期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
High temperature effects in moving shock reflection with protruding Mach stem 被引量:1
1
作者 Xiaofeng Shi Yujian Zhu +1 位作者 Xisheng Luo Jiming Yang 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2016年第5期222-225,共4页
The influence of high temperature effects on the protrusion of Mach stem in strong shock reflection over a wedge was numerically investigated. A two-dimensional inviscid solver applies finite volume method and unstruc... The influence of high temperature effects on the protrusion of Mach stem in strong shock reflection over a wedge was numerically investigated. A two-dimensional inviscid solver applies finite volume method and unstructured quadrilateral grids were employed to simulate the flow. Theoretical analysis was also conducted to understand the phenomenon. Both numerical and theoretical results indicate a wall-jet penetrating forward is responsible for the occurrence of Mach stem protrusion. The protrusion degree seems to depend on the thermal energy buffer capacity of the testing gas. Approaches to increase the energy buffer capacity, such as vibrational relaxation, molecular dissociation, and increase of frozen heat caoacitv, all tend to escalate the orotrusion effect. 展开更多
关键词 shock reflection Numerical simulation Protruding Mach stem High temperature effects
下载PDF
Molecular dynamics study of thermal stress and heat propagation in tungsten under thermal shock 被引量:1
2
作者 付宝勤 赖文生 +4 位作者 袁悦 徐海燕 李纯 贾玉振 刘伟 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第12期376-382,共7页
Using molecular dynamics (MD) simulation, we study the thermal shock behavior of tungsten (W), which has been used for the plasma facing material (PFM) of tokamaks. The thermo-elastic stress wave, corresponding ... Using molecular dynamics (MD) simulation, we study the thermal shock behavior of tungsten (W), which has been used for the plasma facing material (PFM) of tokamaks. The thermo-elastic stress wave, corresponding to the collective displacement of atoms, is analyzed with the Lagrangian atomic stress method, of which the reliability is also analyzed. The stress wave velocity corresponds to the speed of sound in the material, which is not dependent on the thermal shock energy. The peak pressure of a normal stress wave increases with the increase of thermal shock energy. We analyze the temperature evolution of the thermal shock region according to the Fourier transformation. It can be seen that the “obvious” velocity of heat propagation is less than the velocity of the stress wave; further, that the thermo-elastic stress wave may contribute little to the transport of kinetic energy. The heat propagation can be described properly by the heat conduction equation. These results may be useful for understanding the process of the thermal shock of tungsten. 展开更多
关键词 molecular dynamics simulation thermal shock thermo-elastic stress heat propagation tungsten
下载PDF
Radiation Hydrodynamic Simulations in the Planar Scheme for the Fundamental Studies of Shock Ignition 被引量:1
3
作者 董云松 杨家敏 +2 位作者 宋天明 朱托 黄成武 《Plasma Science and Technology》 SCIE EI CAS CSCD 2016年第4期376-381,共6页
As a fundamental and crucial research topic in the direct-driven inertial confinement fusion(ICF),especially for shock ignition(SI),investigation on the laser coupling with planar lowZ targets is beneficial for de... As a fundamental and crucial research topic in the direct-driven inertial confinement fusion(ICF),especially for shock ignition(SI),investigation on the laser coupling with planar lowZ targets is beneficial for deep physical comprehension at the primary phase of SI.The production of the intense shock and the shock coalescence in the multi-layer targets,driven by the 3ω intense laser(351 nm the wavelength),were studied in detail with the 1D and 2D radiation hydrodynamic simulations.It was inferred that the 1D simulation would overrate the shock velocity and the ablation pressure of the spike;the coalescence time and the velocity of the coalescence shock depended evidently on the pulse shape and the start time of the spike.The present study can also provide a semi-quantitative reference for the design of the SI decomposition experiments on the Shenguang-III prototype laser facility. 展开更多
关键词 shock ignition planar scheme radiation hydrodynamic simulation
下载PDF
Effects of density profile and multi-species target on laser-heated thermal-pressure-driven shock wave acceleration
4
作者 王凤超 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第12期248-251,共4页
The shock wave acceleration of ions driven by laser-heated thermal pressure is studied through one-dimensional particle-in-cell simulation and analysis. The generation of high-energy mono-energetic protons in recent e... The shock wave acceleration of ions driven by laser-heated thermal pressure is studied through one-dimensional particle-in-cell simulation and analysis. The generation of high-energy mono-energetic protons in recent experiments (D. Haberberger et al., 2012 Nat. Phys. 8 95) is attributed to the use of exponentially decaying density profile of the plasma target. It does not only keep the shock velocity stable but also suppresses the normal target normal sheath acceleration. The effects of target composition are also examined, where a similar collective velocity of all ion species is demonstrated. The results also give some reference to future experiments of producing energetic heavy ions. 展开更多
关键词 laser– ion acceleration shock wave particle-in-cell simulation
下载PDF
Numerical Simulation of Shock Bubble Interaction with Different Mach Numbers
5
作者 杨洁 万振华 +1 位作者 王伯福 孙德军 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第3期66-69,共4页
The interaction of a shock wave with a spherical helium bubble is investigated numerically by using the high- resolution piecewise parabolic method (PPM), in which the viscous and turbulence effects are both conside... The interaction of a shock wave with a spherical helium bubble is investigated numerically by using the high- resolution piecewise parabolic method (PPM), in which the viscous and turbulence effects are both considered. The bubble is of the same size and is accelerated by a planar shock of different Mach numbers (Ma). The re- suits of low Ma cases agree quantitatively with those of experiments [G. Layes, O. Le M4tayer. Phys. Fluids 19 (2007) 042105]. With the increase of Ma, the final geometry of the bubble becomes quite different, the com- pression ratio is highly raised, and the time-dependent mean bubble velocity is also influenced. The compression ratios measured can be well normalized when Ma is low, while less agreement has been achieved for high Ma cases. In addition, the mixedness between two fluids is enhanced greatly as Ma increases. Some existed scaling laws of these quantities for the shock wave strength cannot be directly applied to high Ma cases. 展开更多
关键词 Numerical Simulation of shock Bubble Interaction with Different Mach Numbers
下载PDF
Transmission characteristics of EM wave in a finite thickness plasma
6
作者 Nai-Yi Zhu Li-Shun Huang +5 位作者 Bin Wu Xi-Long Yu Run-Hui Wu Gang Meng Ai-Min Ren Xin-Tian Hu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2013年第2期189-195,共7页
One of the key factors for solving the problems of re-entry communication interruption is electromagnetic(EM) wave transmission characteristics in a plasma.Theoretical and experimental studies were carried out on sp... One of the key factors for solving the problems of re-entry communication interruption is electromagnetic(EM) wave transmission characteristics in a plasma.Theoretical and experimental studies were carried out on specific transmission characteristics for different plasma sheath characteristic under thin sheath condition in re-entry state.The paper presents systematic studies on the variations of wave attenuation characteristics versus plasma sheath thickness L,collision frequency ν,electron density n e and wave working frequency f in a φ 800 mm high temperature shock tube.In experiments,L is set to 4 cm and 38 cm.ν is 2 GHz and 15 GHz.n e is from 1×10 10 cm(-3) to 1×10 13 cm(-3),and f is set to 2,5,10,14.6 GHz,respectively.Meanwhile,Wentzel-Kramers-Brillouin(WKB) and finite-difference time-domain(FDTD) methods are adopted to carry out theoretical simulation for comparison with experimental results.It is found that when L is much larger than EM wavelength λ(thick sheath) and ν is large,the theoretical result is in good agreement with experimental one,when sheath thickness L is much larger than λ,while ν is relatively small,two theoretical results are obviously different from the experimental ones.It means that the existing theoretical model can not fully describe the contribution of ν.Furthermore,when L and λ are of the same order of magnitude(thin sheath),the experimental result is much smaller than the theoretical values,which indicates that the current model can not properly describe the thin sheath effect on EM attenuation characteristics. 展开更多
关键词 Plasma·Electromagnetic wave·shock tube·Numerical simulation
下载PDF
Modeling the temperature shock of elastic elements using a one-dimensional model of thermal conductivity 被引量:1
7
作者 D.A.Belousova V.V.Serdakova 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2020年第6期220-228,共9页
This paper considers the task of evaluating micro-accelerations arising due to the temperature shock of large elastic elements when a small spacecraft leaves the Earth’s shadow.In this case, a one-dimensional model ... This paper considers the task of evaluating micro-accelerations arising due to the temperature shock of large elastic elements when a small spacecraft leaves the Earth’s shadow.In this case, a one-dimensional model of thermal conductivity is used. Its solution wasobtained by the method of direct approximation with the construction of differenceschemes. It is shown that the accuracy of estimating micro-accelerations is commensurate with the accuracy of solving by a three-dimensional model of thermal conductivity.The proposed model allows reducing the time to obtain estimates and significantly simplifies the task at hand. The results of the work can be used in the formation of thedynamic characteristics of a small spacecraft for technological purposes. 展开更多
关键词 Small spacecraft simulation of temperature shock micro-acceleration gravitationally sensitive processes
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部