Interaction of a planar shock wave with a discontinuous SF& elliptic gas cylinder surrounded by air is investigated. Special attention is given to the effects of aspect ratio on wave pattern, interface evolution, ...Interaction of a planar shock wave with a discontinuous SF& elliptic gas cylinder surrounded by air is investigated. Special attention is given to the effects of aspect ratio on wave pattern, interface evolution, and material mixing. An ideal discontinuous two-dimensional gas cylinder is created by the soap film technique in experiments, and the shocked flow is captured by schlieren photography combined with a high-speed video camera. The surface of the gas cylinder is clear enough to observe the shock motions, and the distinct interface boundaries allow us to extract more details. As aspect ratio varies, the shock focusing process is quite different. For the prolate gas cylinder, an inward jet is produced although an internal shock focusing firstly occurs. The inward jet has never been observed in membraneless prolate ellipse experiments probably because the inward jet is so faint due to less vorticity generation on membraneless interface that it is difficult to be observed. For the oblate gas cylinder, a secondary vortex pair, which has not been described clearly in previous work, is derived from the downstream interface. The material lines at early stages are extracted from experiments, which grow faster as aspect ratio increases. The in terfacial area, the mean volume fraction and the mixing rate are presented from computations, and the results show that the increase of aspect ratio promotes the mixing between gases.展开更多
The problem of shock interaction with a rigid circular cylinder has been investigated using a compressible immersed boundary method coupled with high-order weighted-essentially non-oscillatory(WENO) scheme.First,the a...The problem of shock interaction with a rigid circular cylinder has been investigated using a compressible immersed boundary method coupled with high-order weighted-essentially non-oscillatory(WENO) scheme.First,the accuracy of the developed code is validated.Then,influences of the incident shock Mach number on the flow-field structure and dynamic drag coefficient,as well as time evolution of the flow field are studied.For different shock Mach number,the flow structure shows very different features.At a given dimensionless time,both the normalized shock detachment distance and the normalized vertical distance from the highest point of the primary reflected shock to the centerline of the cylinder decreases with increasing shock Mach number.However,location of the upper triple point varies non-monotonically with shock Mach number.For a case with given shock Mach number,the trajectory of the upper triple point and the time evolution of the normalized vertical distance from the highest point of the primary reflected shock to the centerline of the cylinder can both be predicted by linear correlation.Nevertheless,the time evolution of the normalized shock detachment distance is biased to be non-linear.Meanwhile,time evolution of force exerted on the cylinder is quite unsteady for a case with given shock Mach number and given cylinder diameter.For small shock Mach number,there exists a negative valley,and it disappears when the incident shock Mach number increases to a large value,e.g.,1.7.Furthermore,correlations to predict the occurrence of the peak drag and its value under different shock Mach numbers have been proposed.展开更多
The interaction between shock waves and multiple cylinders,referred to as shock–cylinder interaction(SCI),is an important phenomenon in science and engineering.However,its underlying physical mechanisms remain unclea...The interaction between shock waves and multiple cylinders,referred to as shock–cylinder interaction(SCI),is an important phenomenon in science and engineering.However,its underlying physical mechanisms remain unclear.This study entailed the numerical simulation of the aerobreakup of two tandem water columns subjected to a high-speed gas flow by using an adaptive mesh refinement(AMR)-based diffusion-interface model.The objective was to elucidate the changes in water–column deformation patterns over a wide range of Weber numbers.Statistical analysis was performed to examine the deformation of the water columns in vertical directions.Results reveal distinct deformation patterns between the two columns as the Weber number increases.Additionally,an extended exponential stretching law model was devised,and its improved capability to predict the deformation patterns was demonstrated.展开更多
基金the National NaturalScience Foundation of China (Grants 11772329 and UI530103)the Science Challenge Project (Grant TZ2016001).
文摘Interaction of a planar shock wave with a discontinuous SF& elliptic gas cylinder surrounded by air is investigated. Special attention is given to the effects of aspect ratio on wave pattern, interface evolution, and material mixing. An ideal discontinuous two-dimensional gas cylinder is created by the soap film technique in experiments, and the shocked flow is captured by schlieren photography combined with a high-speed video camera. The surface of the gas cylinder is clear enough to observe the shock motions, and the distinct interface boundaries allow us to extract more details. As aspect ratio varies, the shock focusing process is quite different. For the prolate gas cylinder, an inward jet is produced although an internal shock focusing firstly occurs. The inward jet has never been observed in membraneless prolate ellipse experiments probably because the inward jet is so faint due to less vorticity generation on membraneless interface that it is difficult to be observed. For the oblate gas cylinder, a secondary vortex pair, which has not been described clearly in previous work, is derived from the downstream interface. The material lines at early stages are extracted from experiments, which grow faster as aspect ratio increases. The in terfacial area, the mean volume fraction and the mixing rate are presented from computations, and the results show that the increase of aspect ratio promotes the mixing between gases.
基金supported by the National Natural Science Foundation of China(Grant Nos.51576176&91541202)the Fundamental Research Funds for the Central Universities(Grant No.2016FZA4008)the Postdoctoral Science Foundation of China(Grant No.2015M581928)
文摘The problem of shock interaction with a rigid circular cylinder has been investigated using a compressible immersed boundary method coupled with high-order weighted-essentially non-oscillatory(WENO) scheme.First,the accuracy of the developed code is validated.Then,influences of the incident shock Mach number on the flow-field structure and dynamic drag coefficient,as well as time evolution of the flow field are studied.For different shock Mach number,the flow structure shows very different features.At a given dimensionless time,both the normalized shock detachment distance and the normalized vertical distance from the highest point of the primary reflected shock to the centerline of the cylinder decreases with increasing shock Mach number.However,location of the upper triple point varies non-monotonically with shock Mach number.For a case with given shock Mach number,the trajectory of the upper triple point and the time evolution of the normalized vertical distance from the highest point of the primary reflected shock to the centerline of the cylinder can both be predicted by linear correlation.Nevertheless,the time evolution of the normalized shock detachment distance is biased to be non-linear.Meanwhile,time evolution of force exerted on the cylinder is quite unsteady for a case with given shock Mach number and given cylinder diameter.For small shock Mach number,there exists a negative valley,and it disappears when the incident shock Mach number increases to a large value,e.g.,1.7.Furthermore,correlations to predict the occurrence of the peak drag and its value under different shock Mach numbers have been proposed.
基金supported by the National Natural Science Foundation of China (Grant Nos.12202070 and 11772065)the Foundation of National Key Laboratory of Computational Physics.
文摘The interaction between shock waves and multiple cylinders,referred to as shock–cylinder interaction(SCI),is an important phenomenon in science and engineering.However,its underlying physical mechanisms remain unclear.This study entailed the numerical simulation of the aerobreakup of two tandem water columns subjected to a high-speed gas flow by using an adaptive mesh refinement(AMR)-based diffusion-interface model.The objective was to elucidate the changes in water–column deformation patterns over a wide range of Weber numbers.Statistical analysis was performed to examine the deformation of the water columns in vertical directions.Results reveal distinct deformation patterns between the two columns as the Weber number increases.Additionally,an extended exponential stretching law model was devised,and its improved capability to predict the deformation patterns was demonstrated.