Based on the discussion of functions, components, control structure and network computing architecture of generic shop floor control (GSFC) in computer integrated manufacturing system (CIMS), the internal integrati...Based on the discussion of functions, components, control structure and network computing architecture of generic shop floor control (GSFC) in computer integrated manufacturing system (CIMS), the internal integration between components of GSFC and the external integration between GSFC and the other components of CIMS are studied. The integration models on the aspects of function, information, processing and interface are put forward. The integration models and the methods are implemented and applied in CIMS projects successfully.展开更多
In order to overcome the weakness of the former production activity control (PAC) architecture, this paper presents an improved PAC architecture. The BIT-PAC architecture has been applied with the use of information...In order to overcome the weakness of the former production activity control (PAC) architecture, this paper presents an improved PAC architecture. The BIT-PAC architecture has been applied with the use of information technology. It facilitates the information flow from Shop Floor to other areas of the organization and makes the organizations more integrated and productive. This architecture also facilitates the expansion of the Shop Floor functions without disturbing the basic infrastructure. Effectiveness of the BIT-PAC architecture was checked by developing and running application software on a network PC which has supported the dynamic flow of information from Sub-Producers and Sub-Movers to other areas of organization.展开更多
The planning and scheduling in real shop floor is actually achieved by coordination between different persons. In this process, cooperation is mainstream, but competition also exists, for example, the competition betw...The planning and scheduling in real shop floor is actually achieved by coordination between different persons. In this process, cooperation is mainstream, but competition also exists, for example, the competition between different groups, operators with the same skill, etc. In multi-agent based shop floor management and control system, this competition and cooperation relation must be embodied. The general process of shop floor production planning and scheduling is studied, and a colored Petri-net model for the competition and cooperation process of three main agents in such system to achieve shop floor production planning and scheduling is presented. The evaluating method of bids in bidding process that especially embodies the competition relationship is also presented. This colored Petri-net model gives a clear illustration of this complex coordination process to system designers, effectively promotes the cooperative development.展开更多
Adopting distributed control architecture is the important developmentdirection for shop floor management and control system, is also the requirement of making it agile,intelligent and concurrent. Some key problems in...Adopting distributed control architecture is the important developmentdirection for shop floor management and control system, is also the requirement of making it agile,intelligent and concurrent. Some key problems in achieving distributed control architecture areresearched. An activity model of shop floor is presented as the requirement definition of theprototype system. The multi-agent based software architecture is constructed. How the core part inshop floor management and control system, production plan and scheduling is achieved. Thecooperation of different agents is illustrated. Finally, the implementation of the prototype systemis narrated.展开更多
This paper presents a further improved Production Activity Control Architecture to deal with the complexity of information by creating Sub-Producers and Sub-Movers which will not only give a better control at workstat...This paper presents a further improved Production Activity Control Architecture to deal with the complexity of information by creating Sub-Producers and Sub-Movers which will not only give a better control at workstation level but also reduce load on the Dispatcher. It also makes an analysis of the basic and improved PAC (Production Activity Control) Architecture in the Control System for Integrated Manufacturing. The PAC Architecture and the improvement will further enhance the flexibility and adaptability of the architecture in the ever changing environment of the Shop Floor Control (SFC) Systems.展开更多
Due to the complex,uncertainty and dynamics in the modern manufacturing environment,a flexible and robust shop floor scheduler is essential to achieve the production goals.A design framework of a shop floor dynamical ...Due to the complex,uncertainty and dynamics in the modern manufacturing environment,a flexible and robust shop floor scheduler is essential to achieve the production goals.A design framework of a shop floor dynamical scheduler is presented in this paper.The workflow and function modules of the scheduler are discussed in detail.A multi-step adaptive scheduling strategy and a process specification language,which is an ontology-based representation of process plan,are utilized in the proposed scheduler.The scheduler acquires the dispatching rule from the knowledge base and uses the build-in on-line simulator to evaluate the obtained rule.These technologies enable the scheduler to improve its fine-tune ability and effectively transfer process information into other heterogeneous information systems in a shop floor.The effectiveness of the suggested structure will be demonstrated via its application in the scheduling system of a manufacturing enterprise.展开更多
Shop floor control (SFC) is responsible for the coordination and control of the manufacturing physical and information flow within the shop floor in the manufacturing system. Weaknesses of the production activity co...Shop floor control (SFC) is responsible for the coordination and control of the manufacturing physical and information flow within the shop floor in the manufacturing system. Weaknesses of the production activity control (PAC) architecture of the shop floor are addressed by the Maglica's new system architecture. This architecture gives rise to unlimited number of movers and producers thus evolving more complex but decentralized architecture. Beijing Institute of Technology - production activity control (BIT-PAC) architecture introduces an idea of sub-producars and sub-movers thus reducing the complexity of the architecture. All the equipments including sub-producars and sub-movers are considered to be passive in the proposed shop floor information system. The dissemination of information from sub-producers and sub-movers is done manually through a PC. Proposed BIT-PAC SFC architecture facilitates the information flow from shop floor to the other area of the organization. Effective use of interact information services (IIS) and SQL2000 is done along with the ASP.NET technology to implement the application logic. Applicability of the software based on BIT-PAC architecture is checked by running application software on a network PC that supports the dynamic flow of information from sub-producers and sub-movers to the other parts of the organization. Use of software is also shown at the end for BIT training workshop thus supporting the use of SFC architecture for similar kind of environments.展开更多
Manufacturing system, with high level of complexity and with a mix of semi-repetitive and repetitive products, to become productive, should seek the standardization of products and processes to obtain the optimization...Manufacturing system, with high level of complexity and with a mix of semi-repetitive and repetitive products, to become productive, should seek the standardization of products and processes to obtain the optimization of use of production resources. However, it is necessary to measure the productivity, so that the system of measurement and control of manufacturing processes are an element critical as to ensure greater visibility of the flow's restrictions, minimized when detected properly. In this case, the automation of factory's measurement process can effectively contribute to ensuring the effectiveness of the function control of a manufacturing system. It is important to consider that the automation of the system of measurement and control of manufacturing processes, of complex environment, is heavily dependent of IT tools applied directly in the interface computational between the operation systems and the corporate systems. This heavy reliance, if exploited technically properly, allows that automation of the system of measurement and control of production makes the access to time real of availability of manufacturing process's data, such as processing time and setup time that it can export to a specialist software in programming production, for example, feasible. In this paper, the automation of the system of measurement and control of production is approached, in order to identify the main possibilities of the design of an information system capable to integrate the flow of information in an environment internal on manufacturing organizations, with emphasis in the digital manufacturing paradigm.展开更多
The management of information flow for production improvement has always been a target in the research. In this paper, the focus is on the analysis model of the characteristics of information flow in shop floor operat...The management of information flow for production improvement has always been a target in the research. In this paper, the focus is on the analysis model of the characteristics of information flow in shop floor operations based on the influence that dimension (support or medium), direction and the quality information flow have on the value of information flow using machine learning classification algorithms. The obtained results of classification algorithms used to analyze the value of information flow are Decision Trees (DT) and Random Forest (RF) with a score of 0.99% and the mean absolute error of 0.005. The results also show that the management of information flow using DT or RF shows that, the dimension of information such as digital information has the greatest value of information flow in shop floor operations when the shop floor is totally digitalized. Direction of information flow does not have any great influence on shop floor operations processes when the operations processes are digitalized or done by operators as machines.展开更多
The agility and the flexibility of the current shop floor control systems have been limited so far, owing to the lack of structural flexibility and agility in its control software layer. Most of them are based on trad...The agility and the flexibility of the current shop floor control systems have been limited so far, owing to the lack of structural flexibility and agility in its control software layer. Most of them are based on traditional hierarchical architecture and the top down approach and depend structurally on their specific configuration and job scheduling. Not only can they hardly satisfactorily adapt to these increasing changes and disturbances, but also make the redevelopment and maintenance of shop floor control system (SFCS) to need high cost and much time. And SFCS based on the heterarchical architecture don′t provide a predictable and high performance system, especially not in the heterogeneous environments, where the resources are scarce and the current decisions have serious repercussions on the future performances. For this reason, the heterarchical control is hardly applied in industry. Obviously, it is necessary to develop a new structural framework of reconfigurable SFCS to improve their agility, flexibility and maintainability. This paper presents a holonic framework of reconfigurable SFCS based on holonic manufacturing concepts. The framework is composed of resource holons, product holons and other staff holons. The model of each holon and the co operative mechanisms of holons are described. To verify the proposed approach experimentally, a prototype reconfigurable SFCS for a flexible manufacturing shop floor producing discrete parts is implemented.展开更多
The traditional production planning and scheduling problems consider performance indicators like time, cost and quality as optimization objectives in manufacturing processes. However, environmentally-friendly factors ...The traditional production planning and scheduling problems consider performance indicators like time, cost and quality as optimization objectives in manufacturing processes. However, environmentally-friendly factors like energy consumption of production have not been completely taken into consideration. Against this background, this paper addresses an approach to modify a given schedule generated by a production plarming and scheduling system in a job shop floor, where machine tools can work at different cutting speeds. It can adjust the cutting speeds of the operations while keeping the original assignment and processing sequence of operations of each job fixed in order to obtain energy savings. First, the proposed approach, based on a mixed integer programming mathematical model, changes the total idle time of the given schedule to minimize energy consumption in the job shop floor while accepting the optimal solution of the scheduling objective, makespan. Then, a genetic-simulated annealing algorithm is used to explore the optimal solution due to the fact that the problem is strongly NP-hard. Finally, the effectiveness of the approach is performed small- and large-size instances, respectively. The experimental results show that the approach can save 5%-10% of the average energy consumption while accepting the optimal solution of the makespan in small-size instances. In addition, the average maximum energy saving ratio can reach to 13%. And it can save approximately 1%-4% of the average energy consumption and approximately 2.4% of the average maximum energy while accepting the near-optimal solution of the makespan in large-size instances. The proposed research provides an interesting point to explore an energy-aware schedule optimization for a traditional production planning and scheduling problem.展开更多
文摘Based on the discussion of functions, components, control structure and network computing architecture of generic shop floor control (GSFC) in computer integrated manufacturing system (CIMS), the internal integration between components of GSFC and the external integration between GSFC and the other components of CIMS are studied. The integration models on the aspects of function, information, processing and interface are put forward. The integration models and the methods are implemented and applied in CIMS projects successfully.
文摘In order to overcome the weakness of the former production activity control (PAC) architecture, this paper presents an improved PAC architecture. The BIT-PAC architecture has been applied with the use of information technology. It facilitates the information flow from Shop Floor to other areas of the organization and makes the organizations more integrated and productive. This architecture also facilitates the expansion of the Shop Floor functions without disturbing the basic infrastructure. Effectiveness of the BIT-PAC architecture was checked by developing and running application software on a network PC which has supported the dynamic flow of information from Sub-Producers and Sub-Movers to other areas of organization.
基金Supported partly by the Hi-tech Program of China( China86 3) ( No.86 3-5 11-943-0 0 9) and the National Natural Sci-ence Foundation of China( No.5 9990 470 )
文摘The planning and scheduling in real shop floor is actually achieved by coordination between different persons. In this process, cooperation is mainstream, but competition also exists, for example, the competition between different groups, operators with the same skill, etc. In multi-agent based shop floor management and control system, this competition and cooperation relation must be embodied. The general process of shop floor production planning and scheduling is studied, and a colored Petri-net model for the competition and cooperation process of three main agents in such system to achieve shop floor production planning and scheduling is presented. The evaluating method of bids in bidding process that especially embodies the competition relationship is also presented. This colored Petri-net model gives a clear illustration of this complex coordination process to system designers, effectively promotes the cooperative development.
基金This project is supported by National Natural Science Foundation of China(No.50105006,No.59990470)(No.2001AA412140).
文摘Adopting distributed control architecture is the important developmentdirection for shop floor management and control system, is also the requirement of making it agile,intelligent and concurrent. Some key problems in achieving distributed control architecture areresearched. An activity model of shop floor is presented as the requirement definition of theprototype system. The multi-agent based software architecture is constructed. How the core part inshop floor management and control system, production plan and scheduling is achieved. Thecooperation of different agents is illustrated. Finally, the implementation of the prototype systemis narrated.
文摘This paper presents a further improved Production Activity Control Architecture to deal with the complexity of information by creating Sub-Producers and Sub-Movers which will not only give a better control at workstation level but also reduce load on the Dispatcher. It also makes an analysis of the basic and improved PAC (Production Activity Control) Architecture in the Control System for Integrated Manufacturing. The PAC Architecture and the improvement will further enhance the flexibility and adaptability of the architecture in the ever changing environment of the Shop Floor Control (SFC) Systems.
基金National Defense Fund(No.20030119)NSFC(No.60775060)the Foundation Research Fund of Harbin Engineering University(No.HEUFT07027)
文摘Due to the complex,uncertainty and dynamics in the modern manufacturing environment,a flexible and robust shop floor scheduler is essential to achieve the production goals.A design framework of a shop floor dynamical scheduler is presented in this paper.The workflow and function modules of the scheduler are discussed in detail.A multi-step adaptive scheduling strategy and a process specification language,which is an ontology-based representation of process plan,are utilized in the proposed scheduler.The scheduler acquires the dispatching rule from the knowledge base and uses the build-in on-line simulator to evaluate the obtained rule.These technologies enable the scheduler to improve its fine-tune ability and effectively transfer process information into other heterogeneous information systems in a shop floor.The effectiveness of the suggested structure will be demonstrated via its application in the scheduling system of a manufacturing enterprise.
基金This project is supported by Beijing City Key Discipline Fund, China (No.XK100070424).
文摘Shop floor control (SFC) is responsible for the coordination and control of the manufacturing physical and information flow within the shop floor in the manufacturing system. Weaknesses of the production activity control (PAC) architecture of the shop floor are addressed by the Maglica's new system architecture. This architecture gives rise to unlimited number of movers and producers thus evolving more complex but decentralized architecture. Beijing Institute of Technology - production activity control (BIT-PAC) architecture introduces an idea of sub-producars and sub-movers thus reducing the complexity of the architecture. All the equipments including sub-producars and sub-movers are considered to be passive in the proposed shop floor information system. The dissemination of information from sub-producers and sub-movers is done manually through a PC. Proposed BIT-PAC SFC architecture facilitates the information flow from shop floor to the other area of the organization. Effective use of interact information services (IIS) and SQL2000 is done along with the ASP.NET technology to implement the application logic. Applicability of the software based on BIT-PAC architecture is checked by running application software on a network PC that supports the dynamic flow of information from sub-producers and sub-movers to the other parts of the organization. Use of software is also shown at the end for BIT training workshop thus supporting the use of SFC architecture for similar kind of environments.
文摘Manufacturing system, with high level of complexity and with a mix of semi-repetitive and repetitive products, to become productive, should seek the standardization of products and processes to obtain the optimization of use of production resources. However, it is necessary to measure the productivity, so that the system of measurement and control of manufacturing processes are an element critical as to ensure greater visibility of the flow's restrictions, minimized when detected properly. In this case, the automation of factory's measurement process can effectively contribute to ensuring the effectiveness of the function control of a manufacturing system. It is important to consider that the automation of the system of measurement and control of manufacturing processes, of complex environment, is heavily dependent of IT tools applied directly in the interface computational between the operation systems and the corporate systems. This heavy reliance, if exploited technically properly, allows that automation of the system of measurement and control of production makes the access to time real of availability of manufacturing process's data, such as processing time and setup time that it can export to a specialist software in programming production, for example, feasible. In this paper, the automation of the system of measurement and control of production is approached, in order to identify the main possibilities of the design of an information system capable to integrate the flow of information in an environment internal on manufacturing organizations, with emphasis in the digital manufacturing paradigm.
文摘The management of information flow for production improvement has always been a target in the research. In this paper, the focus is on the analysis model of the characteristics of information flow in shop floor operations based on the influence that dimension (support or medium), direction and the quality information flow have on the value of information flow using machine learning classification algorithms. The obtained results of classification algorithms used to analyze the value of information flow are Decision Trees (DT) and Random Forest (RF) with a score of 0.99% and the mean absolute error of 0.005. The results also show that the management of information flow using DT or RF shows that, the dimension of information such as digital information has the greatest value of information flow in shop floor operations when the shop floor is totally digitalized. Direction of information flow does not have any great influence on shop floor operations processes when the operations processes are digitalized or done by operators as machines.
文摘The agility and the flexibility of the current shop floor control systems have been limited so far, owing to the lack of structural flexibility and agility in its control software layer. Most of them are based on traditional hierarchical architecture and the top down approach and depend structurally on their specific configuration and job scheduling. Not only can they hardly satisfactorily adapt to these increasing changes and disturbances, but also make the redevelopment and maintenance of shop floor control system (SFCS) to need high cost and much time. And SFCS based on the heterarchical architecture don′t provide a predictable and high performance system, especially not in the heterogeneous environments, where the resources are scarce and the current decisions have serious repercussions on the future performances. For this reason, the heterarchical control is hardly applied in industry. Obviously, it is necessary to develop a new structural framework of reconfigurable SFCS to improve their agility, flexibility and maintainability. This paper presents a holonic framework of reconfigurable SFCS based on holonic manufacturing concepts. The framework is composed of resource holons, product holons and other staff holons. The model of each holon and the co operative mechanisms of holons are described. To verify the proposed approach experimentally, a prototype reconfigurable SFCS for a flexible manufacturing shop floor producing discrete parts is implemented.
基金Supported by a Marie Curie International Research Staff Exchange Scheme Fellowship within the 7th European Community Framework Program(Grant No.294931)National Science Foundation of China(Grant No.51175262)+1 种基金Jiangsu Provincial Science Foundation for Excellent Youths of China(Grant No.BK2012032)Jiangsu Provincial Industry-Academy-Research Grant of China(Grant No.BY201220116)
文摘The traditional production planning and scheduling problems consider performance indicators like time, cost and quality as optimization objectives in manufacturing processes. However, environmentally-friendly factors like energy consumption of production have not been completely taken into consideration. Against this background, this paper addresses an approach to modify a given schedule generated by a production plarming and scheduling system in a job shop floor, where machine tools can work at different cutting speeds. It can adjust the cutting speeds of the operations while keeping the original assignment and processing sequence of operations of each job fixed in order to obtain energy savings. First, the proposed approach, based on a mixed integer programming mathematical model, changes the total idle time of the given schedule to minimize energy consumption in the job shop floor while accepting the optimal solution of the scheduling objective, makespan. Then, a genetic-simulated annealing algorithm is used to explore the optimal solution due to the fact that the problem is strongly NP-hard. Finally, the effectiveness of the approach is performed small- and large-size instances, respectively. The experimental results show that the approach can save 5%-10% of the average energy consumption while accepting the optimal solution of the makespan in small-size instances. In addition, the average maximum energy saving ratio can reach to 13%. And it can save approximately 1%-4% of the average energy consumption and approximately 2.4% of the average maximum energy while accepting the near-optimal solution of the makespan in large-size instances. The proposed research provides an interesting point to explore an energy-aware schedule optimization for a traditional production planning and scheduling problem.