期刊文献+
共找到863篇文章
< 1 2 44 >
每页显示 20 50 100
VISIOMETRICS OF 2D SHOCK-PLANAR S/F/S CURTAIN INTERACTIONS: VORTEX DOUBLE LAYERS, VORTEX PROJECTILES AND DECAYING STRATIFIED TURBULENCE
1
作者 Norman J. Zabusky Shuang ZhangLaboratory of Visiometrics and Modeling,Department of Mechanical and Aerospace Engineering 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2001年第z1期32-38,共7页
Vortex double layers (VDLs) and vortex projectiles (VPs) are the essential coherent structures which emerge in the shock excited (s/f/s) planar parallel "curtain" simulations of a 2D shock tube with PPM. The... Vortex double layers (VDLs) and vortex projectiles (VPs) are the essential coherent structures which emerge in the shock excited (s/f/s) planar parallel "curtain" simulations of a 2D shock tube with PPM. These opposite signed layers, formed by shock induced baroclinic deposition of vorticity, "ind" and are strongly affected by secondary reflected shocks and vortex interactions. In our visiometric mode of working, we quantify several of these processes and introduce time epochs to discuss the emerging phenomena and normalizations to scale (collapse) the data at M =1.5 and 2.0. This versatile configuration, easily obtained in the laboratory, allows us to study the formation, evolution and reacceleration of VPs and stratified turbulence and mixing. 展开更多
关键词 visiometrics accelerated inhomogeneous flows (aifs) Richtmyer Meshkov shock curtain baroclinic vorticity generation vortex double layers (VDLs) vortex projectiles (VPs) stratified turbulence
下载PDF
Proton acceleration in plasma turbulence driven by high-energy lepton jets
2
作者 Gaowei Zhang Zhengming Sheng +2 位作者 Suming Weng Min Chen Jie Zhang 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第11期98-105,共8页
The interaction of high energy lepton jets composed of electrons and positrons with background electron–proton plasma is investigated numerically based upon particle-in-cell simulation,focusing on the acceleration pr... The interaction of high energy lepton jets composed of electrons and positrons with background electron–proton plasma is investigated numerically based upon particle-in-cell simulation,focusing on the acceleration processes of background protons due to the development of electromagnetic turbulence.Such interaction may be found in the universe when energetic lepton jets propagate in the interstellar media.When such a jet is injected into the background plasma,theWeibel instability is excited quickly,which leads to the development of plasma turbulence into the nonlinear stage.The turbulent electric and magnetic fields accelerate plasma particles via the Fermi II type acceleration,where the maximum energy of both electrons and protons can be accelerated to much higher than that of the incident jet particles.Because of background plasma acceleration,a collisionless electrostatic shock wave is formed,where some pre-accelerated protons are further accelerated when passing through the shock wave front.Dependence of proton acceleration on the beam-plasma density ratio and beam energy is investigated.For a given background plasma density,the maximum proton energy generally increases both with the density and kinetic energy of the injected jet.Moreover,for a homogeneous background plasma,the proton acceleration via both turbulent fields and collisionless shocks is found to be significant.In the case of an inhomogeneous plasma,the proton acceleration in the plasma turbulence is dominant.Our studies illustrate a scenario where protons from background plasma can be accelerated successively by the turbulent fields and collisionless shocks. 展开更多
关键词 Weibel instability turbulence collisionless shock ion acceleration
下载PDF
Study on Compressible Turbulent Boundary Layer Multiple Shock Wave Interaction in the Duct
3
作者 王裕清 《International Journal of Mining Science and Technology》 SCIE EI 1997年第1期78-82,共5页
The structure and trubulence phenomena of multiple shock wave /turbulent boundary layer interaction (MSW-TBLI) in a square duct were investigated using flow visualization methods and a two-component Laser Doppler Velo... The structure and trubulence phenomena of multiple shock wave /turbulent boundary layer interaction (MSW-TBLI) in a square duct were investigated using flow visualization methods and a two-component Laser Doppler Velocimeter (LDV ). First - the MSW-TBLI was visualized by schlieren photography and laser holographic interferography. Second, the time-mean and fluctuating velocities in the MSW-TBLI were explored in detail using LDV Spatial distributions of turbulence intensity,Reynolds shear stress and turbulence kinetic energy are presented. 展开更多
关键词 MULTIPLE shock wave turbullent BOUNDARY layer interference
下载PDF
SHORT-AND RESONANT-RANGE INTERACTIONS BETWEEN SCALES IN TURBULENCE AND THEIR APPLICATIONS
4
作者 高智 BIANYin-gui 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2004年第8期917-928,共12页
Interactions between different scales in turbulence were studied starting from the incompressible Navier-Stokes equations. The integral and differential formulae of the short-range viscous stresses, which express the ... Interactions between different scales in turbulence were studied starting from the incompressible Navier-Stokes equations. The integral and differential formulae of the short-range viscous stresses, which express the short-range interactions between contiguous scales in turbulence,were given. A concept of the resonant-range interactions between extreme contiguous scales was introduced and the differential formula of the resonant-range viscous stresses was obtained. The short- and resonant-range viscous stresses were applied to deduce the large-eddy simulation (LES) equations as well as the multiscale equations, which are approximately closed and do not contain any empirical constants or relations. The properties and advantages of using the multiscale equations to compute turbulent flows were discussed. The short-range character of the interactions between the scales in turbulence means that the multiscale simulation is a very valuable technique for the calculation of turbulent flows. A few numerical examples were also given. 展开更多
关键词 turbulence interacting scale eddy viscosity short-range viscous stress resonant-range viscous stress multiscale equation
下载PDF
Near-wall behaviors of oblique-shock-wave/turbulent-boundary-layer interactions
5
作者 Mingsheng YE Ming DONG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2017年第10期1357-1376,共20页
A direct numerical simulation (DNS) on an oblique shock wave with an incident angle of 33.2° impinging on a Mach 2.25 supersonic turbulent boundary layer is performed. The numerical results are confirmed to be ... A direct numerical simulation (DNS) on an oblique shock wave with an incident angle of 33.2° impinging on a Mach 2.25 supersonic turbulent boundary layer is performed. The numerical results are confirmed to be of high accuracy by comparison with the reference data. Particular efforts have been made on the investigation of the near-wall behaviors in the interaction region, where the pressure gradient is so significant that a certain separation zone emerges. It is found that, the traditional linear and loga- rithmic laws, which describe the mean-velocity profiles in the viscous and meso sublayers, respectively, cease to be valid in the neighborhood of the interaction region, and two new laws of the wall are proposed by elevating the pressure gradient to the leading order. The new laws are inspired by the analysis on the incompressible separation flows, while the compressibility is additionally taken into account. It is verified by the DNS results that the new laws are adequate to reproduce the mean-velocity profiles both inside and outside the interaction region. Moreover, the normalization adopted in the new laws is able to regularize the Reynolds stress into an almost universal distribution even with a salient adverse pressure gradient (APG). 展开更多
关键词 shock wave turbulent boundary layer direct numerical simulation (DNS) adverse pressure gradient (APG) separation
下载PDF
Multi-scale interaction between tearing modes and micro-turbulence in the HL-2A plasmas
6
作者 Min JIANG Yuhong XU +18 位作者 Zhongbing SHI Wulyu ZHONG Wei CHEN Rui KE Jiquan LI Xuantong DING Jun CHENG Xiaoquan JI Zengchen YANG Peiwan SHI Jie WEN Kairui FANG Na WU Xiaoxue HE Anshu LIANG Yi LIU Qingwei YANG Min XU HL-2A Team 《Plasma Science and Technology》 SCIE EI CAS CSCD 2020年第8期1-7,共7页
The influence of m/n=2/1(m and n are poloidal and toroidal mode numbers)tearing modes on plasma perpendicular flows and micro-fluctuations has been investigated in HL-2A neutral beam injection heated L-mode plasmas.It... The influence of m/n=2/1(m and n are poloidal and toroidal mode numbers)tearing modes on plasma perpendicular flows and micro-fluctuations has been investigated in HL-2A neutral beam injection heated L-mode plasmas.It is found that the local perpendicular rotation velocity and turbulence energy are modulated by the alternation between the island X-point and O-point of the naturally rotating tearing modes.Cross-correlation analysis indicates that the modulation of density fluctuations by the tearing mode is not only limited to the island region,but also occurs in the edge region near the last closed flux surface.The turbulence exhibits distinct spectral characteristics inside and outside the island region.In addition,it is observed that the particle flux near the strike point is also significantly impacted by the tearing modes.The experimental evidence reveals that there are strong core-edge interactions between the core tearing modes and the edge transport. 展开更多
关键词 tearing modes turbulence particle flux MODULATION core-edge interaction
下载PDF
Interaction of Waves, Surface Currents, and Turbulence: the Application of Surface-Following Coordinate Systems
7
作者 Jenkins Alastair D 《Journal of Ocean University of China》 SCIE CAS 2007年第4期319-331,共13页
Surface waves comprise an important aspect of the interaction between the atmosphere and the ocean, so a dynamically consistent framework for modelling atmosphere-ocean interaction must take account of surface waves, ... Surface waves comprise an important aspect of the interaction between the atmosphere and the ocean, so a dynamically consistent framework for modelling atmosphere-ocean interaction must take account of surface waves, either implicitly or explicitly. In order to calculate the effect of wind forcing on waves and currents, and vice versa, it is necessary to employ a consistent formula- tion of the energy and momentum balance within the airflow, wave field, and water column. It is very advantageous to apply sur- face-following coordinate systems, whereby the steep gradients in mean flow properties near the air-water interface in the cross-interface direction may be resolved over distances which are much smaller than the height of the waves themselves. We may account for the waves explicitly by employing a numerical spectral wave model, and applying a suitable theory of wave–mean flow interaction. If the mean flow is small compared with the wave phase speed, perturbation expansions of the hydrodynamic equations in a Lagrangian or generalized Lagrangian mean framework are useful: for stronger flows, such as for wind blowing over waves, the presence of critical levels where the mean flow velocity is equal to the wave phase speed necessitates the application of more general types of surface-following coordinate system. The interaction of the flow of air and water and associated differences in temperature and the concentration of various substances (such as gas species) gives rise to a complex boundary-layer structure at a wide range of vertical scales, from the sub-millimetre scales of gaseous diffusion, to several tens of metres for the turbulent Ekman layer. The bal- ance of momentum, heat, and mass is also affected significantly by breaking waves, which act to increase the effective area of the surface for mass transfer, and increase turbulent diffusive fluxes via the conversion of wave energy to turbulent kinetic energy. 展开更多
关键词 wind-wave-current interaction coordinate systems upper-ocean turbulence air-sea exchange of momentum heat andmass
下载PDF
HEATING CHARACTERISTICS OF BLUNT SWEPT FIN-INDUCED SHOCK WAVE TURBULENT BOUNDARY LAYER INTERACTION 被引量:4
8
作者 唐贵明 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1998年第2期139-146,共8页
An experimental study was conducted on shock wave turbulent boundary layer interactions caused by a blunt swept fin-plate configuration at Mach numbers of 5.0, 7.8, 9.9 for a Reynolds number range of (1.0.similar to 4... An experimental study was conducted on shock wave turbulent boundary layer interactions caused by a blunt swept fin-plate configuration at Mach numbers of 5.0, 7.8, 9.9 for a Reynolds number range of (1.0.similar to 4.7) x 10(7)/m. Detailed heat transfer and pressure distributions were measured at fin deflection angles of up to 30 degrees for a sweepback angle of 67.6 degrees. Surface oil flow patterns and liquid crystal thermograms as well as schlieren pictures of fin shock shape were taken. The study shows that the flow was separated at deflection of 10 degrees and secondary separation were detected at deflection of theta greater than or equal to 20 degrees. The heat transfer and pressure distributions on flat plate showed an extensive plateau region followed by a distinct dip and local peak close to the fin foot. Measurements of the plateau pressure and heat transfer were in good agreement with existing prediction methods, but pressure and heating peak measurements at M greater than or equal to 6 were significantly lower than predicted by the simple prediction techniques at lower Mach numbers. 展开更多
关键词 FIN shock wave boundary layer interaction hypersonic flow heat transfer
全文增补中
Numerical Simulation of Two-Dimensional Shock/Boundary-Layer Interaction between a Rocket and Booster 被引量:1
9
作者 孙为民 夏南 谭发生 《Advances in Manufacturing》 SCIE CAS 2000年第S1期25-28,共4页
A two-dimensional Reynolds-averaged Navier-Stokes solver is applied to analyze the aerodynamic behavior of the Shock/Boundary-Layer interaction of rocket with a boosted The K-ε turbulence model and a finite volume m... A two-dimensional Reynolds-averaged Navier-Stokes solver is applied to analyze the aerodynamic behavior of the Shock/Boundary-Layer interaction of rocket with a boosted The K-ε turbulence model and a finite volume method in a unstructured body-fitted curvilinear coordinates have been used. The results indicate that the separation and the reattachment occur in the Boundary-Layer of the main rocket because of the shock interaction. The shape of the booster nose effects the flow field obviously. In the case of the hemisphere booster nose the pressure has complicate distributions and the separation is very clear. The distance between the booster and main rocket has the evident effect on the flow field. If the distance is smaller the pressure coefficient is bigger the separation zone even the separation bubble occurs. 展开更多
关键词 numerical simulation shock/boundary-layer interaction AERODYNAMICS
下载PDF
Model for Asymmetry of Shock/Boundary Layer Interactions in Nozzle Flows 被引量:3
10
作者 Wang Chengpeng Zhuo Changfei 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2018年第1期146-153,共8页
The reason for the asymmetry phenomenon of shock/boundary layer interactions(SBLI)in a completely symmetric nozzle with symmetric flow conditions is still an open question.A model for the asymmetry of nozzle flows was... The reason for the asymmetry phenomenon of shock/boundary layer interactions(SBLI)in a completely symmetric nozzle with symmetric flow conditions is still an open question.A model for the asymmetry of nozzle flows was proposed based on the properties of fluid entrainment in the mixing layer and momentum conservation.The asymmetry model is deduced based on the nozzle flow with restricted shock separation,and is still applicable for free shock separation.Flow deflection angle at nozzle exit is deduced from this model.Steady numerical simulations are conducted to model the asymmetry of the SBLIs in a planar convergent-divergent nozzle tested by previous researchers.The obtained values of deflection angle based on the numerical results of forced symmetric nozzle flows can judge the asymmetry of flows in a nozzle at some operations.It shows that the entrainment of shear layer on the separation induced by SBLTs is one of the reasons for the asymmetry in the confined SBLIs. 展开更多
关键词 asymmetry shock/boundary LAYER interactionS NOZZLE flow ENTRAINMENT
下载PDF
Experimental and numerical studies on interactions of a spherical flame with incident and reflected shocks 被引量:3
11
作者 Mingyue Gui Baochun Fan +1 位作者 Gang Dong Jingfang Ye 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2009年第2期173-179,共7页
Observations are presented from experiments and calculations where a laminar spherical CH4/air flame is perturbed successively by incident and reflected shock waves. The experiments are performed in a standard shock t... Observations are presented from experiments and calculations where a laminar spherical CH4/air flame is perturbed successively by incident and reflected shock waves. The experiments are performed in a standard shock tube arrangement, in which a high-speed shadowgraph imaging system is used to record evolutions of the flame. Numerical simulations are conducted by using second-order wave propagation algorithms, based on two-dimensional axisymmetric Navier-Stokes equations with detailed chemical reactions. Qualitative agreements are obtained between the experimental and numerical results. Under actions of incident shock waves, Richtmyer-Meshkov instability responsible for the flame deformation is induced in the flame, and the distoned flame takes a barrel shape. Then, under subsequent actions of the shock wave reflected from a planar wall, the flame takes an inclined non-symmetrical kidney shape in a symmetric cross section, which means a mushroom-like shape of the flame comes finally into being. The vorticity direction in the ring cap has been altered by the reflected shock's action, which makes the head of the mushroom-like flame extend quickly to the side wall. 展开更多
关键词 shock-flame interaction Flame instability -Vorticity shock reflection
下载PDF
Numerical evaluation of passive control of shock wave/boundary layer interaction on NACA0012 airfoil using jagged wall 被引量:3
12
作者 Mojtaba Dehghan Manshadi Ramin Rabani 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第5期792-804,共13页
Shock formation due to flow compressibility and its interaction with boundary layers has adverse effects on aerodynamic characteristics, such as drag increase and flow separation. The objective of this paper is to app... Shock formation due to flow compressibility and its interaction with boundary layers has adverse effects on aerodynamic characteristics, such as drag increase and flow separation. The objective of this paper is to appraise the practicability of weakening shock waves and, hence, reducing the wave drag in transonic flight regime using a two-dimensional jagged wall and thereby to gain an appropriate jagged wall shape for future empirical study. Different shapes of the jagged wall, including rectangular, circular, and triangular shapes, were employed. The numerical method was validated by experimental and numerical studies involving transonic flow over the NACA0012 airfoil, and the results presented here closely match previous experimental and numerical results. The impact of parameters, including shape and the length-to-spacing ratio of a jagged wall, was studied on aerodynamic forces and flow field. The results revealed that applying a jagged wall method on the upper surface of an airfoil changes the shock structure significantly and disintegrates it, which in turn leads to a decrease in wave drag. It was also found that the maximum drag coefficient decrease of around 17 % occurs with a triangular shape, while the maximum increase in aerodynamic efficiency(lift-to-drag ratio)of around 10 % happens with a rectangular shape at an angle of attack of 2.26?. 展开更多
关键词 Jagged wall Passive flow control shock wave/boundary layer interaction Aerodynamic efficiency
下载PDF
Influence of Shock Wave on Turbulence in SF_6 Puffer Circuit Breaker 被引量:2
13
作者 张建 贾申利 +2 位作者 李兴文 史宗谦 王立军 《Plasma Science and Technology》 SCIE EI CAS CSCD 2010年第1期76-80,共5页
Influence of the shock wave on the turbulence in a supersonic nozzle was investigated for a SF6 puffer circuit breaker interruption process. Turbulence is enlarged through the shock wave. Baroclinic generation of vort... Influence of the shock wave on the turbulence in a supersonic nozzle was investigated for a SF6 puffer circuit breaker interruption process. Turbulence is enlarged through the shock wave. Baroclinic generation of vortex causes flow separation and broadening of the arc cross section. V-I characteristics are slightly modified due to the shock wave's influence. 展开更多
关键词 shock wave turbulence circuit breaker interruption process supersonic nozzle
下载PDF
THE INTERACTION BETWEEN SHOCK WAVES AND FOAM IN A SHOCK TUBE 被引量:2
14
作者 施红辉 Kazuhiko Kawai +2 位作者 Motoyuki Itoh 俞鸿儒 姜宗林 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2002年第3期288-301,共14页
An experimental study and a numerical simulation were conducted to investigate the mechanical and thermodynamic processes involved in the interaction between shock waves and low density foam. The experiment was done i... An experimental study and a numerical simulation were conducted to investigate the mechanical and thermodynamic processes involved in the interaction between shock waves and low density foam. The experiment was done in a stainless shock tube (80 mm in inner diameter, 10 mm in wall thickness and 5 360 mm in length). The velocities of the incident and reflected compression waves in the foam were measured by using piezo-ceramic pressure sensors. The end-wall peak pressure behind the reflected wave in the foam was measured by using a crystal piezoelectric sensor. It is suggested that the high end-wall pressure may be caused by a rapid contact between the foam and the end-wall surface. Both open-cell and closed-cell foams with different length and density were tested. Through comparing the numerical and experimental end-wall pressure, the permeability coefficients α and β are quantitatively determined. 展开更多
关键词 shock tube interaction of shock wave with foam end wall pressure velocities of incident and reflected compression waves numerical simulation
下载PDF
Study on Mach stems induced by interaction of planar shock waves on two intersecting wedges 被引量:6
15
作者 Gaoxiang Xiang Chun Wang +2 位作者 Honghui Teng Yang Yang Zonglin Jiang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第3期362-368,共7页
The properties of Mach stems in hypersonic corner flow induced by Mach interaction over 3D intersecting wedges were studied theoretically and numerically.A new method called "spatial dimension reduction" was used to... The properties of Mach stems in hypersonic corner flow induced by Mach interaction over 3D intersecting wedges were studied theoretically and numerically.A new method called "spatial dimension reduction" was used to analyze theoretically the location and Mach number behind Mach stems. By using this approach, the problem of 3D steady shock/shock interaction over 3D intersecting wedges was transformed into a 2D moving one on cross sections, which can be solved by shock-polar theory and shock dynamics theory. The properties of Mach interaction over 3D intersecting wedges can be analyzed with the new method,including pressure, temperature, density in the vicinity of triple points, location, and Mach number behind Mach stems.Theoretical results were compared with numerical results,and good agreement was obtained. Also, the influence of Mach number and wedge angle on the properties of a 3D Mach stem was studied. 展开更多
关键词 3D shock/shock interaction Mach interaction Spatial dimension reduction
下载PDF
Fluid structure interaction for circulation valve of hydraulic shock absorber 被引量:6
16
作者 陈齐平 舒红宇 +2 位作者 方文强 何联格 杨茂举 《Journal of Central South University》 SCIE EI CAS 2013年第3期648-654,共7页
Based on the working principle and the damping characteristic of hydraulic shock absorber, a fluid structure interaction method was presented, which was used to analyze the microcosmic and high-frequency processing me... Based on the working principle and the damping characteristic of hydraulic shock absorber, a fluid structure interaction method was presented, which was used to analyze the microcosmic and high-frequency processing mechanism of fluid structure interaction between circulation valve and liquid of hydraulic shock absorber. The fluid mesh distortion was controlled by the CEL language, and the fluid struc^tre interaction mathematical model was established. The finite element model was established by ANSYS CFX software and was analyzed by dynamic mesh technique. The local sensitive computational area was meshed by prismatic grid, which could reduce the negative volume problem during the simulation. The circulation valve and liquid of hydraulic shock absorber were simulated and analyzed under the condition of sinusoidal inlet velocity loads. Flow characteristic and dynamics characteristic were obtained. The pressure distribution and the displacement of circulation value were obtained, and the acceleration curve of circulation valve was simulated and analyzed. The conformity of the final simulation results with the experimental datum indicates that this method is accurate and reliable to analyze the dynamics characteristic between circulation valve and liquid of hydraulic shock absorber, which can provide a theoretical foundation for optimizing hydraulic shock absorber in the future. 展开更多
关键词 hydraulic shock absorber circulation valve finite element method fluid structure interaction simulation analysis
下载PDF
A study of inner-outer interactions in turbulent channel flows by interactive POD 被引量:2
17
作者 Hongping Wang Qi Gao 《Theoretical & Applied Mechanics Letters》 CSCD 2021年第1期2-13,共12页
The amplitude and frequency modulation of near-wall flow structures by the large-scale motions in outer regions is studied in turbulent channel flows. The proper orthogonal decomposition(POD) method is applied to inve... The amplitude and frequency modulation of near-wall flow structures by the large-scale motions in outer regions is studied in turbulent channel flows. The proper orthogonal decomposition(POD) method is applied to investigate the interactions between the near-wall motions and the large-scale flow modes of the outer regions based on two datasets from direct numerical simulation of turbulent channel flows at Reynolds numbers of 550–10 0 0. The fluctuations in the fields u+, v+, w+ and Reynolds shear stress-(uv)+ are studied to understand the mechanism of amplitude and frequency modulation of the nearwall structures by the outer large-scale motions. The amplitude modulation coefficient of the Reynolds shear stress is larger than that of the velocity components. The frequency modulation effect has an opposite influence in the spanwise direction compared to the streamwise direction. The streamwise characteristic frequency increases with increasing large-scale velocity. However, the spanwise characteristic frequency exhibits a decreasing trend with increasing large-scale velocity in the near-wall region. 展开更多
关键词 Wall turbulence interactive POD Inner-outer interaction Amplitude modulation Frequency modulation
下载PDF
UNSTEADY INTERACTION OF SHOCK WAVE DIFFRACTING AROUND A CIRCULAR CYLINDER IN AIR 被引量:1
18
作者 黄文生 O.Onodera K.Takayama 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1991年第4期295-299,共5页
The reflection and diffraction of a planar shock wave around a circular cylinder are a typical problem of the complex nonlinear shock wave phenomena in literature.It has long been studied experimentally,analytically a... The reflection and diffraction of a planar shock wave around a circular cylinder are a typical problem of the complex nonlinear shock wave phenomena in literature.It has long been studied experimentally,analytically as well as numerically.Takayama in 1987 obtained clear experimental pictures ofisopycnics in shock tube under the condi- tion that the impinging shock wave propagates as far as 3 diameters away from the cylinder.To know more complete- ly the whole unsteady process,it is desirable to get experimental results in a region which is more than 10 diameters away from the cylinder.This is what has been done in this paper by using the pulsed laser holographic interferometry for several shock Mach numbers of the impinging shock. Results for several moments are shown,giving more know- ledge about the whole unsteady flow field.This is useful for a reliable and complete understanding of the changing force acting on the cylinder,and provides interesting data to check the performance of many recently developed high resolution numerical methods for unsteady shock wave calculation. 展开更多
关键词 shock wave diffraction large flow field around a cylinder pulsed laser holographic interferometry isopycnics complex interaction of curved shocks
下载PDF
Hypersonic Shock Wave/Boundary Layer Interactions by a Third-Order Optimized Symmetric WENO Scheme 被引量:1
19
作者 Li Chen Guo Qilong +1 位作者 Li Qin Zhang Hanxin 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2017年第5期524-534,共11页
A novel third-order optimized symmetric weighted essentially non-oscillatory(WENO-OS3)scheme is used to simulate the hypersonic shock wave/boundary layer interactions.Firstly,the scheme is presented with the achieveme... A novel third-order optimized symmetric weighted essentially non-oscillatory(WENO-OS3)scheme is used to simulate the hypersonic shock wave/boundary layer interactions.Firstly,the scheme is presented with the achievement of low dissipation in smooth region and robust shock-capturing capabilities in discontinuities.The Maxwell slip boundary conditions are employed to consider the rarefied effect near the surface.Secondly,several validating tests are given to show the good resolution of the WENO-OS3 scheme and the feasibility of the Maxwell slip boundary conditions.Finally,hypersonic flows around the hollow cylinder truncated flare(HCTF)and the25°/55°sharp double cone are studied.Discussions are made on the characteristics of the hypersonic shock wave/boundary layer interactions with and without the consideration of the slip effect.The results indicate that the scheme has a good capability in predicting heat transfer with a high resolution for describing fluid structures.With the slip boundary conditions,the separation region at the corner is smaller and the prediction is more accurate than that with no-slip boundary conditions. 展开更多
关键词 hypersonic flows shock wave/boundary layer interactions weighted essentially non-oscillatory(WENO)scheme slip boundary conditions
下载PDF
The Effect of Eddy-bubble Interaction Model on the Turbulent Dispersion of Gas Bubbles in Stirred Tanks 被引量:1
20
作者 韩路长 曹杨 +2 位作者 吴学文 白鸽 刘跃进 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2010年第1期27-33,共7页
Based on trajectory equations of gas bubble,an eddy-bubble interaction(EBI)model was developed. This model considered the effect of non-drag forces and took the eddy-bubble interaction time as the refreshing time scal... Based on trajectory equations of gas bubble,an eddy-bubble interaction(EBI)model was developed. This model considered the effect of non-drag forces and took the eddy-bubble interaction time as the refreshing time scale of turbulent fluctuations.The relationship between the crossing-eddy time and the eddy lifetime was discussed,and the predicted distributions of radial,axial velocities of bubbles and gas holdup were also given. Compared with eddy lifetime(EL)model,the EBI model gives somewhat smaller axial velocity in the upper circulation region and larger velocity in the lower circulation region,causing that fewer bubbles reach the lower circulation region and gas holdup becomes higher in the upper circulation region.The predicted gas holdup by the EBI model approaches closer to the experimental data in the discharge stream region. 展开更多
关键词 eddy-bubble interaction turbulent dispersion stirred tank Eulerian-Lagrangian
下载PDF
上一页 1 2 44 下一页 到第
使用帮助 返回顶部