期刊文献+
共找到42,056篇文章
< 1 2 250 >
每页显示 20 50 100
Interaction of weak free-stream disturbance with an oblique shock: validation of the shock-capturing method 被引量:2
1
作者 Caihong SU Jinlei GENG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2017年第11期1601-1612,共12页
Transition prediction is of great importance for the design of long distance flying vehicles. It starts from the problem of receptivity, i.e., how external disturbances trigger instability waves in the boundary layer.... Transition prediction is of great importance for the design of long distance flying vehicles. It starts from the problem of receptivity, i.e., how external disturbances trigger instability waves in the boundary layer. For super/hypersonic boundary layers, the external disturbances first interact with the shock ahead of the flying vehicles before entering the boundary layer. Since direct numerical simulation (DNS) is the only available tool for its comprehensive and detailed investigation, an important problem arises whether the numerical scheme, especially the shock-capturing method, can faithfully reproduce the interaction of the external disturbances with the shock, which is so far unknown. This paper is aimed to provide the answer. The interaction of weak disturbances with an oblique shock is investigated, which has a known theoretical solution. Numerical simulation using the shock-capturing method is conducted, and results are compared with those given by theoretical analysis, which shows that the adopted numerical method can faithfully reproduce the interaction of weak external disturbances with the shock. 展开更多
关键词 shock high speed flow free-stream disturbance shock-CAPTURING
下载PDF
Culture shock: Indirect communication A foreign teacher's teaching experience in a Chinese university located in a Hakka region
2
作者 WANG Liu-mei 《Sino-US English Teaching》 2010年第6期57-64,共8页
Culture shock is unavoidable for foreign teachers in China. Using qualitative method, this paper reports a case study of culture shock--a foreign teacher's teaching experience in a Chinese university located in an ar... Culture shock is unavoidable for foreign teachers in China. Using qualitative method, this paper reports a case study of culture shock--a foreign teacher's teaching experience in a Chinese university located in an area with a unique local population. The city involved in this study is Meizhou, located in Guangdong Province, which is considered "the capital of Hakka". The study found that indirect communication is a big shock for foreign teachers who teach in this area. The paper explores the reasons from the perspectives of Hakka culture and points out that culture shock can be an important aspect of foreign teachers' professional development, cultural learning and personal growth. Finally, the study provides implications for language teaching and learning in a similar area, such as Meizhou. 展开更多
关键词 culture shock foreign teachers STUDENTS HAKKA indirect communication
下载PDF
Rapid and Asymmetric Response of the Earth's Bow Shock: Multipoint Observations
3
作者 LIU Bing DUNLOP M W +3 位作者 CAO Jinbin LAVRAUD B LI Liuyuan YANG Junying 《空间科学学报》 CAS CSCD 北大核心 2017年第2期129-139,共11页
We analyze observations of three bow shock crossings which occurred during 2007.using upstream data from STEREO A/B.ACE and WIND,combined with multi-point THEMIS and Cluster data,and TC-1 data located near noon.During... We analyze observations of three bow shock crossings which occurred during 2007.using upstream data from STEREO A/B.ACE and WIND,combined with multi-point THEMIS and Cluster data,and TC-1 data located near noon.During the crossing of 7 May 2007.we find that following a rapid reduction in solar wind ram pressure and subsequent pressure pulse seen by ACE and WIND upstream,the bow shock responds asymmetrically from dawn to dusk.Cluster data on the dawn-side suggest the bow shock is significantly flared and responds rapidly to the pulse arrival,while TC-1 at noon,and THEMIS on the dusk-side,are well matched to the model bow shock,but show a delayed response.The crossings observed on 21 May and 2 June show contrasting response matching the model boundary for northward Interplanetary Magnetic Field(IMF).The IMF and solar wind plasma data suggest that,the bow shock crossing at dawn-dusk side and subsolar point were mainly caused by large and smaller scale features of the solar wind ram pressure rise rather than the influence of IMF. 展开更多
关键词 空间 科学 问题 工作 研究
下载PDF
Propagation Properties of Shock Waves in Polyurethane Foam based on Atomistic Simulations 被引量:1
4
作者 Zhiqiang Hu Jianli Shao +2 位作者 Shiyu Jia Weidong Song Cheng Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期117-129,共13页
Porous materials are widely used in the field of protection because of their excellent energy absorption characteristics.In this work,a series of polyurethane microscopic models are established and the effect of poros... Porous materials are widely used in the field of protection because of their excellent energy absorption characteristics.In this work,a series of polyurethane microscopic models are established and the effect of porosity on the shock waves is studied with classical molecular dynamics simulations.Firstly,shock Hugoniot relations for different porosities are obtained,which compare well with the experimental data.The pores collapse and form local stress wave,which results in the complex multi-wave structure of the shock wave.The microstructure analysis shows that the local stress increases and the local velocity decreases gradually during the process of pore collapse to complete compaction.Finally,it leads to stress relaxation and velocity homogenization.The shock stress peaks can be fitted with two exponential functions,and the amplitude of attenuation coefficient decreases with the increase of density.Besides,the pore collapse under shock or non-shock are discussed by the entropy increase rate of the system.The energy is dissipated mainly through the multiple interactions of the waves under shock.The energy is dissipated mainly by the friction between atoms under non-shock. 展开更多
关键词 Polyurethane foam shock wave ATTENUATION Atomistic simulation
下载PDF
Experimental investigation on weak shock wave mitigation characteristics of flexible polyurethane foam and polyurea 被引量:1
5
作者 Shiyu Jia Cheng Wang +2 位作者 Wenlong Xu Dong Ma Fangfang Qi 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期179-191,共13页
In recent years,explosion shock wave has been considered as a signature injury of the current military conflicts.Although strong shock wave is lethal to the human body,weak shock wave can cause many more lasting conse... In recent years,explosion shock wave has been considered as a signature injury of the current military conflicts.Although strong shock wave is lethal to the human body,weak shock wave can cause many more lasting consequences.To investigate the protection ability and characteristics of flexible materials and structures under weak shock wave loading,the blast wave produced by TNT explosive is loaded on the polyurethane foam with the density of 200.0 kg/m3(F-200)and 400.0 kg/m3(F-400),polyurea with the density of 1100.0 kg/m^(3)(P-1100)and structures composed of the two materials,which are intended for individual protection.Experimental results indicate that the shock wave is attenuated to weak pressure disturbance after interacting with the flexible materials which are not damaged.The shock wave protective capability of single-layer materials is dependent on their thickness,density and microscopic characteristics.The overpressure,maximum pressure rise rate and impulse of transmitted wave decrease exponentially with increase in sample thickness.For the same thickness,F-400 provides better protective capability than F-200 while P-1100 shows the best protective capability among the three materials.In this study,as the materials are not destroyed,F-200 with a thickness more than10.0 mm,F-400 with a thickness more than 4.0 mm,and P-1100 with a thickness more than 1.0 mm can attenuate the overpressure amplitude more than 90.0%.Further,multi-layer flexible composites are designed.Different layer layouts of designed structures and layer thickness of the single-layer materials can affect the protective performance.Within the research range,the structure in which polyurea is placed on the impact side shows the optimal shock wave protective performance,and the thicknesses of polyurea and polyurethane foam are 1.0 mm and 4.0 mm respectively.The overpressure attenuation rate reached maximum value of 93.3%and impulse attenuation capacity of this structure are better than those of single-layer polyurea and polyurethane foam with higher areal density. 展开更多
关键词 Free-field explosion Weak shock wave mitigation POLYUREA Polyurethane foam Multi-layered composites
下载PDF
Experimental and numerical study on protective effect of RC blast wall against air shock wave
6
作者 Xin-zhe Nian Quan-min Xie +2 位作者 Xin-li Kong Ying-kang Yao Kui Huang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期567-579,共13页
Prototype experiments were carried out on the explosion-proof performance of the RC blast wall.The mass of TNT detonated in the experiments is 5 kg and 20 kg respectively.The shock wave overpressure was tested in diff... Prototype experiments were carried out on the explosion-proof performance of the RC blast wall.The mass of TNT detonated in the experiments is 5 kg and 20 kg respectively.The shock wave overpressure was tested in different regions.The above experiments were numerically simulated,and the simulated shock wave overpressure waveforms were compared with that tested and given by CONWEP program.The results show that the numerically simulated waveform is slightly different from the test waveform,but similar to CONWEP waveform.Through dimensional analysis and numerical simulation under different working conditions,the equation for the attenuation rate of the diffraction overpressure behind the blast wall was obtained.According to the corresponding standards,the degree of casualties and the damage degree of the brick concrete building at a certain distance behind the wall can be determined when parameters are set.The above results can provide a reference for the design and construction of the reinforced concrete blast wall. 展开更多
关键词 Blast wall shock wave DIFFRACTION OVERPRESSURE Protection
下载PDF
Mechanical Properties and Thermal Shock Resistance of SrAl_(2)Si_(2)O_(8) Reinforced BN Ceramic Composites
7
作者 WANG Bo CAI Delong +7 位作者 ZHU Qishuai LI Daxin YANG Zhihua DUAN Xiaoming LI Yanan WANG Xuan JIA Dechang ZHOU Yu 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2024年第10期1182-1188,共7页
Hexagonal boron nitride(h-BN)ceramics have become exceptional materials for heat-resistant components in hypersonic vehicles,owing to their superior thermal stability and excellent dielectric properties.However,their ... Hexagonal boron nitride(h-BN)ceramics have become exceptional materials for heat-resistant components in hypersonic vehicles,owing to their superior thermal stability and excellent dielectric properties.However,their densification during sintering still poses challenges for researchers,and their mechanical properties are rather unsatisfactory.In this study,SrAl_(2)Si_(2)O_(8)(SAS),with low melting point and high strength,was introduced into the h-BN ceramics to facilitate the sintering and reinforce the strength and toughness.Then,BN-SAS ceramic composites were fabricated via hot press sintering using h-BN,SrCO_(3),Al_(2)O_(3),and SiO_(2) as raw materials,and effects of sintering pressure on their microstructure,mechanical property,and thermal property were investigated.The thermal shock resistance of BN-SAS ceramic composites was evaluated.Results show that phases of as-preparedBN-SAS ceramic composites are h-BN and h-SrAl_(2)Si_(2)O_(8).With the increase of sintering pressure,the composites’densities increase,and the mechanical properties shew a rising trend followed by a slight decline.At a sintering pressure of 20 MPa,their bending strength and fracture toughness are(138±4)MPa and(1.84±0.05)MPa·m^(1/2),respectively.Composites sintered at 10 MPa exhibit a low coefficient of thermal expansion,with an average of 2.96×10^(-6) K^(-1) in the temperature range from 200 to 1200℃.The BN-SAS ceramic composites prepared at 20 MPa display higher thermal conductivity from 12.42 to 28.42 W·m^(-1)·K^(-1) within the temperature range from room temperature to 1000℃.Notably,BN-SAS composites exhibit remarkable thermal shock resistance,with residual bending strength peaking and subsequently declining sharply under a thermal shock temperature difference ranging from 600 to 1400℃.The maximum residual bending strength is recorded at a temperature difference of 800℃,with a residual strength retention rate of 101%.As the thermal shock temperature difference increase,the degree of oxidation on the ceramic surface and cracks due to thermal stress are also increased gradually. 展开更多
关键词 BN MATRIX composite hot-press SINTERING mechanical PROPERTY thermal shock resistance service reliability
下载PDF
Strong shock propagation for the finite-source circular blast in a confined domain
8
作者 Qihang MA Kaileong CHONG +1 位作者 Bofu WANG Quan ZHOU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第6期1071-1084,共14页
The circular explosion wave produced by the abrupt discharge of gas from a high-temperature heat source serves as a crucial model for addressing explosion phenomena in compressible flow.The reflection of the primary s... The circular explosion wave produced by the abrupt discharge of gas from a high-temperature heat source serves as a crucial model for addressing explosion phenomena in compressible flow.The reflection of the primary shock and its propagation within a confined domain are studied both theoretically and numerically in this research.Under the assumption of strong shock,the scaling law governing propagation of the main shock is proposed.The dimensionless frequency of reflected shock propagation is associated with the confined distance.The numerical simulation for the circular explosion problem in a confined domain is performed for validation.Under the influence of confinement,the principal shock wave systematically undergoes reflection within the domain until it weakens,leading to the non-monotonic attenuation of kinetic energy in the explosion fireball and periodic oscillations of the fireball volume with a certain frequency.The simulation results indicate that the frequency of kinetic energy attenuation and the volume oscillation of the explosive fireball align consistently with the scaling law. 展开更多
关键词 explosion CONFINEMENT main shock frequency
下载PDF
A rat model of multicompartmental traumatic injury and hemorrhagic shock induces bone marrow dysfunction and profound anemia
9
作者 Lauren S.Kelly Jennifer A.Munley +5 位作者 Erick E.Pons Kolenkode B.Kannan Elizabeth M.Whitley Letitia E.Bible Philip A.Efron Alicia M.Mohr 《Animal Models and Experimental Medicine》 CAS CSCD 2024年第3期367-376,共10页
Background:Severe trauma is associated with systemic inflammation and organ dysfunction.Preclinical rodent trauma models are the mainstay of postinjury research but have been criticized for not fully replicating sever... Background:Severe trauma is associated with systemic inflammation and organ dysfunction.Preclinical rodent trauma models are the mainstay of postinjury research but have been criticized for not fully replicating severe human trauma.The aim of this study was to create a rat model of multicompartmental injury which recreates profound traumatic injury.Methods:Male Sprague-Dawley rats were subjected to unilateral lung contusion and hemorrhagic shock(LCHS),multicompartmental polytrauma(PT)(unilateral lung contusion,hemorrhagic shock,cecectomy,bifemoral pseudofracture),or na?ve controls.Weight,plasma toll-l ike receptor 4(TLR4),hemoglobin,spleen to body weight ratio,bone marrow(BM)erythroid progenitor(CFU-GEMM,BFU-E,and CFU-E)growth,plasma granulocyte colony-stimulating factor(G-CSF)and right lung histologic injury were assessed on day 7,with significance defined as p values<0.05(*).Results:Polytrauma resulted in markedly more profound inhibition of weight gain compared to LCHS(p=0.0002)along with elevated plasma TLR4(p<0.0001),lower hemoglobin(p<0.0001),and enlarged spleen to body weight ratios(p=0.004).Both LCHS and PT demonstrated suppression of CFU-E and BFU-E growth compared to naive(p<0.03,p<0.01).Plasma G-CSF was elevated in PT compared to both na?ve and LCHS(p<0.0001,p=0.02).LCHS and PT demonstrated significant histologic right lung injury with poor alveolar wall integrity and interstitial edema.Conclusions:Multicompartmental injury as described here establishes a reproducible model of multicompartmental injury with worsened anemia,splenic tissue enlargement,weight loss,and increased inflammatory activity compared to a less severe model.This may serve as a more effective model to recreate profound traumatic injury to replicate the human inflammatory response postinjury. 展开更多
关键词 ANEMIA i nflammation POLYTRAUMA pseudofracture shock
下载PDF
Effect of the interval between two shocks on ejecta formation from the grooved aluminum surface
10
作者 Mingyang Xu Jianli Shao +1 位作者 Weidong Song Enling Tang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期147-159,共13页
This work focuses on the effect of the interval between two shocks on the ejecta formation from the grooved aluminum(Al_(1100))surface by using smoothed particle hydrodynamics numerical simulation.Two unsupported shoc... This work focuses on the effect of the interval between two shocks on the ejecta formation from the grooved aluminum(Al_(1100))surface by using smoothed particle hydrodynamics numerical simulation.Two unsupported shocks are obtained by the plate-impact between sample and two flyers at interval,with a peak pressure of approximately 30 GPa for each shock.When the shock interval varies from 2.11 to 7.67 times the groove depth,the bubble velocity reduces to a constant,and the micro jetting factor R_(J) from spike to bubble exhibits a non-monotonic change that decreases initially and then increases.At a shock interval of 3.6 times the groove depth,micro jetting factor R_(J) from spike to bubble reaches its minimum value of approximately 0.6.While,the micro jetting factor R_(F) from spike to free surface decreases linearly at first,and stabilizes around 0.25 once the shock interval surpasses 4.18 times the groove depth.When the shock interval is less than 4.18 times the groove depth,the unloading wave generated by the breakout of the first shock wave is superimpose with the unloading part of the second shock wave to form a large tensile area. 展开更多
关键词 EJECTA MICROJET Two shocks INTERVAL Smoothed particle hydrodynamics
下载PDF
Successful treatment of group A streptococcal toxic shock syndrome occurring in late pregnancy:a case report
11
作者 Tingting Chen Qingai Jiang +6 位作者 Shufen Zhou Haiyang Tang Yijia Tian Lingfei Jin Yuanhe Wang Shunlan Du Xiaoxia Bai 《World Journal of Emergency Medicine》 SCIE CAS CSCD 2024年第6期508-510,共3页
Streptococcal toxic shock syndrome(STSS)is an acute,life-threatening illness caused by invasive group A Streptococcus(iGAS).The initial manifestations of STSS are atypical,and may progress to shock,multiple organ dysf... Streptococcal toxic shock syndrome(STSS)is an acute,life-threatening illness caused by invasive group A Streptococcus(iGAS).The initial manifestations of STSS are atypical,and may progress to shock,multiple organ dysfunction syndrome(MODS),and disseminated intravascular coagulation(DIC)quickly. 展开更多
关键词 ACUTE shock PREGNANCY
下载PDF
Impacts of Comorbidity and Mental Shock on Organic Micropollutants in Surface Water During and After the First Wave of COVID-19 Pandemic in Wuhan (2019–2021), China
12
作者 Jian Zhao Jin Kang +10 位作者 Xiaofeng Cao Rui Bian Gang Liu Shengchao Hu Xinghua Wu Chong Li Dianchang Wang Weixiao Qi Cunrui Huang Huijuan Liu Jiuhui Qu 《Engineering》 SCIE EI CAS CSCD 2024年第6期40-48,共9页
The first pandemic wave of coronavirus disease 2019(COVID-19)induced a considerable increase in several antivirals and antibiotics in surface water.The common symptoms of COVID-19 are viral and bacterial infections,wh... The first pandemic wave of coronavirus disease 2019(COVID-19)induced a considerable increase in several antivirals and antibiotics in surface water.The common symptoms of COVID-19 are viral and bacterial infections,while comorbidities(e.g.,hypertension and diabetes)and mental shock(e.g.,insomnia and anxiety)are nonnegligible.Nevertheless,little is known about the long-term impacts of comorbidities and mental shock on organic micropollutants(OMPs)in surface waters.Herein,we monitored 114 OMPs in surface water and wastewater treatment plants(WWTPs)in Wuhan,China,between 2019 and 2021.The pandemic-induced OMP pollution in surface water was confirmed by significant increases in 26 OMP concentrations.Significant increases in four antihypertensives and one diabetic drug suggest that the treatment of comorbidities may induce OMP pollution.Notably,cotinine(a metabolite of nicotine)increased 155 times to 187 ngL1,which might be associated with increased smoking.Additionally,the increases in zolpidem and sulpiride might be the result of worsened insomnia and depression.Hence,it is reasonable to note that mental-health protecting drugs/behavior also contributed to OMP pollution.Among the observed OMPs,telmisartan,lopinavir,and ritonavir were associated with significantly higher ecological risks because of their limited WWTP-removal rate and high ecotoxicity.This study provides new insights into the effects of comorbidities and mental shock on OMPs in surface water during a pandemic and highlights the need to monitor the fate of related pharmaceuticals in the aquatic environment and to improve their removal efficiencies in WWTPs。 展开更多
关键词 Coronavirus disease 2019 COMORBIDITIES Mental shock MICROPOLLUTANT Surface water
下载PDF
Evolution of molecular structure of TATB under shock loading from transient Raman spectroscopic technique
13
作者 Hongliang Kang Xue Yang +5 位作者 Wenshuo Yuan Lei Yang Xinghan Li Fusheng Liu Zhengtang Liu Qijun Liu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期613-620,共8页
By combination of the transient Raman spectroscopic measurement and the density functional theoretical calculations,the structural evolution and stability of TATB under shock compression was investigated.Due to the im... By combination of the transient Raman spectroscopic measurement and the density functional theoretical calculations,the structural evolution and stability of TATB under shock compression was investigated.Due to the improvement in synchronization control between two-stage light gas gun and the transient Raman spectra acquisition,as well as the sample preparation,the Raman peak of the N-O mode of TATB was firstly observed under shock pressure up to 13.6 GPa,noticeably higher than the upper limit of 8.5 GPa reported in available literatures.By taking into account of the continuous shift of the main peak and other observed Raman peaks,we did not distinguish any structural transition or any new species.Moreover,both the present Raman spectra and the time-resolved radiation of TATB during shock loading showed that TATB exhibits higher chemical stability than previous declaration.To reveal the detailed structural response and evolution of TATB under compression,the density functional theoretical calculations were conducted,and it was found that the pressure make N-O bond lengths shorter,nitro bond angles larger,and intermolecular and intra-molecular hydrogen bond interactions enhanced.The observed red shift of Raman peak was ascribed to the abnormal enhancement of H-bound effect on the scissor vibration mode of the nitro group. 展开更多
关键词 TATB Raman spectra Structural evolution shock loading
下载PDF
STABILITY OF TRANSONIC SHOCKS TO THE EULER-POISSON SYSTEM WITH VARYING BACKGROUND CHARGES
14
作者 Yang CAO Yuanyuan XING Na ZHANG 《Acta Mathematica Scientia》 SCIE CSCD 2024年第4期1487-1506,共20页
This paper is devoted to studying the stability of transonic shock solutions to the Euler-Poisson system in a one-dimensional nozzle of finite length.The background charge in the Poisson equation is a piecewise consta... This paper is devoted to studying the stability of transonic shock solutions to the Euler-Poisson system in a one-dimensional nozzle of finite length.The background charge in the Poisson equation is a piecewise constant function.The structural stability of the steady transonic shock solution is obtained by the monotonicity argument.Furthermore,this transonic shock is proved to be dynamically and exponentially stable with respect to small perturbations of the initial data.One of the crucial ingredients of the analysis is to establish the global well-posedness of a free boundary problem for a quasilinear second order equation with nonlinear boundary conditions. 展开更多
关键词 Euler-Poisson system transonic shock varying background charges STABILITY
下载PDF
Early peripheral perfusion index predicts 28-day outcome in patients with septic shock
15
作者 Cheng Chi Hao Gong +2 位作者 Kai Yang Peng Peng Xiaoxia Zhang 《World Journal of Emergency Medicine》 SCIE CAS CSCD 2024年第5期372-378,共7页
BACKGROUND:To investigate the prognostic value of the peripheral perfusion index(PPI)in patients with septic shock.METHODS:This prospective cohort study,conducted at the emergency intensive care unit of Peking Univers... BACKGROUND:To investigate the prognostic value of the peripheral perfusion index(PPI)in patients with septic shock.METHODS:This prospective cohort study,conducted at the emergency intensive care unit of Peking University People's Hospital,recruited 200 patients with septic shock between January 2023 and August 2023.These patients were divided into survival(n=84)and death(n=116)groups based on 28-day outcomes.Clinical evaluations included laboratory tests and clinical scores,with lactate and PPI values assessed upon admission to the emergency room and at 6 h and 12 h after admission.Risk factors associated with mortality were analyzed using univariate and multivariate Cox regression analyses.Receiver operator characteristic(ROC)curve was used to assess predictive performance.Mortality rates were compared,and Kaplan-Meier survival plots were created.RESULTS:Compared to the survival group,patients in the death group were older and had more severe liver damage and coagulation dysfunction,necessitating higher norepinephrine doses and increased fl uid replacement.Higher lactate levels and lower PPI levels at 0 h,6 h,and 12 h were observed in the death group.Multivariate Cox regression identifi ed prolonged prothrombin time(PT),decreased 6-h PPI and 12-h PPI as independent risk factors for death.The area under the curves for 6-h PPI and 12-h PPI were 0.802(95%CI 0.742-0.863,P<0.001)and 0.945(95%CI 0.915-0.974,P<0.001),respectively,which were superior to Glasgow Coma Scale(GCS),Sequential Organ Failure Assessment(SOFA)scores(0.864 and 0.928).Cumulative mortality in the low PPI groups at 6 h and 12 h was signifi cantly higher than in the high PPI groups(6-h PPI:77.52%vs.22.54%;12-h PPI:92.04%vs.13.79%,P<0.001).CONCLUSION:PPI may have value in predicting 28-day mortality in patients with septic shock. 展开更多
关键词 Peripheral perfusion index Septic shock PROGNOSIS Predictive value
下载PDF
Effect of Mn element on shock response in CoCrFeNiMnx high entropy alloys
16
作者 Peng Wen Changxing Du +1 位作者 Gang Tao Guipeng Ding 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第11期340-348,共9页
The effect of Mn element on shock response of CoCrFeNiMnx high entropy alloys(HEAs)are investigated using molecular dynamics simulations.Structural analysis shows that Mn-rich CoCrFeNiMnx HEA has a larger average atom... The effect of Mn element on shock response of CoCrFeNiMnx high entropy alloys(HEAs)are investigated using molecular dynamics simulations.Structural analysis shows that Mn-rich CoCrFeNiMnx HEA has a larger average atomic volume.The elastic properties of CoCrFeNiMnx HEAs under various hydrostatic pressures are studied,revealing that the elastic modulus decreases with increasing of Mn content.The shock thermodynamic parameters are quantitatively analyzed.The Mn-dependent shock Hugoniot relationship of CoCrFeNiMnx HEAs is obtained:Us=1.25+(5.21–0.011x)Up.At relatively high shock pressure,the increase in Mn content promotes the formation of clustered BCC structures and hinders the development of dislocations.In addition,more FCC structures in Mn-rich CoCrFeNiMnx HEAs transform into disordered structures during spallation.Spall strength decreases with increasing Mn content.This study can provide a reference for the design and application of CoCrFeNiMn HEAs under shock loading. 展开更多
关键词 high entropy alloys shock response molecular dynamics SPALLATION
下载PDF
Research advances in enhanced coal seam gas extraction by controllable shock wave fracturing
17
作者 Chaojun Fan Hao Sun +6 位作者 Sheng Li Lei Yang Bin Xiao Zhenhua Yang Mingkun Luo Xiaofeng Jiang Lijun Zhou 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第3期1-31,共31页
With the continuous increase of mining in depth,the gas extraction faces the challenges of low permeability,great ground stress,high temperature and large gas pressure in coal seam.The controllable shock wave(CSW),as ... With the continuous increase of mining in depth,the gas extraction faces the challenges of low permeability,great ground stress,high temperature and large gas pressure in coal seam.The controllable shock wave(CSW),as a new method for enhancing permeability of coal seam to improve gas extraction,features in the advantages of high efficiency,eco-friendly,and low cost.In order to better utilize the CSW into gas extraction in coal mine,the mechanism and feasibility of CSW enhanced extraction need to be studied.In this paper,the basic principles,the experimental tests,the mathematical models,and the on-site tests of CSW fracturing coal seams are reviewed,thereby its future research directions are provided.Based on the different media between electrodes,the CSW can be divided into three categories:hydraulic effect,wire explosion and excitation of energetic materials by detonating wire.During the process of propagation and attenuation of the high-energy shock wave in coal,the shock wave and bubble pulsation work together to produce an enhanced permeability effect on the coal seam.The stronger the strength of the CSW is,the more cracks created in the coal is,and the greater the length,width and area of the cracks being.The repeated shock on the coal seam is conducive to the formation of complex network fracture system as well as the reduction of coal seam strength,but excessive shock frequency will also damage the coal structure,resulting in the limited effect of the enhanced gas extraction.Under the influence of ground stress,the crack propagation in coal seam will be restrained.The difference of horizontal principal stress has a significant impact on the shape,propagation direction and connectivity of the CSW induced cracks.The permeability enhancement effect of CSW is affected by the breakage degree of coal seam.The shock wave is absorbed by the broken coal,which may hinder the propagation of CSW,resulting in a poor effect of permeability enhancement.When arranging two adjacent boreholes for CSW permeability enhancement test,the spacing of boreholes should not be too close,which may lead to negative pressure mutual pulling in the early stage of drainage.At present,the accurate method for effectively predicting the CSW permeability enhanced range should be further investigated. 展开更多
关键词 Controllable shock wave Permeability enhancement Gas extraction Basic principle Experimental test Mathematical models On-site test
下载PDF
Study of relationship between motion of mechanisms in gas operated weapon and its shock absorber
18
作者 Jiri Balla Roman Vitek +2 位作者 Dung Nguyen Van Zbynek Krist Hung Nguyen Van 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期42-54,共13页
The article deals with the motion of the breech block carrier and the weapon casing of an automatic weapon mounted on a flexible carriage and the base of the weapon.Earlier works,which did not consider the dynamic pro... The article deals with the motion of the breech block carrier and the weapon casing of an automatic weapon mounted on a flexible carriage and the base of the weapon.Earlier works,which did not consider the dynamic properties of the base of the weapon,did not allow to reconcile the calculated and experimental results of the weapon casing displacement when shooting from firing rests.For the analysis of the motion of individual parts,the methods of mathematical modelling and firing experiments using a high-speed camera were chosen.Calculations show the best accord with experiment when modelling the system with 4 degrees of freedom.The oscillation of the system regarding the movement of the breech block carrier and the weapon casing was investigated under changed conditions of rate of fire,the use of a muzzle brake and different types of shock absorbers.The velocities and displacements of the weapon casing and the breech block carrier at different values of the impulse of the gases to the breech block carrier were determined. 展开更多
关键词 shock absorber Gas-operated weapon Force-impulse diagram Recoil system Breech block carrier
下载PDF
Demonstrating grating-based phase-contrast imaging of laser-driven shock waves
19
作者 Leonard Wegert Stephan Schreiner +16 位作者 Constantin Rauch Bruno Albertazzi Paulina Bleuel Eric Frojdh Michel Koenig Veronika Ludwig Artem SMartynenko Pascal Meyer Aldo Mozzanica Michael Müller Paul Neumayer Markus Schneider Angelos Triantafyllidis Bernhard Zielbauer Gisela Anton Thilo Michel Stefan Funk 《Matter and Radiation at Extremes》 SCIE EI CSCD 2024年第4期90-97,共8页
Single-shot X-ray phase-contrast imaging is used to take high-resolution images of laser-driven strong shock waves.Employing a two-grating Talbot interferometer,we successfully acquire standard absorption,differential... Single-shot X-ray phase-contrast imaging is used to take high-resolution images of laser-driven strong shock waves.Employing a two-grating Talbot interferometer,we successfully acquire standard absorption,differential phase-contrast,and dark-field images of the shocked target.Good agreement is demonstrated between experimental data and the results of two-dimensional radiation hydrodynamics simulations of the laser-plasma interaction.The main sources of image noise are identified through a thorough assessment of the interferometer’s performance.The acquired images demonstrate that grating-based phase-contrast imaging is a powerful diagnostic tool for high-energy-density science.In addition,we make a novel attempt at using the dark-field image as a signal modality of Talbot interferometry to identify the microstructure of a foam target. 展开更多
关键词 INTERACTION shock PHASE
下载PDF
Shock-induced energy localization and reaction growth considering chemical-inclusions effects for crystalline explosives
20
作者 Ruqin Liu Yanqing Wu +3 位作者 Xinjie Wang Fenglei Huang Xiaona Huang Yushi Wen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期278-294,共17页
Chemical inclusions significantly alter shock responses of crystalline explosives in macroscale gap experiments but their microscale dynamics origin remains unclear.Herein shock-induced energy localization,overall phy... Chemical inclusions significantly alter shock responses of crystalline explosives in macroscale gap experiments but their microscale dynamics origin remains unclear.Herein shock-induced energy localization,overall physical responses,and reactions in a-1,3,5-trinitro-1,3,5-triazinane(a-RDX)crystal entrained various chemical inclusions were investigated by the multi-scale shock technique implemented in the reactive molecular dynamics method.Results indicated that energy localization and shock reaction were affected by the intrinsic factors within chemical inclusions,i.e.,phase states,chemical compositions,and concentrations.The atomic origin of chemical-inclusions effects on energy localization is dependent on the dynamics mechanism of interfacial molecules with free space volume,which includes homogeneous intermolecular compression,interfacial impact and shear,and void collapse and jet.As introducing various chemical inclusions,the initiation of those dynamics mechanisms triggers diverse decay rates of bulk RDX molecules and hereby impacts on growth speeds of final reactions.Adding chemical inclusions can reduce the effectiveness of the void during the shock impacting.Under the shockwave velocity of 9 km/s,the parent RDX decay rate in RDX entrained amorphous carbon decreases the most and is about one fourth of that in RDX with a vacuum void,and solid HMX and TATB inclusions are more reactive than amorphous carbon but less reactive than dry air or acetone inclusions.The lessdense shocking system denotes the greater increases in local temperature and stress,the faster energy liberation,and the earlier final reaction into equilibrium,revealing more pronounced responses to the present intense shockwave.The quantitative models associated with the relative system density(RD_(sys))were proposed for indicating energy-localization mechanisms and evaluating initiation safety in the shocked crystalline explosive.RD_(sys)is defined by the density ratio of defective RDX to perfect crystal after dynamics relaxation and reveals the global density characteristic in shocked systems filled with chemical inclusions.When RD_(sys)is below 0.9,local hydrodynamic jet initiated by void collapse dominates upon energy localization instead of interfacial impact.This study sheds light on novel insights for understanding the shock chemistry and physical-based atomic origin in crystalline explosives considering chemical-inclusions effects. 展开更多
关键词 shock responses Energy localization Crystalline explosives Chemical inclusions Reactive molecular dynamics
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部