期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Ingredients-based Methodology and Fuzzy Logic Combined Short-Duration Heavy Rainfall Short-Range Forecasting:An Improved Scheme
1
作者 TIAN Fu-you XIA Kun +2 位作者 SUN Jian-hua ZHENG Yong-guang HUA Shan 《Journal of Tropical Meteorology》 SCIE 2024年第3期241-256,共16页
Short-duration heavy rainfall(SHR),as delineated by the National Meteorological Center of the China Me-teorological Administration,is characterized by hourly rainfall amounts no less than 20.0 mm.SHR is one of the mos... Short-duration heavy rainfall(SHR),as delineated by the National Meteorological Center of the China Me-teorological Administration,is characterized by hourly rainfall amounts no less than 20.0 mm.SHR is one of the most common convective weather phenomena that can cause severe damage.Short-range forecasting of SHR is an important part of operational severe weather prediction.In the present study,an improved objective SHR forecasting scheme was developed by adopting the ingredients-based methodology and using the fuzzy logic approach.The 1.0°×1.0°National Centers for Environmental Prediction(NCEP)final analysis data and the ordinary rainfall(0.1-19.9 mm h-1)and SHR observational data from 411 stations were used in the improved scheme.The best lifted index,the total precipitable water,the 925 hPa specific humidity(Q 925),and the 925 hPa divergence(DIV 925)were selected as predictors based on objective analysis.Continuously distributed membership functions of predictors were obtained based on relative frequency analysis.The weights of predictors were also objectively determined.Experiments with a typhoon SHR case and a spring SHR case show that the main possible areas could be captured by the improved scheme.Verification of SHR forecasts within 96 hours with NCEP global forecasts 1.0°×1.0°data initiated at 08:00 Beijing Time during the warm seasons in 2015 show the results were improved from both deterministic and probabilistic perspectives.This study provides an objectively feasible choice for short-range guidance forecasts of SHR.The scheme can be applied to other convective phenomena. 展开更多
关键词 ingredients-based methodology fuzzy logic approach probability of short-duration heavy rainfall(SHR) improved forecasting scheme objectively obtained membership functions
下载PDF
The Short-Duration Heavy Rainfall in Different Quadrants of Northeast China Cold Vortices
2
作者 Lei YANG Yongguang ZHENG 《Journal of Meteorological Research》 SCIE CSCD 2024年第2期321-338,共18页
The Northeast China cold vortex(NCCV)is one of the main synoptic-scale systems causing short-duration heavy rainfall(SDHR)in Northeast China.Environmental conditions(e.g.,water vapor,instability,and vertical wind shea... The Northeast China cold vortex(NCCV)is one of the main synoptic-scale systems causing short-duration heavy rainfall(SDHR)in Northeast China.Environmental conditions(e.g.,water vapor,instability,and vertical wind shear)are known to be distinctly different over the four quadrants of NCCVs,rendering prediction of the SDHR related to NCCVs(NCCV_SDHR)more challenging.Based on 5-yr hourly rainfall observations from 3196 automatic weather stations and ERA5 reanalysis data,10,232 NCCV_SDHR events were identified and divided into four quadrant groups according to their relative position to the center of the NCCV(CVC).The results show that the southeast quadrant features the highest frequency of SDHR,with stronger intensity,longer duration,and wider coverage;and the SDHR in different quadrants presents different formation mechanisms and varied temporal evolution.A new coordinate system is established relative to the CVC that uses the CVC as the origin and the radius of the NCCV(r CV)as the unit distance.In this new coordinate system,all of the NCCV_SDHR events in the 5-yr study period are synthesized.It is found that the occurrence frequency of NCCV_SDHR initially increases and then decreases with increasing distance from the CVC.The highest frequency occurs mainly between 0.8 and 2.5 times r CV from the CVC in the southeast quadrant.This can be attributed to the favorable conditions,such as convergence of the low-level shear line and abundant water vapor,which are concentrated in this region.Furthermore,high-frequency NCCV_SDHR larger than 50 mm(NCCV_SDHR50)is observed to be closer to the CVC.When NCCV_SDHR50occurs,the NCCV is in closer proximity to the subtropical high,resulting in stronger low-level convergence and more abundant water vapor.Additionally,there are lower lifting condensation levels and stronger 0-6-and 0-1-km vertical wind shears in these environments.These findings provide a valuable reference for more accurate prediction of NCCV_SDHR. 展开更多
关键词 Northeast China cold vortex short-duration heavy rainfall statistical characteristics environmental conditions
原文传递
Spatial Pattern Difference of Contribution between Short and Long-duration Heavy Rainfall to Total Heavy Rainfall in China from 1961 to 2015
3
作者 Kong Feng 《Meteorological and Environmental Research》 CAS 2019年第4期51-60,共10页
Many regions are pounded with heavy rainfall, causing flood, casualties, property damage and severe destruction to ecosystem in multiple urban areas. Frequent occurrence of extremely heavy precipitation event under th... Many regions are pounded with heavy rainfall, causing flood, casualties, property damage and severe destruction to ecosystem in multiple urban areas. Frequent occurrence of extremely heavy precipitation event under the background of global climate change has caused terrible harm on economic and social development, life security, ecosystem, etc.;brought profound impact on sustainable development of disaster area;become a key factor of global and regional disasters and environmental risk;and been widely concerned by academic circle and all sectors of the society. So severe disasters caused by extreme precipitation events have attracted more and more attention, while the relationship between heavy rainfall with different duration and total heavy rainfall has become the hottest scientific frontier issue. Contribution of heavy rainfall with different duration to the total heavy rainfall has significant spatial differences. Here we used daily rainfall data from 1961 to 2015 of 659 meteorological stations in China. When the rainfall is greater than 50 mm in 24 hours, that is a heavy rainfall event. Heavy rainfall only lasting one day is defined as short- duration heavy rainfall, while heavy rainfall lasting more than two days is defined as long-duration heavy rainfall. Results indicated that: on the basis of duration days defined long-duration heavy rainfall, on the spatial distribution, total rainfall, total heavy rainfall and short-duration heavy rainfall showed "increasing-decreasing-increasing" from the southeast coast to northwest inland in China from 1961 to 2015, and on the whole meteorological station with increasing trend predominant. In the meantime, long-duration heavy rainfall showed "increasing-decreasing" spatial pattern, and on the whole meteorological station with decreasing trend predominant. We detected that there was a belt of becoming drought from northeast to southwest. The contribution of total heavy rainfall to total rainfall as well as long-duration heavy rainfall to total heavy rainfall showed "high in southeast-low in northwest" spatial distribution pattern. On the contrary, the contribution of short-duration heavy rainfall to total heavy rainfall showed "low in southeast-high in northwest" spatial distribution pattern. The contribution trend of total heavy rainfall to total rainfall and short-duration heavy rainfall to total heavy rainfall showed "increasing-mosaic with increasing and decreasing-increasing" spatial distribution pattern from northeast to southwest, and on the whole meteorological station with increasing trend predominant. On the contrary, the contribution trend of long-duration heavy rainfall to total heavy rainfall showed mosaic with increasing and increasing in the northeast, slightly decreasing in the southwest, and on the whole meteorological station with decreasing trend predominant. There was a climate transition zone from northeast to southwest, which was essentially coincident with the arid zone. The results suggested that the precipitation in China was changing to extremely accompanied by short-duration storm increased significantly. Chinese heavy rainfall especially the increase of short-duration heavy rainfall suggests that human activity is likely to be triggered an increasing in extreme precipitation. 展开更多
关键词 Precipitation CONTRIBUTION Spatial DIFFERENCE Long and short-duration heavy rainfall Total heavy rainfall China
下载PDF
Statistical Characteristics of Environmental Parameters for Warm Season Short-Duration Heavy Rainfall over Central and Eastern China 被引量:65
4
作者 田付友 郑永光 +4 位作者 张涛 张小玲 毛冬艳 孙建华 赵思雄 《Journal of Meteorological Research》 SCIE CSCD 2015年第3期370-384,共15页
Water vapor content, instability, and convergence conditions are the key to short-duration heavy rainfall forecasting. It is necessary to understand the large-scale atmospheric environment characteristics of short- du... Water vapor content, instability, and convergence conditions are the key to short-duration heavy rainfall forecasting. It is necessary to understand the large-scale atmospheric environment characteristics of short- duration heavy rainfall by investigating the distribution of physical parameters for different hourly rainfall intensities. The observed hourly rainfall data in China and the NCEP final analysis (FNL) data during 1 May and 30 September from 2002 to 2009 are used. NCEP FNL data are 6-hourly, resulting in sample sizes of 1573370, 355346, and 11401 for three categories of hourly rainfall (P) of no precipitation (P 〈 0.1 mm h-1), ordinary precipitation (0.1≤ P 〈 20 mm h-1), and short-duration heavy rainfall (P ≥ 20.0 mm h-1), respectively, by adopting a temporal matching method. The results show that the total precipitable water (PWAT) is the best parameter indicating the hourly rainfall intensity. A PWAT of 28 mm is necessary for any short-duration heavy rainfall. The possibility of short-duration heavy rainfall occurrence increases with PWAT, and a PWAT of 59 mm is nearly sufficient. The specific humidity is a better indicator than relative humidity. Both 700- and 850-hPa relative humidity greater than 80% could be used to determine whether or not it is going to rain, but could not be used to estimate the rainfall intensity. Temperature and potential pseudo-equivalent temperature are also reasonable indicators of short-duration heavy rainfall. Among the atmospheric instability parameters, the best lifted index (BLI) performs best on the short- duration rainfall discrimination; the next best is the K index (KI). The three rainfall categories are not well recognized by total totals (TT) or the temperature difference between 850 and 500 hPa (DT85). Three- quarters of short-duration heavy rainfall occurred with BLI less than -0.9, while no short-duration heavy rainfall occurred when BLI was greater than 2.6. The minimum threshold of KI was 28.1 for short-duration heavy rainfall. The importance of dynamic conditions was well demonstrated by the 925- and 850-hPa divergence. The representativeness of 925-hPa divergence is stronger than that of 850 hPa. Three-quarters of short-duration heavy rainfall occurred under a negative divergence environment. However, both the best convective potential energy (BCAPE) and vertical wind shear were unable to discriminate the hourly rainfall intensities. 展开更多
关键词 short-duration heavy rainfall PARAMETER statistic characteristics atmosphere environment
原文传递
Distribution and Diurnal Variation of Warm-Season Short-Duration Heavy Rainfall in Relation to the MCSs in China 被引量:29
5
作者 陈炯 郑永光 +1 位作者 张小玲 朱佩军 《Acta meteorologica Sinica》 SCIE 2013年第6期868-888,共21页
Short-duration heavy rainfall(SDHR) is a type of severe convective weather that often leads to substantial losses of property and life. We derive the spatiotemporal distribution and diurnal variation of SDHR over Ch... Short-duration heavy rainfall(SDHR) is a type of severe convective weather that often leads to substantial losses of property and life. We derive the spatiotemporal distribution and diurnal variation of SDHR over China during the warm season(April–September) from quality-controlled hourly raingauge data taken at 876 stations for 19 yr(1991–2009), in comparison with the diurnal features of the mesoscale convective systems(MCSs) derived from satellite data. The results are as follows. 1) Spatial distributions of the frequency of SDHR events with hourly rainfall greater than 10–40 mm are very similar to the distribution of heavy rainfall(daily rainfall 50 mm) over China's Mainland. 2) SDHR occurs most frequently in South China such as southern Yunnan, Guizhou, and Jiangxi provinces, the Sichuan basin, and the lower reaches of the Yangtze River, among others. Some SDHR events with hourly rainfall 50 mm also occur in northern China, e.g., the western Xinjiang and central-eastern Inner Mongolia. The heaviest hourly rainfall is observed over the Hainan Island with the amount reaching over 180 mm. 3) The frequency of the SDHR events is the highest in July, followed by August. Analysis of pentad variations in SDHR reveals that SDHR events are intermittent, with the fourth pentad of July the most active. The frequency of SDHR over China's Mainland increases slowly with the advent of the East Asian summer monsoon, but decreases rapidly with its withdrawal. 4) The diurnal peak of the SDHR activity occurs in the later afternoon(1600–1700 Beijing Time(BT)), and the secondary peak occurs after midnight(0100–0200 BT) and in the early morning(0700–0800 BT); whereas the diurnal minimum occurs around late morning till noon(1000–1300 BT). 5) The diurnal variation of SDHR exhibits generally consistent features with that of the MCSs in China, but the active periods and propagation of SDHR and MCSs difer in diferent regions. The number and duration of local maxima in the diurnal cycles of SDHR and MCSs also vary by region, with single, double, and even multiple peaks in some cases. These variations may be associated with the diferences in large-scale atmospheric circulation, surface conditions, and land-sea distribution. 展开更多
关键词 short-duration heavy rainfall CLIMATOLOGY spatiotemporal distributions diurnal variation propagation mesoscale convective systems(MCSs
原文传递
基于FY-4A卫星的川藏铁路成雅段短时强降水TBB特征
6
作者 刘新超 郭洁 +2 位作者 宋雯雯 叶瑶 淡嘉 《高原山地气象研究》 2023年第4期11-18,共8页
利用FY-4A卫星资料和区域自动站逐时降水数据,研究了2019—2021年川藏铁路成雅段短时强降水时空分布及其云顶亮温(TBB)的变化特征。结果表明:川藏铁路成雅段短时强降水出现频次随着雨强的增大而减少,且呈“北少南多”的空间分布特征,4... 利用FY-4A卫星资料和区域自动站逐时降水数据,研究了2019—2021年川藏铁路成雅段短时强降水时空分布及其云顶亮温(TBB)的变化特征。结果表明:川藏铁路成雅段短时强降水出现频次随着雨强的增大而减少,且呈“北少南多”的空间分布特征,4—10月均有发生且主要集中在7—9月,夜间为高发时段,尤其在01—07时和22—23时频发。该区域短时强降水的降水量与TBB呈显著负相关,与TBB梯度呈负相关,与亮温差(水汽通道与红外通道的亮温差值)呈正相关,短时强降水易出现在TBB偏低、梯度偏小且亮温差偏大的对流云团处。短时强降水的出现伴随着TBB降到最低值,随着TBB逐渐上升,短时强降水结束。如果已出现短时强降水,TBB仍在继续下降,则短时强降水将持续,其持续时间越长,则对流云团越强。短时强降水出现时TBB和最小TBB主要在190~230 K之间,其中以190~200 K居多。 展开更多
关键词 短时强降水 FY-4A 川藏铁路成雅段 TBB
下载PDF
甘肃省短时强降水的时空特征 被引量:32
7
作者 孟丽霞 许东蓓 +3 位作者 狄潇泓 孔祥伟 肖玮 苟尚 《沙漠与绿洲气象》 2017年第6期34-39,共6页
基于甘肃省81个自动气象站2002—2012年逐小时降水数据,分析了甘肃省近11 a来短时强降水的时空变化特征。结果表明:短时强降水频次自甘肃省西北向东南逐步递增,陇东南地区是甘肃省短时强降水发生频次最多、强度最强的地区。短时强降水存... 基于甘肃省81个自动气象站2002—2012年逐小时降水数据,分析了甘肃省近11 a来短时强降水的时空变化特征。结果表明:短时强降水频次自甘肃省西北向东南逐步递增,陇东南地区是甘肃省短时强降水发生频次最多、强度最强的地区。短时强降水存在2个高发中心,一个在以合水为中心的陇东地区,另一个在以徽县为中心的徽成盆地。短时强降水主要发生在午后至前半夜,出现时段集中在16:00—00:00,17时前后是短时强降水天气高发时段。短时强降水主要出现在5—9月,其中7—8月是一年中出现最多的月份,其次是6月。近11 a来,短时强降水频次呈上升趋势,2006年和2010年出现了2个峰值,其中2010年最多,发生52次,2004年最少只有17次。 展开更多
关键词 短时强降水 时空分布 甘肃
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部