement effect of inert materials on the detonation of insensitive high explosives. An improved shock polar theory based on the Zeldovich-von Neumann-Döring model of explosive detonation is established and can fully categorize the confinement interactions between insensitive high explosive and inert materials into six types for the inert materials with smaller sonic velocities than the Chapman-Jouguet velocity of explosive detonation. To confirm the theoretical categorization and obtain the flow details, a second-order, cell-centered Lagrangian hydrodynamic method based on the characteristic theory of the two-dimensional first-order hyperbolic partial differential equations with Ignition-Growth chemistry reaction law is proposed and can exactly numerically simulate the confinement interactions. The numerical result confirms the theoretical categorization and can further merge six types of interaction styles into five types for the inert materials with smaller sonic velocity, moreover, the numerical method can give a new type of interaction style existing a precursor wave in the confining inert material with a larger sonic velocity than the Chapman-Jouguet velocity of explosive detonation, in which a shock polar theory is invalid. The numerical method can also give the effect of inert materials on the edge angles of detonation wave front.