期刊文献+
共找到2,899篇文章
< 1 2 145 >
每页显示 20 50 100
Short Term Forecasting Performances of Classical VAR and Sims-Zha Bayesian VAR Models for Time Series with Collinear Variables and Correlated Error Terms
1
作者 M. O. Adenomon V. A. Michael O. P. Evans 《Open Journal of Statistics》 2015年第7期742-753,共12页
Forecasts can either be short term, medium term or long term. In this work we considered short term forecast because of the problem of limited data or time series data that is often encounter in time series analysis. ... Forecasts can either be short term, medium term or long term. In this work we considered short term forecast because of the problem of limited data or time series data that is often encounter in time series analysis. This simulation study considered the performances of the classical VAR and Sims-Zha Bayesian VAR for short term series at different levels of collinearity and correlated error terms. The results from 10,000 iteration revealed that the BVAR models are excellent for time series length of T=8 for all levels of collinearity while the classical VAR is effective for time series length of T=16 for all collinearity levels except when ρ = -0.9 and ρ = -0.95. We therefore recommended that for effective short term forecasting, the time series length, forecasting horizon and the collinearity level should be considered. 展开更多
关键词 short term forecasting Vector Autoregressive (VAR) BAYESIAN VAR (BVAR) Sims-Zha Prior COLLINEARITY Error terms
下载PDF
Study on medium-short term earthquake forecast in Yunnan Province by precursory events
2
作者 QIN Jia-zheng(秦嘉政) +1 位作者 QIAN Xiao-dong(钱晓东) 《Acta Seismologica Sinica(English Edition)》 CSCD 2004年第2期152-163,共12页
The medium-short term forecast for a certain kinds of main earthquake events might be possible with the time-to-failure method presented by Varnes (1989), Bufe and Varnes (1993), which is to simulate an accelerative r... The medium-short term forecast for a certain kinds of main earthquake events might be possible with the time-to-failure method presented by Varnes (1989), Bufe and Varnes (1993), which is to simulate an accelerative releasing model of precursory earthquake energy. By fitting the observed data with the theoretical formula, a medium-short term forecast technique for the main shock events could be established, by which the location, time and magnitude of the main shock could be determined. The data used in the paper are obtained from the earthquake catalogue recorded by Yunnan Regional Seismological Network with a time coverage of 1965~2002. The statistical analyses for the past 37 years show that the data of M2.5 earthquakes were fairly complete. In the present paper, 30 main shocks occurred in Yunnan region were simulated. For 25 of them, the forecasting time and magnitude from the simulation of precursory sequence are very close to the actual values with the precision of about 0.57 (magnitude unit). Suppose that the last event of the precursory sequence is known, then the time error for the forecasting main shock is about 0.64 year. For the other 5 main shocks, the simulation cannot be made due to the insufficient precursory events for the full determination of energy accelerating curve or disturbance to the energy-release curve. The results in the paper indicate that there is no obviously linear relation in the optimal searching radius for the main shock and the precursory events because Yunnan is an active region with damage earthquakes and moderate and small earthquakes. However, there is a strong correlation between the main shock moment and the coefficient k/m. The optimal fitting range for the forecasting time and magnitude can be further reduced using the relation between the main shock moment lgM0 and the coefficient lgk/m and the value range of the restricting index m, by which the forecast precision of the simulated main shock can be improved. The time-to-failure method is used to fit 30 main shocks in the paper and more than 80% of them have acquired better results, indicating that the method is prospective for its ability to forecast the known main shock sequence. Therefore, the prospect is cheerful to make medium-short term forecast for the forthcoming main shocks by the precursory events. 展开更多
关键词 time-to-failure method precursory event energy accelerating curve medium-short term forecast Yunnan region
下载PDF
An Improved Adaptive Exponential Smoothing Model for Short-term Travel Time Forecasting of Urban Arterial Street 被引量:7
3
作者 LI Zhi-Peng YU Hong +1 位作者 LIU Yun-Cai LIU Fu-Qiang 《自动化学报》 EI CSCD 北大核心 2008年第11期1404-1409,共6页
旅行时间的短期的预报为聪明的交通系统的成功是必要的。在这份报纸,我们考察预报模型的短期的交通的 state-of-art 并且构画出他们每个模型的基本想法,相关工作,优点和劣势。一改进适应指数的变光滑(IAES ) 模型也被建议克服以前的... 旅行时间的短期的预报为聪明的交通系统的成功是必要的。在这份报纸,我们考察预报模型的短期的交通的 state-of-art 并且构画出他们每个模型的基本想法,相关工作,优点和劣势。一改进适应指数的变光滑(IAES ) 模型也被建议克服以前的适应指数的变光滑模型的缺点。然后,比较实验在状况和反常交通调节评估在牌照匹配获得的直接旅行时间数据(每分钟行数) 上预报模型的四个主要分支的性能的正常交通下面被执行。实验的结果证明每个模型似乎有它的自己的力量和软弱。IASE 的预报表演比在更突然预报地平线(预报的和二步) 的另外的模型优异, IASE 能够处理各种交通条件。 展开更多
关键词 自适应指数 平滑模型 短期旅行时间预测 预测方法 信息处理技术 城市街道 设计方案
下载PDF
Theory Study and Application of the BP-ANN Method for Power Grid Short-Term Load Forecasting 被引量:12
4
作者 Xia Hua Gang Zhang +1 位作者 Jiawei Yang Zhengyuan Li 《ZTE Communications》 2015年第3期2-5,共4页
Aiming at the low accuracy problem of power system short-term load forecasting by traditional methods, a back-propagation artificial neural network (BP-ANN) based method for short-term load forecasting is presented ... Aiming at the low accuracy problem of power system short-term load forecasting by traditional methods, a back-propagation artificial neural network (BP-ANN) based method for short-term load forecasting is presented in this paper. The forecast points are related to prophase adjacent data as well as the periodical long-term historical load data. Then the short-term load forecasting model of Shanxi Power Grid (China) based on BP-ANN method and correlation analysis is established. The simulation model matches well with practical power system load, indicating the BP-ANN method is simple and with higher precision and practicality. 展开更多
关键词 BP-ANN short-term load forecasting of power grid multiscale entropy correlation analysis
下载PDF
A Hybrid Short Term Load Forecasting Model of an Indian Grid 被引量:1
5
作者 R. Behera B. P. Panigrahi B. B. Pati 《Energy and Power Engineering》 2011年第2期190-193,共4页
This paper describes an application of combined model of extrapolation and correlation techniques for short term load forecasting of an Indian substation. Here effort has been given to improvise the accuracy of elec-t... This paper describes an application of combined model of extrapolation and correlation techniques for short term load forecasting of an Indian substation. Here effort has been given to improvise the accuracy of elec-trical load forecasting considering the factors, past data of the load, respective weather condition and finan-cial growth of the people. These factors are derived by curve fitting technique. Then simulation has been conducted using MATLAB tools. Here it has been suggested that consideration of 20 years data for a devel-oping country should be ignored as the development of a country is highly unpredictable. However, the im-portance of the past data should not be ignored. Here, just previous five years data are used to determine the above factors. 展开更多
关键词 short term LOAD forecasting PARAMETER Estimation Trending Technique Co-Relation
下载PDF
Short-term and imminent geomagnetic anomalies of the Wenchuan M_S8.0 earthquake and exploration on earthquake forecast 被引量:2
6
作者 Wuxing Wang Jianhai Ding +1 位作者 Surong Yu Yongxian Zhang 《Earthquake Science》 CSCD 2009年第2期135-141,共7页
The diurnal variation of the geomagnetic vertical component is exhibited mainly by changes of phase and amplitude before strong earthquakes. Based on data recorded by the network of geomagnetic observatories in China ... The diurnal variation of the geomagnetic vertical component is exhibited mainly by changes of phase and amplitude before strong earthquakes. Based on data recorded by the network of geomagnetic observatories in China for many years, the anomalous features of the appearance time of the minima of diurnal variations (i.e, low-point time) of the geo- magnetic vertical components and the variation of their spatial distribution (i.e, phenomena of low-point displacement) have been studied before the Wenchuan Ms8.0 earthquake. The strong aftershocks after two months' quiescence of M6 aftershocks of the Ms8.0 event were forecasted based on these studies. There are good correlativities between these geomagnetic anoma- lies and occurrences of earthquakes. It has been found that most earthquakes occur near the boundary line of sudden changes of the low-point time and generally within four days before or after the 27th or 41st day counting from the day of the appearance of the anomaly. In addition, the imminent anomalies in diurnal-variation amplitudes near the epicentral areas have also been studied before the Wenchuan earthquake. 展开更多
关键词 geomagnetic low-point displacement diurnal-variation amplitude Wenchuan earthquake short-term and imminent geomagnetic anomaly forecast of strong earthquakes
下载PDF
Wavelet time series MPARIMA modeling for power system short term load forecasting
7
作者 冉启文 单永正 +1 位作者 王建赜 王骐 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2003年第1期11-18,共8页
The wavelet power system short term load forecasting(STLF) uses a mulriple periodical autoregressive integrated moving average(MPARIMA) model to model the mulriple near periodicity, nonstationarity and nonlinearity ex... The wavelet power system short term load forecasting(STLF) uses a mulriple periodical autoregressive integrated moving average(MPARIMA) model to model the mulriple near periodicity, nonstationarity and nonlinearity existed in power system short term quarter hour load time series, and can therefore accurately forecast the quarter hour loads of weekdays and weekends, and provide more accurate results than the conventional techniques, such as artificial neural networks and autoregressive moving average(ARMA) models test results. Obtained with a power system networks in a city in Northeastern part of China confirm the validity of the approach proposed. 展开更多
关键词 wavelet forecasting method short term load forecast MPARIMA model
下载PDF
Short-term load forecasting based on fuzzy neural network
8
作者 DONG Liang MU Zhichun (Information Engineering School, University of Science and Technology Beijing, Beijing 100083, China) 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 1997年第3期46-48,53,共4页
The fuzzy neural network is applied to the short-term load forecasting. The fuzzy rules and fuzzy membership functions of the network are obtained through fuzzy neural network learming. Three inference algorithms, i.e... The fuzzy neural network is applied to the short-term load forecasting. The fuzzy rules and fuzzy membership functions of the network are obtained through fuzzy neural network learming. Three inference algorithms, i.e. themultiplicative inference, the maximum inference and the minimum inference, are used for comparison. The learningalgorithms corresponding to the inference methods are derived from back-propagation algorithm. To validate the fuzzyneural network model, the network is used to Predict short-term load by compaing the network output against the realload data from a local power system supplying electricity to a large steel manufacturer. The experimental results aresatisfactory. 展开更多
关键词 short-term load forecasting fuzzy control fuzzy neural networks
下载PDF
Application of Grey Theory to Ionospheric Short-term Forecasting
9
作者 Yao Xiao Zhonghui Gan +1 位作者 Yunjiang Liu Man Li 《Communications and Network》 2013年第3期11-14,共4页
By analysis of historical data of the ionosphere, it is suggested to apply grey theory to ionospheric short-term forecasting, grey range information entropy is defined to determine the optimum grey length of the sampl... By analysis of historical data of the ionosphere, it is suggested to apply grey theory to ionospheric short-term forecasting, grey range information entropy is defined to determine the optimum grey length of the sample sequence, the prediction model based on residual error is constructed, and the observation data of multiple ionospheric observation stations in China are adopted for test. The prediction result indicates that the average grey range information entropy calculation results reflect the cyclical effects of solar rotation, precision of the forecasting method in high latitudes is higher than low latitudes, and its error is large relatively in more intense solar activity season, the effect of forecasting 1 day in advance of average relative residuals are less than 1 MHz, the average precision is more than 90%. It provides a new way of thinking for the ionospheric foF2 short-term forecast in the future. 展开更多
关键词 IONOSPHERE short-term forecasting GREY THEORY
下载PDF
Short-Term Electricity Price Forecasting Using a Combination of Neural Networks and Fuzzy Inference
10
作者 Evans Nyasha Chogumaira Takashi Hiyama 《Energy and Power Engineering》 2011年第1期9-16,共8页
This paper presents an artificial neural network, ANN, based approach for estimating short-term wholesale electricity prices using past price and demand data. The objective is to utilize the piecewise continuous na-tu... This paper presents an artificial neural network, ANN, based approach for estimating short-term wholesale electricity prices using past price and demand data. The objective is to utilize the piecewise continuous na-ture of electricity prices on the time domain by clustering the input data into time ranges where the variation trends are maintained. Due to the imprecise nature of cluster boundaries a fuzzy inference technique is em-ployed to handle data that lies at the intersections. As a necessary step in forecasting prices the anticipated electricity demand at the target time is estimated first using a separate ANN. The Australian New-South Wales electricity market data was used to test the system. The developed system shows considerable im-provement in performance compared with approaches that regard price data as a single continuous time se-ries, achieving MAPE of less than 2% for hours with steady prices and 8% for the clusters covering time pe-riods with price spikes. 展开更多
关键词 ELECTRICITY PRICE forecasting short-term Load forecasting ELECTRICITY MARKETS Artificial NEURAL Networks Fuzzy LOGIC
下载PDF
Rolling Generation Dispatch Based on Ultra-short-term Wind Power Forecast
11
作者 Qiushi Xu Changhong Deng 《Energy and Power Engineering》 2013年第4期630-635,共6页
The power systems economic and safety operation considering large-scale wind power penetration are now facing great challenges, which are based on reliable power supply and predictable load demands in the past. A roll... The power systems economic and safety operation considering large-scale wind power penetration are now facing great challenges, which are based on reliable power supply and predictable load demands in the past. A rolling generation dispatch model based on ultra-short-term wind power forecast was proposed. In generation dispatch process, the model rolling correct not only the conventional units power output but also the power from wind farm, simultaneously. Second order Markov chain model was utilized to modify wind power prediction error state (WPPES) and update forecast results of wind power over the remaining dispatch periods. The prime-dual affine scaling interior point method was used to solve the proposed model that taken into account the constraints of multi-periods power balance, unit output adjustment, up spinning reserve and down spinning reserve. 展开更多
关键词 Wind POWER GENERATION POWER System ROLLING GENERATION DISPATCH Ultra-short-term forecast Markov Chain Model Prime-dual AFFINE Scaling Interior Point Method
下载PDF
Short-Term Load Forecasting Using Soft Computing Techniques
12
作者 D. K. Chaturvedi Sinha Anand Premdayal Ashish Chandiok 《International Journal of Communications, Network and System Sciences》 2010年第3期273-279,共7页
Electric load forecasting is essential for developing a power supply strategy to improve the reliability of the ac power line data network and provide optimal load scheduling for developing countries where the demand ... Electric load forecasting is essential for developing a power supply strategy to improve the reliability of the ac power line data network and provide optimal load scheduling for developing countries where the demand is increased with high growth rate. In this paper, a short-term load forecasting realized by a generalized neuron–wavelet method is proposed. The proposed method consists of wavelet transform and soft computing technique. The wavelet transform splits up load time series into coarse and detail components to be the features for soft computing techniques using Generalized Neurons Network (GNN). The soft computing techniques forecast each component separately. The modified GNN performs better than the traditional GNN. At the end all forecasted components is summed up to produce final forecasting load. 展开更多
关键词 WAVELET TRANSFORM short term Load forecasting SOFT Computing TECHNIQUES
下载PDF
Short-Term Load Forecasting Using Radial Basis Function Neural Network
13
作者 Wen-Yeau Chang 《Journal of Computer and Communications》 2015年第11期40-45,共6页
An accurate short-term forecasting method for load of electric power system can help the electric power system’s operator to reduce the risk of unreliability of electricity supply. This paper proposed a radial basis ... An accurate short-term forecasting method for load of electric power system can help the electric power system’s operator to reduce the risk of unreliability of electricity supply. This paper proposed a radial basis function (RBF) neural network method to forecast the short-term load of electric power system. To demonstrate the effectiveness of the proposed method, the method is tested on the practical load data information of the Tai power system. The good agreements between the realistic values and forecasting values are obtained;the numerical results show that the proposed forecasting method is accurate and reliable. 展开更多
关键词 short-term LOAD forecasting RBF NEURAL NETWORK TAI Power System
下载PDF
Application of Improved Analysis of Variance to Ionospheric TEC Short-Term Forecast
14
作者 Yan Gong Yamin Dang 《Positioning》 2011年第1期55-60,共6页
An improved superposition analysis of periodical wave variance is used for short-term forecast of the ionosphere TEC in this study. Using the ionospheric TEC data provided by IGS as the real value, the forecasting pre... An improved superposition analysis of periodical wave variance is used for short-term forecast of the ionosphere TEC in this study. Using the ionospheric TEC data provided by IGS as the real value, the forecasting precision of this me-thod at different locations in China with 40 days data is evaluated. The result shows that the improved method has a better forecasting precision which could reach 1.1 TECU. But the forecasting precision still relates to geographical position, it is proportional to longitude and inversely proportional to latitude. Compared with the current-used methods, the improved method has many advantages as higher precision, using fewer parameters and easier to calculate. So, it applied to ionosphere short-term prediction in China very well. 展开更多
关键词 IONOSPHERE TEC short-term forecast Variance Analysis CYCLE SUPERPOSITION
下载PDF
Short Term Load Forecast Using Wavelet Neural Network
15
作者 Gui Min, Rong Fei and Luo An College of Information Engineering, Central South University 《Electricity》 2005年第1期21-25,共5页
This paper presents a wavelet neural network (WNN) model combining wavelet transform and artificial neural networks for short term load forecast (STLF). Both historical load and temperature data having important impac... This paper presents a wavelet neural network (WNN) model combining wavelet transform and artificial neural networks for short term load forecast (STLF). Both historical load and temperature data having important impacts on load level were used in the proposed forecasting model. The model used the three-layer feed forward network trained by the error back-propagation algorithm. To enhance the forecast- ing accuracy by neural networks, wavelet multi-resolution analysis method was introduced to pre-process these data and reconstruct the predicted output. The proposed model has been evaluated with actual data of electricity load and temperature of Hunan Province. The simulation results show that the model is capable of providing a reasonable forecasting accuracy in STLF. 展开更多
关键词 short term load forecast STLF neural network wavelet transform
下载PDF
Short-Term Precipitation Forecasting Rolling Update Correction Technology Based on Optimal Fusion Correction
16
作者 Meijin Huang Qing Lin +4 位作者 Ning Pan Nengzhu Fan Tao Jiang Qianshan He Lingguang Huang 《Journal of Geoscience and Environment Protection》 2019年第3期145-159,共15页
In order to improve the availability of regional model precipitation forecast, this project intends to use the measured heavy rainfall data of dense automatic stations to carry out historical precipitation in the high... In order to improve the availability of regional model precipitation forecast, this project intends to use the measured heavy rainfall data of dense automatic stations to carry out historical precipitation in the high resolution: the Severe Weather Automatic Nowcast System (SWAN) quantitative precipitation forecast and the High-Resolution Rapid Refresh (HRRR) regional numerical model precipitation forecast in short-term nowcasting aging. Based on the error analysis, the grid fusion technology is used to establish the measured rainfall, HRRR regional model precipitation forecast, and optical flow radar quantitative precipitation forecast (QPF) three-source fusion correction scheme, comprehensively integrate the revised forecasting effect, adjust the fusion correction parameters, establish an optimal correction plan, generate a frozen rolling update revised product based on measured dense data and short-term forecast, and put it into business operation, and perform real-time effect rolling test evaluation on the forecast product. 展开更多
关键词 OPTIMAL FUSION CORRECTION Radar QPF Numerical Model short-term Precipitation forecasting ROLLING Test
下载PDF
Improved Short Term Energy Load Forecasting Using Web-Based Social Networks
17
作者 Mehmed Kantardzic Haris Gavranovic +2 位作者 Nedim Gavranovic Izudin Dzafic Hanqing Hu 《Social Networking》 2015年第4期119-131,共13页
In this article, we are initiating the hypothesis that improvements in short term energy load forecasting may rely on inclusion of data from new information sources generated outside the power grid and weather related... In this article, we are initiating the hypothesis that improvements in short term energy load forecasting may rely on inclusion of data from new information sources generated outside the power grid and weather related systems. Other relevant domains of data include scheduled activities on a grid, large events and conventions in the area, equipment duty cycle schedule, data from call centers, real-time traffic, Facebook, Twitter, and other social networks feeds, and variety of city or region websites. All these distributed data sources pose information collection, integration and analysis challenges. Our approach is concentrated on complex non-cyclic events detection where detected events have a human crowd magnitude that is influencing power requirements. The proposed methodology deals with computation, transformation, modeling, and patterns detection over large volumes of partially ordered, internet based streaming multimedia signals or text messages. We are claiming that traditional approaches can be complemented and enhanced by new streaming data inclusion and analyses, where complex event detection combined with Webbased technologies improves short term load forecasting. Some preliminary experimental results, using Gowalla social network dataset, confirmed our hypothesis as a proof-of-concept, and they paved the way for further improvements by giving new dimensions of short term load forecasting process in a smart grid. 展开更多
关键词 short term Energy Load forecasting Smart Grid SOCIAL Networks EVENT Detection
下载PDF
Very Short-Term Generating Power Forecasting for Wind Power Generators Based on Time Series Analysis
18
作者 Atsushi Yona Tomonobu Senjyu +1 位作者 Funabashi Toshihisa Chul-Hwan Kim 《Smart Grid and Renewable Energy》 2013年第2期181-186,共6页
In recent years, there has been introduction of alternative energy sources such as wind energy. However, wind speed is not constant and wind power output is proportional to the cube of the wind speed. In order to cont... In recent years, there has been introduction of alternative energy sources such as wind energy. However, wind speed is not constant and wind power output is proportional to the cube of the wind speed. In order to control the power output for wind power generators as accurately as possible, a method of wind speed estimation is required. In this paper, a technique considers that wind speed in the order of 1 - 30 seconds is investigated in confirming the validity of the Auto Regressive model (AR), Kalman Filter (KF) and Neural Network (NN) to forecast wind speed. This paper compares the simulation results of the forecast wind speed for the power output forecast of wind power generator by using AR, KF and NN. 展开更多
关键词 Very short-term AHEAD forecasting WIND Power GENERATION WIND SPEED forecasting Time Series Analysis
下载PDF
Short-Term and Long-Term Price Forecasting Models for the Future Exchange of Mongolian Natural Sea Buckthorn Market
19
作者 Yalalt Dandar Liu Chang 《Agricultural Sciences》 2022年第3期467-490,共24页
Sea buckthorn market floated uncertainly within a narrow range. The market situation provided upward pressure on prices, and producer and consumer interest were poor, coupled with weak prices in the regional markets. ... Sea buckthorn market floated uncertainly within a narrow range. The market situation provided upward pressure on prices, and producer and consumer interest were poor, coupled with weak prices in the regional markets. The objectives of the study are: 1) to estimate the relationship between wild Sea buckthorn (SB) price and Supply, Demand, while some other factors of crude oil price and exchange rate by using simultaneous Supply-Demand and Price system equation and Vector Error Correction Method (VECM);2) to forecast the short-term and long-term SB price;3) to compare and evaluate the price forecasting models. Firstly, the data was analyzed by Ferris and Engle-Granger’s procedure;secondly, both price forecasting methodologies were tested by Pindyck-Rubinfeld and Makridakis’s procedure. The result shows that the VECM model is more efficient using yearly data;a short-term price forecast decreases, and a long-term price forecast is predicted to increase the Mongolian Sea buckthorn market. 展开更多
关键词 short-term and Long-term Price forecasting Models Simultaneous System Equation VECM Sea Buckthorn Mongolia
下载PDF
Study on Middle and Short Term Forecast and Assessment Technology on Atmosphere Hydrosphere Disasters
20
作者 Li Jishun,Wang Angsheng,Xu Naizhang,Yang Yi and Zheng Shuangzhi (Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029) 《Natural Disaster Reduction in China》 1998年第4期24-29,共6页
Natural disaster is the result of abnormal natural phenomena acting on mankind. It not only relates to many natural science branches, but also closely relates to economy, property density, social development level and... Natural disaster is the result of abnormal natural phenomena acting on mankind. It not only relates to many natural science branches, but also closely relates to economy, property density, social development level and the vulnerability of disaster bearing bodies. Therefore, while doing disaster reduction research, we must connect natural sciences closely with human society; we should study the interplay process of nature and society and its results therefrom. Before disasters occur, based on the middle and short term disaster weather forecast, the middle and short term forecast and assessment technology of atmospheric hydrosphere disasters can forecast and assess the possible losses (the affected areas and economic losses,etc.). With the help of the disaster reduction information system and synthetic database we already set up, we have studied the law of disasters and have designed the middle and short term disaster assessment process. Through analysis of disaster situation (with the development of modern science, information and telecommunication technology, for the sake of a good command of disaster, without the presence of the disaster assessment people on the spot, it is absolutely necessary to command and to analyse the dynamics of disaster situation), through analysis of the relation between accumulative rainfall and disaster, we adopt the methods of comparative analysis of similar disasters, experience statistics model, economic measurable model and comprehensive decision,etc. to forecast and assess the losses caused by the atmospheric hydrosphere disasters such as typhoon and rainstorm 1 to 3 days ahead. The technology makes a comprehensive use of technologies of modern weather forecast, geographical information system, information process, mathematical and physical statistics, computer graph and image,etc.to establish day to day real time disaster assessment system under the condition of routine, satellite and radar data. In the summer of 1994 and 1995 a quasi business test operation of one to three day ahead disaster forecast and assessment was launched, achieving both social and economic benefits. This thesis briefly introduces some technologies and methods of forecast and assessment on atmospheric hydrosphere disasters. 展开更多
关键词 forecast ASSESSMENT MIDDLE and short term
原文传递
上一页 1 2 145 下一页 到第
使用帮助 返回顶部