Vortex double layers (VDLs) and vortex projectiles (VPs) are the essential coherent structures which emerge in the shock excited (s/f/s) planar parallel "curtain" simulations of a 2D shock tube with PPM. The...Vortex double layers (VDLs) and vortex projectiles (VPs) are the essential coherent structures which emerge in the shock excited (s/f/s) planar parallel "curtain" simulations of a 2D shock tube with PPM. These opposite signed layers, formed by shock induced baroclinic deposition of vorticity, "ind" and are strongly affected by secondary reflected shocks and vortex interactions. In our visiometric mode of working, we quantify several of these processes and introduce time epochs to discuss the emerging phenomena and normalizations to scale (collapse) the data at M =1.5 and 2.0. This versatile configuration, easily obtained in the laboratory, allows us to study the formation, evolution and reacceleration of VPs and stratified turbulence and mixing.展开更多
The interaction of high energy lepton jets composed of electrons and positrons with background electron–proton plasma is investigated numerically based upon particle-in-cell simulation,focusing on the acceleration pr...The interaction of high energy lepton jets composed of electrons and positrons with background electron–proton plasma is investigated numerically based upon particle-in-cell simulation,focusing on the acceleration processes of background protons due to the development of electromagnetic turbulence.Such interaction may be found in the universe when energetic lepton jets propagate in the interstellar media.When such a jet is injected into the background plasma,theWeibel instability is excited quickly,which leads to the development of plasma turbulence into the nonlinear stage.The turbulent electric and magnetic fields accelerate plasma particles via the Fermi II type acceleration,where the maximum energy of both electrons and protons can be accelerated to much higher than that of the incident jet particles.Because of background plasma acceleration,a collisionless electrostatic shock wave is formed,where some pre-accelerated protons are further accelerated when passing through the shock wave front.Dependence of proton acceleration on the beam-plasma density ratio and beam energy is investigated.For a given background plasma density,the maximum proton energy generally increases both with the density and kinetic energy of the injected jet.Moreover,for a homogeneous background plasma,the proton acceleration via both turbulent fields and collisionless shocks is found to be significant.In the case of an inhomogeneous plasma,the proton acceleration in the plasma turbulence is dominant.Our studies illustrate a scenario where protons from background plasma can be accelerated successively by the turbulent fields and collisionless shocks.展开更多
The structure and trubulence phenomena of multiple shock wave /turbulent boundary layer interaction (MSW-TBLI) in a square duct were investigated using flow visualization methods and a two-component Laser Doppler Velo...The structure and trubulence phenomena of multiple shock wave /turbulent boundary layer interaction (MSW-TBLI) in a square duct were investigated using flow visualization methods and a two-component Laser Doppler Velocimeter (LDV ). First - the MSW-TBLI was visualized by schlieren photography and laser holographic interferography. Second, the time-mean and fluctuating velocities in the MSW-TBLI were explored in detail using LDV Spatial distributions of turbulence intensity,Reynolds shear stress and turbulence kinetic energy are presented.展开更多
Interactions between different scales in turbulence were studied starting from the incompressible Navier-Stokes equations. The integral and differential formulae of the short-range viscous stresses, which express the ...Interactions between different scales in turbulence were studied starting from the incompressible Navier-Stokes equations. The integral and differential formulae of the short-range viscous stresses, which express the short-range interactions between contiguous scales in turbulence,were given. A concept of the resonant-range interactions between extreme contiguous scales was introduced and the differential formula of the resonant-range viscous stresses was obtained. The short- and resonant-range viscous stresses were applied to deduce the large-eddy simulation (LES) equations as well as the multiscale equations, which are approximately closed and do not contain any empirical constants or relations. The properties and advantages of using the multiscale equations to compute turbulent flows were discussed. The short-range character of the interactions between the scales in turbulence means that the multiscale simulation is a very valuable technique for the calculation of turbulent flows. A few numerical examples were also given.展开更多
A direct numerical simulation (DNS) on an oblique shock wave with an incident angle of 33.2° impinging on a Mach 2.25 supersonic turbulent boundary layer is performed. The numerical results are confirmed to be ...A direct numerical simulation (DNS) on an oblique shock wave with an incident angle of 33.2° impinging on a Mach 2.25 supersonic turbulent boundary layer is performed. The numerical results are confirmed to be of high accuracy by comparison with the reference data. Particular efforts have been made on the investigation of the near-wall behaviors in the interaction region, where the pressure gradient is so significant that a certain separation zone emerges. It is found that, the traditional linear and loga- rithmic laws, which describe the mean-velocity profiles in the viscous and meso sublayers, respectively, cease to be valid in the neighborhood of the interaction region, and two new laws of the wall are proposed by elevating the pressure gradient to the leading order. The new laws are inspired by the analysis on the incompressible separation flows, while the compressibility is additionally taken into account. It is verified by the DNS results that the new laws are adequate to reproduce the mean-velocity profiles both inside and outside the interaction region. Moreover, the normalization adopted in the new laws is able to regularize the Reynolds stress into an almost universal distribution even with a salient adverse pressure gradient (APG).展开更多
The influence of m/n=2/1(m and n are poloidal and toroidal mode numbers)tearing modes on plasma perpendicular flows and micro-fluctuations has been investigated in HL-2A neutral beam injection heated L-mode plasmas.It...The influence of m/n=2/1(m and n are poloidal and toroidal mode numbers)tearing modes on plasma perpendicular flows and micro-fluctuations has been investigated in HL-2A neutral beam injection heated L-mode plasmas.It is found that the local perpendicular rotation velocity and turbulence energy are modulated by the alternation between the island X-point and O-point of the naturally rotating tearing modes.Cross-correlation analysis indicates that the modulation of density fluctuations by the tearing mode is not only limited to the island region,but also occurs in the edge region near the last closed flux surface.The turbulence exhibits distinct spectral characteristics inside and outside the island region.In addition,it is observed that the particle flux near the strike point is also significantly impacted by the tearing modes.The experimental evidence reveals that there are strong core-edge interactions between the core tearing modes and the edge transport.展开更多
Surface waves comprise an important aspect of the interaction between the atmosphere and the ocean, so a dynamically consistent framework for modelling atmosphere-ocean interaction must take account of surface waves, ...Surface waves comprise an important aspect of the interaction between the atmosphere and the ocean, so a dynamically consistent framework for modelling atmosphere-ocean interaction must take account of surface waves, either implicitly or explicitly. In order to calculate the effect of wind forcing on waves and currents, and vice versa, it is necessary to employ a consistent formula- tion of the energy and momentum balance within the airflow, wave field, and water column. It is very advantageous to apply sur- face-following coordinate systems, whereby the steep gradients in mean flow properties near the air-water interface in the cross-interface direction may be resolved over distances which are much smaller than the height of the waves themselves. We may account for the waves explicitly by employing a numerical spectral wave model, and applying a suitable theory of wave–mean flow interaction. If the mean flow is small compared with the wave phase speed, perturbation expansions of the hydrodynamic equations in a Lagrangian or generalized Lagrangian mean framework are useful: for stronger flows, such as for wind blowing over waves, the presence of critical levels where the mean flow velocity is equal to the wave phase speed necessitates the application of more general types of surface-following coordinate system. The interaction of the flow of air and water and associated differences in temperature and the concentration of various substances (such as gas species) gives rise to a complex boundary-layer structure at a wide range of vertical scales, from the sub-millimetre scales of gaseous diffusion, to several tens of metres for the turbulent Ekman layer. The bal- ance of momentum, heat, and mass is also affected significantly by breaking waves, which act to increase the effective area of the surface for mass transfer, and increase turbulent diffusive fluxes via the conversion of wave energy to turbulent kinetic energy.展开更多
An experimental study was conducted on shock wave turbulent boundary layer interactions caused by a blunt swept fin-plate configuration at Mach numbers of 5.0, 7.8, 9.9 for a Reynolds number range of (1.0.similar to 4...An experimental study was conducted on shock wave turbulent boundary layer interactions caused by a blunt swept fin-plate configuration at Mach numbers of 5.0, 7.8, 9.9 for a Reynolds number range of (1.0.similar to 4.7) x 10(7)/m. Detailed heat transfer and pressure distributions were measured at fin deflection angles of up to 30 degrees for a sweepback angle of 67.6 degrees. Surface oil flow patterns and liquid crystal thermograms as well as schlieren pictures of fin shock shape were taken. The study shows that the flow was separated at deflection of 10 degrees and secondary separation were detected at deflection of theta greater than or equal to 20 degrees. The heat transfer and pressure distributions on flat plate showed an extensive plateau region followed by a distinct dip and local peak close to the fin foot. Measurements of the plateau pressure and heat transfer were in good agreement with existing prediction methods, but pressure and heating peak measurements at M greater than or equal to 6 were significantly lower than predicted by the simple prediction techniques at lower Mach numbers.展开更多
A two-dimensional Reynolds-averaged Navier-Stokes solver is applied to analyze the aerodynamic behavior of the Shock/Boundary-Layer interaction of rocket with a boosted The K-ε turbulence model and a finite volume m...A two-dimensional Reynolds-averaged Navier-Stokes solver is applied to analyze the aerodynamic behavior of the Shock/Boundary-Layer interaction of rocket with a boosted The K-ε turbulence model and a finite volume method in a unstructured body-fitted curvilinear coordinates have been used. The results indicate that the separation and the reattachment occur in the Boundary-Layer of the main rocket because of the shock interaction. The shape of the booster nose effects the flow field obviously. In the case of the hemisphere booster nose the pressure has complicate distributions and the separation is very clear. The distance between the booster and main rocket has the evident effect on the flow field. If the distance is smaller the pressure coefficient is bigger the separation zone even the separation bubble occurs.展开更多
The reason for the asymmetry phenomenon of shock/boundary layer interactions(SBLI)in a completely symmetric nozzle with symmetric flow conditions is still an open question.A model for the asymmetry of nozzle flows was...The reason for the asymmetry phenomenon of shock/boundary layer interactions(SBLI)in a completely symmetric nozzle with symmetric flow conditions is still an open question.A model for the asymmetry of nozzle flows was proposed based on the properties of fluid entrainment in the mixing layer and momentum conservation.The asymmetry model is deduced based on the nozzle flow with restricted shock separation,and is still applicable for free shock separation.Flow deflection angle at nozzle exit is deduced from this model.Steady numerical simulations are conducted to model the asymmetry of the SBLIs in a planar convergent-divergent nozzle tested by previous researchers.The obtained values of deflection angle based on the numerical results of forced symmetric nozzle flows can judge the asymmetry of flows in a nozzle at some operations.It shows that the entrainment of shear layer on the separation induced by SBLTs is one of the reasons for the asymmetry in the confined SBLIs.展开更多
Observations are presented from experiments and calculations where a laminar spherical CH4/air flame is perturbed successively by incident and reflected shock waves. The experiments are performed in a standard shock t...Observations are presented from experiments and calculations where a laminar spherical CH4/air flame is perturbed successively by incident and reflected shock waves. The experiments are performed in a standard shock tube arrangement, in which a high-speed shadowgraph imaging system is used to record evolutions of the flame. Numerical simulations are conducted by using second-order wave propagation algorithms, based on two-dimensional axisymmetric Navier-Stokes equations with detailed chemical reactions. Qualitative agreements are obtained between the experimental and numerical results. Under actions of incident shock waves, Richtmyer-Meshkov instability responsible for the flame deformation is induced in the flame, and the distoned flame takes a barrel shape. Then, under subsequent actions of the shock wave reflected from a planar wall, the flame takes an inclined non-symmetrical kidney shape in a symmetric cross section, which means a mushroom-like shape of the flame comes finally into being. The vorticity direction in the ring cap has been altered by the reflected shock's action, which makes the head of the mushroom-like flame extend quickly to the side wall.展开更多
Shock formation due to flow compressibility and its interaction with boundary layers has adverse effects on aerodynamic characteristics, such as drag increase and flow separation. The objective of this paper is to app...Shock formation due to flow compressibility and its interaction with boundary layers has adverse effects on aerodynamic characteristics, such as drag increase and flow separation. The objective of this paper is to appraise the practicability of weakening shock waves and, hence, reducing the wave drag in transonic flight regime using a two-dimensional jagged wall and thereby to gain an appropriate jagged wall shape for future empirical study. Different shapes of the jagged wall, including rectangular, circular, and triangular shapes, were employed. The numerical method was validated by experimental and numerical studies involving transonic flow over the NACA0012 airfoil, and the results presented here closely match previous experimental and numerical results. The impact of parameters, including shape and the length-to-spacing ratio of a jagged wall, was studied on aerodynamic forces and flow field. The results revealed that applying a jagged wall method on the upper surface of an airfoil changes the shock structure significantly and disintegrates it, which in turn leads to a decrease in wave drag. It was also found that the maximum drag coefficient decrease of around 17 % occurs with a triangular shape, while the maximum increase in aerodynamic efficiency(lift-to-drag ratio)of around 10 % happens with a rectangular shape at an angle of attack of 2.26?.展开更多
Influence of the shock wave on the turbulence in a supersonic nozzle was investigated for a SF6 puffer circuit breaker interruption process. Turbulence is enlarged through the shock wave. Baroclinic generation of vort...Influence of the shock wave on the turbulence in a supersonic nozzle was investigated for a SF6 puffer circuit breaker interruption process. Turbulence is enlarged through the shock wave. Baroclinic generation of vortex causes flow separation and broadening of the arc cross section. V-I characteristics are slightly modified due to the shock wave's influence.展开更多
An experimental study and a numerical simulation were conducted to investigate the mechanical and thermodynamic processes involved in the interaction between shock waves and low density foam. The experiment was done i...An experimental study and a numerical simulation were conducted to investigate the mechanical and thermodynamic processes involved in the interaction between shock waves and low density foam. The experiment was done in a stainless shock tube (80 mm in inner diameter, 10 mm in wall thickness and 5 360 mm in length). The velocities of the incident and reflected compression waves in the foam were measured by using piezo-ceramic pressure sensors. The end-wall peak pressure behind the reflected wave in the foam was measured by using a crystal piezoelectric sensor. It is suggested that the high end-wall pressure may be caused by a rapid contact between the foam and the end-wall surface. Both open-cell and closed-cell foams with different length and density were tested. Through comparing the numerical and experimental end-wall pressure, the permeability coefficients α and β are quantitatively determined.展开更多
The properties of Mach stems in hypersonic corner flow induced by Mach interaction over 3D intersecting wedges were studied theoretically and numerically.A new method called "spatial dimension reduction" was used to...The properties of Mach stems in hypersonic corner flow induced by Mach interaction over 3D intersecting wedges were studied theoretically and numerically.A new method called "spatial dimension reduction" was used to analyze theoretically the location and Mach number behind Mach stems. By using this approach, the problem of 3D steady shock/shock interaction over 3D intersecting wedges was transformed into a 2D moving one on cross sections, which can be solved by shock-polar theory and shock dynamics theory. The properties of Mach interaction over 3D intersecting wedges can be analyzed with the new method,including pressure, temperature, density in the vicinity of triple points, location, and Mach number behind Mach stems.Theoretical results were compared with numerical results,and good agreement was obtained. Also, the influence of Mach number and wedge angle on the properties of a 3D Mach stem was studied.展开更多
Based on the working principle and the damping characteristic of hydraulic shock absorber, a fluid structure interaction method was presented, which was used to analyze the microcosmic and high-frequency processing me...Based on the working principle and the damping characteristic of hydraulic shock absorber, a fluid structure interaction method was presented, which was used to analyze the microcosmic and high-frequency processing mechanism of fluid structure interaction between circulation valve and liquid of hydraulic shock absorber. The fluid mesh distortion was controlled by the CEL language, and the fluid struc^tre interaction mathematical model was established. The finite element model was established by ANSYS CFX software and was analyzed by dynamic mesh technique. The local sensitive computational area was meshed by prismatic grid, which could reduce the negative volume problem during the simulation. The circulation valve and liquid of hydraulic shock absorber were simulated and analyzed under the condition of sinusoidal inlet velocity loads. Flow characteristic and dynamics characteristic were obtained. The pressure distribution and the displacement of circulation value were obtained, and the acceleration curve of circulation valve was simulated and analyzed. The conformity of the final simulation results with the experimental datum indicates that this method is accurate and reliable to analyze the dynamics characteristic between circulation valve and liquid of hydraulic shock absorber, which can provide a theoretical foundation for optimizing hydraulic shock absorber in the future.展开更多
The amplitude and frequency modulation of near-wall flow structures by the large-scale motions in outer regions is studied in turbulent channel flows. The proper orthogonal decomposition(POD) method is applied to inve...The amplitude and frequency modulation of near-wall flow structures by the large-scale motions in outer regions is studied in turbulent channel flows. The proper orthogonal decomposition(POD) method is applied to investigate the interactions between the near-wall motions and the large-scale flow modes of the outer regions based on two datasets from direct numerical simulation of turbulent channel flows at Reynolds numbers of 550–10 0 0. The fluctuations in the fields u+, v+, w+ and Reynolds shear stress-(uv)+ are studied to understand the mechanism of amplitude and frequency modulation of the nearwall structures by the outer large-scale motions. The amplitude modulation coefficient of the Reynolds shear stress is larger than that of the velocity components. The frequency modulation effect has an opposite influence in the spanwise direction compared to the streamwise direction. The streamwise characteristic frequency increases with increasing large-scale velocity. However, the spanwise characteristic frequency exhibits a decreasing trend with increasing large-scale velocity in the near-wall region.展开更多
The reflection and diffraction of a planar shock wave around a circular cylinder are a typical problem of the complex nonlinear shock wave phenomena in literature.It has long been studied experimentally,analytically a...The reflection and diffraction of a planar shock wave around a circular cylinder are a typical problem of the complex nonlinear shock wave phenomena in literature.It has long been studied experimentally,analytically as well as numerically.Takayama in 1987 obtained clear experimental pictures ofisopycnics in shock tube under the condi- tion that the impinging shock wave propagates as far as 3 diameters away from the cylinder.To know more complete- ly the whole unsteady process,it is desirable to get experimental results in a region which is more than 10 diameters away from the cylinder.This is what has been done in this paper by using the pulsed laser holographic interferometry for several shock Mach numbers of the impinging shock. Results for several moments are shown,giving more know- ledge about the whole unsteady flow field.This is useful for a reliable and complete understanding of the changing force acting on the cylinder,and provides interesting data to check the performance of many recently developed high resolution numerical methods for unsteady shock wave calculation.展开更多
A novel third-order optimized symmetric weighted essentially non-oscillatory(WENO-OS3)scheme is used to simulate the hypersonic shock wave/boundary layer interactions.Firstly,the scheme is presented with the achieveme...A novel third-order optimized symmetric weighted essentially non-oscillatory(WENO-OS3)scheme is used to simulate the hypersonic shock wave/boundary layer interactions.Firstly,the scheme is presented with the achievement of low dissipation in smooth region and robust shock-capturing capabilities in discontinuities.The Maxwell slip boundary conditions are employed to consider the rarefied effect near the surface.Secondly,several validating tests are given to show the good resolution of the WENO-OS3 scheme and the feasibility of the Maxwell slip boundary conditions.Finally,hypersonic flows around the hollow cylinder truncated flare(HCTF)and the25°/55°sharp double cone are studied.Discussions are made on the characteristics of the hypersonic shock wave/boundary layer interactions with and without the consideration of the slip effect.The results indicate that the scheme has a good capability in predicting heat transfer with a high resolution for describing fluid structures.With the slip boundary conditions,the separation region at the corner is smaller and the prediction is more accurate than that with no-slip boundary conditions.展开更多
Based on trajectory equations of gas bubble,an eddy-bubble interaction(EBI)model was developed. This model considered the effect of non-drag forces and took the eddy-bubble interaction time as the refreshing time scal...Based on trajectory equations of gas bubble,an eddy-bubble interaction(EBI)model was developed. This model considered the effect of non-drag forces and took the eddy-bubble interaction time as the refreshing time scale of turbulent fluctuations.The relationship between the crossing-eddy time and the eddy lifetime was discussed,and the predicted distributions of radial,axial velocities of bubbles and gas holdup were also given. Compared with eddy lifetime(EL)model,the EBI model gives somewhat smaller axial velocity in the upper circulation region and larger velocity in the lower circulation region,causing that fewer bubbles reach the lower circulation region and gas holdup becomes higher in the upper circulation region.The predicted gas holdup by the EBI model approaches closer to the experimental data in the discharge stream region.展开更多
文摘Vortex double layers (VDLs) and vortex projectiles (VPs) are the essential coherent structures which emerge in the shock excited (s/f/s) planar parallel "curtain" simulations of a 2D shock tube with PPM. These opposite signed layers, formed by shock induced baroclinic deposition of vorticity, "ind" and are strongly affected by secondary reflected shocks and vortex interactions. In our visiometric mode of working, we quantify several of these processes and introduce time epochs to discuss the emerging phenomena and normalizations to scale (collapse) the data at M =1.5 and 2.0. This versatile configuration, easily obtained in the laboratory, allows us to study the formation, evolution and reacceleration of VPs and stratified turbulence and mixing.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12135009,11991074,11975154,and 12005287).
文摘The interaction of high energy lepton jets composed of electrons and positrons with background electron–proton plasma is investigated numerically based upon particle-in-cell simulation,focusing on the acceleration processes of background protons due to the development of electromagnetic turbulence.Such interaction may be found in the universe when energetic lepton jets propagate in the interstellar media.When such a jet is injected into the background plasma,theWeibel instability is excited quickly,which leads to the development of plasma turbulence into the nonlinear stage.The turbulent electric and magnetic fields accelerate plasma particles via the Fermi II type acceleration,where the maximum energy of both electrons and protons can be accelerated to much higher than that of the incident jet particles.Because of background plasma acceleration,a collisionless electrostatic shock wave is formed,where some pre-accelerated protons are further accelerated when passing through the shock wave front.Dependence of proton acceleration on the beam-plasma density ratio and beam energy is investigated.For a given background plasma density,the maximum proton energy generally increases both with the density and kinetic energy of the injected jet.Moreover,for a homogeneous background plasma,the proton acceleration via both turbulent fields and collisionless shocks is found to be significant.In the case of an inhomogeneous plasma,the proton acceleration in the plasma turbulence is dominant.Our studies illustrate a scenario where protons from background plasma can be accelerated successively by the turbulent fields and collisionless shocks.
文摘The structure and trubulence phenomena of multiple shock wave /turbulent boundary layer interaction (MSW-TBLI) in a square duct were investigated using flow visualization methods and a two-component Laser Doppler Velocimeter (LDV ). First - the MSW-TBLI was visualized by schlieren photography and laser holographic interferography. Second, the time-mean and fluctuating velocities in the MSW-TBLI were explored in detail using LDV Spatial distributions of turbulence intensity,Reynolds shear stress and turbulence kinetic energy are presented.
文摘Interactions between different scales in turbulence were studied starting from the incompressible Navier-Stokes equations. The integral and differential formulae of the short-range viscous stresses, which express the short-range interactions between contiguous scales in turbulence,were given. A concept of the resonant-range interactions between extreme contiguous scales was introduced and the differential formula of the resonant-range viscous stresses was obtained. The short- and resonant-range viscous stresses were applied to deduce the large-eddy simulation (LES) equations as well as the multiscale equations, which are approximately closed and do not contain any empirical constants or relations. The properties and advantages of using the multiscale equations to compute turbulent flows were discussed. The short-range character of the interactions between the scales in turbulence means that the multiscale simulation is a very valuable technique for the calculation of turbulent flows. A few numerical examples were also given.
基金Project supported by the National Natural Science Foundation of China(Nos.11472189 and11332007)
文摘A direct numerical simulation (DNS) on an oblique shock wave with an incident angle of 33.2° impinging on a Mach 2.25 supersonic turbulent boundary layer is performed. The numerical results are confirmed to be of high accuracy by comparison with the reference data. Particular efforts have been made on the investigation of the near-wall behaviors in the interaction region, where the pressure gradient is so significant that a certain separation zone emerges. It is found that, the traditional linear and loga- rithmic laws, which describe the mean-velocity profiles in the viscous and meso sublayers, respectively, cease to be valid in the neighborhood of the interaction region, and two new laws of the wall are proposed by elevating the pressure gradient to the leading order. The new laws are inspired by the analysis on the incompressible separation flows, while the compressibility is additionally taken into account. It is verified by the DNS results that the new laws are adequate to reproduce the mean-velocity profiles both inside and outside the interaction region. Moreover, the normalization adopted in the new laws is able to regularize the Reynolds stress into an almost universal distribution even with a salient adverse pressure gradient (APG).
基金the National Key R&D Program of China(Nos.2017YFE0301201 and 2017YFE0301106)National Natural Science Foundation of China(Nos.11705051,11820101004,11875021 and 11775069)the Young Elite Scientists Sponsorship Program by CAST(No.2018QNRC001).
文摘The influence of m/n=2/1(m and n are poloidal and toroidal mode numbers)tearing modes on plasma perpendicular flows and micro-fluctuations has been investigated in HL-2A neutral beam injection heated L-mode plasmas.It is found that the local perpendicular rotation velocity and turbulence energy are modulated by the alternation between the island X-point and O-point of the naturally rotating tearing modes.Cross-correlation analysis indicates that the modulation of density fluctuations by the tearing mode is not only limited to the island region,but also occurs in the edge region near the last closed flux surface.The turbulence exhibits distinct spectral characteristics inside and outside the island region.In addition,it is observed that the particle flux near the strike point is also significantly impacted by the tearing modes.The experimental evidence reveals that there are strong core-edge interactions between the core tearing modes and the edge transport.
文摘Surface waves comprise an important aspect of the interaction between the atmosphere and the ocean, so a dynamically consistent framework for modelling atmosphere-ocean interaction must take account of surface waves, either implicitly or explicitly. In order to calculate the effect of wind forcing on waves and currents, and vice versa, it is necessary to employ a consistent formula- tion of the energy and momentum balance within the airflow, wave field, and water column. It is very advantageous to apply sur- face-following coordinate systems, whereby the steep gradients in mean flow properties near the air-water interface in the cross-interface direction may be resolved over distances which are much smaller than the height of the waves themselves. We may account for the waves explicitly by employing a numerical spectral wave model, and applying a suitable theory of wave–mean flow interaction. If the mean flow is small compared with the wave phase speed, perturbation expansions of the hydrodynamic equations in a Lagrangian or generalized Lagrangian mean framework are useful: for stronger flows, such as for wind blowing over waves, the presence of critical levels where the mean flow velocity is equal to the wave phase speed necessitates the application of more general types of surface-following coordinate system. The interaction of the flow of air and water and associated differences in temperature and the concentration of various substances (such as gas species) gives rise to a complex boundary-layer structure at a wide range of vertical scales, from the sub-millimetre scales of gaseous diffusion, to several tens of metres for the turbulent Ekman layer. The bal- ance of momentum, heat, and mass is also affected significantly by breaking waves, which act to increase the effective area of the surface for mass transfer, and increase turbulent diffusive fluxes via the conversion of wave energy to turbulent kinetic energy.
基金The project supported by China Academy of Launch Vehicle Technology
文摘An experimental study was conducted on shock wave turbulent boundary layer interactions caused by a blunt swept fin-plate configuration at Mach numbers of 5.0, 7.8, 9.9 for a Reynolds number range of (1.0.similar to 4.7) x 10(7)/m. Detailed heat transfer and pressure distributions were measured at fin deflection angles of up to 30 degrees for a sweepback angle of 67.6 degrees. Surface oil flow patterns and liquid crystal thermograms as well as schlieren pictures of fin shock shape were taken. The study shows that the flow was separated at deflection of 10 degrees and secondary separation were detected at deflection of theta greater than or equal to 20 degrees. The heat transfer and pressure distributions on flat plate showed an extensive plateau region followed by a distinct dip and local peak close to the fin foot. Measurements of the plateau pressure and heat transfer were in good agreement with existing prediction methods, but pressure and heating peak measurements at M greater than or equal to 6 were significantly lower than predicted by the simple prediction techniques at lower Mach numbers.
文摘A two-dimensional Reynolds-averaged Navier-Stokes solver is applied to analyze the aerodynamic behavior of the Shock/Boundary-Layer interaction of rocket with a boosted The K-ε turbulence model and a finite volume method in a unstructured body-fitted curvilinear coordinates have been used. The results indicate that the separation and the reattachment occur in the Boundary-Layer of the main rocket because of the shock interaction. The shape of the booster nose effects the flow field obviously. In the case of the hemisphere booster nose the pressure has complicate distributions and the separation is very clear. The distance between the booster and main rocket has the evident effect on the flow field. If the distance is smaller the pressure coefficient is bigger the separation zone even the separation bubble occurs.
基金supported by the National Natural Science Foundations of China(Nos.51476076,51776096)
文摘The reason for the asymmetry phenomenon of shock/boundary layer interactions(SBLI)in a completely symmetric nozzle with symmetric flow conditions is still an open question.A model for the asymmetry of nozzle flows was proposed based on the properties of fluid entrainment in the mixing layer and momentum conservation.The asymmetry model is deduced based on the nozzle flow with restricted shock separation,and is still applicable for free shock separation.Flow deflection angle at nozzle exit is deduced from this model.Steady numerical simulations are conducted to model the asymmetry of the SBLIs in a planar convergent-divergent nozzle tested by previous researchers.The obtained values of deflection angle based on the numerical results of forced symmetric nozzle flows can judge the asymmetry of flows in a nozzle at some operations.It shows that the entrainment of shear layer on the separation induced by SBLTs is one of the reasons for the asymmetry in the confined SBLIs.
基金supported by the National Natural Science Foundation of China (10472047)the Open Fund of State Key Laboratory of Explosion Science Technology, Beijing University of Science and Technology (KFJJ06-3)
文摘Observations are presented from experiments and calculations where a laminar spherical CH4/air flame is perturbed successively by incident and reflected shock waves. The experiments are performed in a standard shock tube arrangement, in which a high-speed shadowgraph imaging system is used to record evolutions of the flame. Numerical simulations are conducted by using second-order wave propagation algorithms, based on two-dimensional axisymmetric Navier-Stokes equations with detailed chemical reactions. Qualitative agreements are obtained between the experimental and numerical results. Under actions of incident shock waves, Richtmyer-Meshkov instability responsible for the flame deformation is induced in the flame, and the distoned flame takes a barrel shape. Then, under subsequent actions of the shock wave reflected from a planar wall, the flame takes an inclined non-symmetrical kidney shape in a symmetric cross section, which means a mushroom-like shape of the flame comes finally into being. The vorticity direction in the ring cap has been altered by the reflected shock's action, which makes the head of the mushroom-like flame extend quickly to the side wall.
文摘Shock formation due to flow compressibility and its interaction with boundary layers has adverse effects on aerodynamic characteristics, such as drag increase and flow separation. The objective of this paper is to appraise the practicability of weakening shock waves and, hence, reducing the wave drag in transonic flight regime using a two-dimensional jagged wall and thereby to gain an appropriate jagged wall shape for future empirical study. Different shapes of the jagged wall, including rectangular, circular, and triangular shapes, were employed. The numerical method was validated by experimental and numerical studies involving transonic flow over the NACA0012 airfoil, and the results presented here closely match previous experimental and numerical results. The impact of parameters, including shape and the length-to-spacing ratio of a jagged wall, was studied on aerodynamic forces and flow field. The results revealed that applying a jagged wall method on the upper surface of an airfoil changes the shock structure significantly and disintegrates it, which in turn leads to a decrease in wave drag. It was also found that the maximum drag coefficient decrease of around 17 % occurs with a triangular shape, while the maximum increase in aerodynamic efficiency(lift-to-drag ratio)of around 10 % happens with a rectangular shape at an angle of attack of 2.26?.
文摘Influence of the shock wave on the turbulence in a supersonic nozzle was investigated for a SF6 puffer circuit breaker interruption process. Turbulence is enlarged through the shock wave. Baroclinic generation of vortex causes flow separation and broadening of the arc cross section. V-I characteristics are slightly modified due to the shock wave's influence.
文摘An experimental study and a numerical simulation were conducted to investigate the mechanical and thermodynamic processes involved in the interaction between shock waves and low density foam. The experiment was done in a stainless shock tube (80 mm in inner diameter, 10 mm in wall thickness and 5 360 mm in length). The velocities of the incident and reflected compression waves in the foam were measured by using piezo-ceramic pressure sensors. The end-wall peak pressure behind the reflected wave in the foam was measured by using a crystal piezoelectric sensor. It is suggested that the high end-wall pressure may be caused by a rapid contact between the foam and the end-wall surface. Both open-cell and closed-cell foams with different length and density were tested. Through comparing the numerical and experimental end-wall pressure, the permeability coefficients α and β are quantitatively determined.
基金supported by the National Natural Science Foundation of China (Grants 11372333, 90916028)
文摘The properties of Mach stems in hypersonic corner flow induced by Mach interaction over 3D intersecting wedges were studied theoretically and numerically.A new method called "spatial dimension reduction" was used to analyze theoretically the location and Mach number behind Mach stems. By using this approach, the problem of 3D steady shock/shock interaction over 3D intersecting wedges was transformed into a 2D moving one on cross sections, which can be solved by shock-polar theory and shock dynamics theory. The properties of Mach interaction over 3D intersecting wedges can be analyzed with the new method,including pressure, temperature, density in the vicinity of triple points, location, and Mach number behind Mach stems.Theoretical results were compared with numerical results,and good agreement was obtained. Also, the influence of Mach number and wedge angle on the properties of a 3D Mach stem was studied.
基金Project(51275542) supported by the National Natural Science Foundation of Chinaproject(CDJXS12110010) supported by the Fundamental Research Funds for the Central Universities of China
文摘Based on the working principle and the damping characteristic of hydraulic shock absorber, a fluid structure interaction method was presented, which was used to analyze the microcosmic and high-frequency processing mechanism of fluid structure interaction between circulation valve and liquid of hydraulic shock absorber. The fluid mesh distortion was controlled by the CEL language, and the fluid struc^tre interaction mathematical model was established. The finite element model was established by ANSYS CFX software and was analyzed by dynamic mesh technique. The local sensitive computational area was meshed by prismatic grid, which could reduce the negative volume problem during the simulation. The circulation valve and liquid of hydraulic shock absorber were simulated and analyzed under the condition of sinusoidal inlet velocity loads. Flow characteristic and dynamics characteristic were obtained. The pressure distribution and the displacement of circulation value were obtained, and the acceleration curve of circulation valve was simulated and analyzed. The conformity of the final simulation results with the experimental datum indicates that this method is accurate and reliable to analyze the dynamics characteristic between circulation valve and liquid of hydraulic shock absorber, which can provide a theoretical foundation for optimizing hydraulic shock absorber in the future.
基金supported by the National Natural Science Foundation of China, Basic Science Center Program for “Multiscale Problems in Nonlinear Mechanics” (Grant No. 11988102)the National Natural Science Foundation of China (Grant Nos. 91852204, 11702302)the National Key R&D Program of China (Grant No. 2020YFA0405700)
文摘The amplitude and frequency modulation of near-wall flow structures by the large-scale motions in outer regions is studied in turbulent channel flows. The proper orthogonal decomposition(POD) method is applied to investigate the interactions between the near-wall motions and the large-scale flow modes of the outer regions based on two datasets from direct numerical simulation of turbulent channel flows at Reynolds numbers of 550–10 0 0. The fluctuations in the fields u+, v+, w+ and Reynolds shear stress-(uv)+ are studied to understand the mechanism of amplitude and frequency modulation of the nearwall structures by the outer large-scale motions. The amplitude modulation coefficient of the Reynolds shear stress is larger than that of the velocity components. The frequency modulation effect has an opposite influence in the spanwise direction compared to the streamwise direction. The streamwise characteristic frequency increases with increasing large-scale velocity. However, the spanwise characteristic frequency exhibits a decreasing trend with increasing large-scale velocity in the near-wall region.
基金The project suported partially by National Natural Science Foundation of China
文摘The reflection and diffraction of a planar shock wave around a circular cylinder are a typical problem of the complex nonlinear shock wave phenomena in literature.It has long been studied experimentally,analytically as well as numerically.Takayama in 1987 obtained clear experimental pictures ofisopycnics in shock tube under the condi- tion that the impinging shock wave propagates as far as 3 diameters away from the cylinder.To know more complete- ly the whole unsteady process,it is desirable to get experimental results in a region which is more than 10 diameters away from the cylinder.This is what has been done in this paper by using the pulsed laser holographic interferometry for several shock Mach numbers of the impinging shock. Results for several moments are shown,giving more know- ledge about the whole unsteady flow field.This is useful for a reliable and complete understanding of the changing force acting on the cylinder,and provides interesting data to check the performance of many recently developed high resolution numerical methods for unsteady shock wave calculation.
基金supported by the National Key Basic Research and Development Program (No.2014CB744100)
文摘A novel third-order optimized symmetric weighted essentially non-oscillatory(WENO-OS3)scheme is used to simulate the hypersonic shock wave/boundary layer interactions.Firstly,the scheme is presented with the achievement of low dissipation in smooth region and robust shock-capturing capabilities in discontinuities.The Maxwell slip boundary conditions are employed to consider the rarefied effect near the surface.Secondly,several validating tests are given to show the good resolution of the WENO-OS3 scheme and the feasibility of the Maxwell slip boundary conditions.Finally,hypersonic flows around the hollow cylinder truncated flare(HCTF)and the25°/55°sharp double cone are studied.Discussions are made on the characteristics of the hypersonic shock wave/boundary layer interactions with and without the consideration of the slip effect.The results indicate that the scheme has a good capability in predicting heat transfer with a high resolution for describing fluid structures.With the slip boundary conditions,the separation region at the corner is smaller and the prediction is more accurate than that with no-slip boundary conditions.
基金Supported by the National Natural Science Foundation of China(20776121) the Scientific Fund of Hunan Provincial Education Department(07C765 07C744)
文摘Based on trajectory equations of gas bubble,an eddy-bubble interaction(EBI)model was developed. This model considered the effect of non-drag forces and took the eddy-bubble interaction time as the refreshing time scale of turbulent fluctuations.The relationship between the crossing-eddy time and the eddy lifetime was discussed,and the predicted distributions of radial,axial velocities of bubbles and gas holdup were also given. Compared with eddy lifetime(EL)model,the EBI model gives somewhat smaller axial velocity in the upper circulation region and larger velocity in the lower circulation region,causing that fewer bubbles reach the lower circulation region and gas holdup becomes higher in the upper circulation region.The predicted gas holdup by the EBI model approaches closer to the experimental data in the discharge stream region.