期刊文献+
共找到8,251篇文章
< 1 2 250 >
每页显示 20 50 100
Protective benefits of HDPE board sand fences in an environment with variable wind directions on Gobi surfaces:wind tunnel study
1
作者 ZHANG Kai TIAN Jianjin +4 位作者 LIU Benli ZHAO Yanhua ZHANG Hailong WANG Zhenghui DENG Yuhui 《Journal of Mountain Science》 SCIE CSCD 2024年第10期3353-3367,共15页
The Golmud-Korla Railway in the Gobi area faces operational challenges due to sand hazards,caused by strong and variable winds.This study addresses these challenges by conducting wind tunnel tests to evaluate the prot... The Golmud-Korla Railway in the Gobi area faces operational challenges due to sand hazards,caused by strong and variable winds.This study addresses these challenges by conducting wind tunnel tests to evaluate the protective benefits of High Density Polyethylene(HDPE)board sand fences,focusing on their orientation relative to various wind directions(referred to as'wind angle').This study found that the size of the low-velocity zone on the leeward side of the sand fences(LSF)expanded with an increase in the wind angle(WA).At 1H(the height of the sand fence)and 2H positions on the LSF,the wind speed profiles(WSP)exhibited a segmented logarithmic growth,constrained by Z=H at varying WAs.The efficacy of the sand fence in obstructing airflow escalated as WA increased.The size of the WA has a significant impact on the protective efficiency of HDPE board sand fences.Furthermore,compared to typical sandy surfaces,the rate of sand transport across the Gobi surface diminishes more slowly with height,attributed to the gravel's rebound effect.This phenomenon allows some sand particles to bypass the fences,rendering them less effective at blocking wind and trapping sand than in sandy environments.This paper offers scientific evidence supporting the practical use and enhancement of HDPE board sand fences in varied wind conditions. 展开更多
关键词 Variable wind directions Blown sand control wind tunnel tests HDPE board sand fences
下载PDF
Investigation on Temperature Field Calibration and Analysis of Wind Tunnel
2
作者 Zhaokun Ren Zhanyuan Ma +3 位作者 Yue Zhang Hongda Xu Yunxiang Wang Hui Xu 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第3期63-79,共17页
For wind tunnels,it is essential to conduct temperature and flow field calibration on their test section,which is an important indicator for evaluating the quality of wind tunnel flow fields.In the paper,a truss compo... For wind tunnels,it is essential to conduct temperature and flow field calibration on their test section,which is an important indicator for evaluating the quality of wind tunnel flow fields.In the paper,a truss composed of temperature sensors was used to calibrate the temperature field of a completed wind tunnel section.By adjusting the distance between the temperature measurement truss and the nozzle,as well as the wind speed,the temperature field distribution data at different positions could be obtained.Analyze these data to identify important factors that affect the distribution of temperature field.Simultaneously,the temperature field of the wind tunnel was simulated accordingly.The purpose is to further analyze the fluid heat transfer between air and wind tunnel walls through numerical simulation.Through the above analysis methods,the quality of the temperature field in the wind tunnel has been further verified,providing reference for future wind tunnel tests of relevant models. 展开更多
关键词 wind tunnel temperature field numerical simulation fluid heat transfer
下载PDF
Design and Wind Tunnel Study of a Top-mounted Diverterless Inlet 被引量:18
3
作者 谭慧俊 郭荣伟 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2004年第2期72-78,共7页
Combined with a UAV of the shape like Global Hawk, a new inlet is advanced to obtain high performance in both Radar Cross Section(RCS) and aerodynamic drag. Efforts are made to achieve this goal such as adopting a top... Combined with a UAV of the shape like Global Hawk, a new inlet is advanced to obtain high performance in both Radar Cross Section(RCS) and aerodynamic drag. Efforts are made to achieve this goal such as adopting a top-mounted inlet configuration, utilizing the diverterless technique and putting forward a new shape of entrance. A design method is brought forward and verified by wind tunnel tests. Results indicate: (1) Despite the negative effect of the front fuselage and the absence of the conventional boundary diverter, the performance of the top-mounted diverterless inlet advanced here(Ma:0.50-0.70, α:-4°-6°,σ>0.975) is equivalent to that of conventional S shaped inlet with diverter; (2) The integration of the inlet with the fuselage is realized by the utilization of a special inlet section and the diverterless technique, which disposes the whole inlet in the shield of the head of UAV, improving the drag characteristics and the stealthy performance of the aircraft; (3) The bump which is equal to the local boundary layer thickness in height can divert the boundary layer effectively. As a result, no obvious low total pressure zone is found at the outlet of the inlet; (4) According to the experimental results, negative angle of attack is favorable to the total pressure recovery and positive angle of attack is favorable to the total pressure distortion, while yaw brings bad effects on both; (5) The design of cowl lip is of great importance to the inlet performance at yaw, therefore, further improvement of the inlet performance will rely on the lip shapes of the cowl chosen. 展开更多
关键词 top-mounted inlet diverterless inlet unmanned air vehicle DESIGN wind tunnel test
下载PDF
Effect of ambient wind on pressure wave generated by high-speed train entering a tunnel 被引量:7
4
作者 ZHOU Xi-sai LIU Tang-hong +2 位作者 CHEN Zheng-wei ZOU Xiang LIU Dong-run 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第6期1465-1475,共11页
Using three-dimensional, unsteady N-S equations and k-ε turbulence model, the effect of ambient wind on the pressure wave generated by a high-speed train entering a tunnel was studied via numerical simulation. Pressu... Using three-dimensional, unsteady N-S equations and k-ε turbulence model, the effect of ambient wind on the pressure wave generated by a high-speed train entering a tunnel was studied via numerical simulation. Pressure changes of the train surface and tunnel wall were obtained as well as the flow field around the train. Results show that when the train runs downwind, the pressure change is smaller than that generated when there is no wind. When the train runs upwind, the pressure change is larger. The pressure change is more sensitive in the upwind condition than in the downwind condition. Compared with no wind condition, when the wind velocity is 10 m/s and 30 m/s, the pressure amplitude on the train head is reduced by 2.8% and 10.5%, respectively. The wall pressure amplitude at 400 m away from the tunnel entrance is reduced by 2.4% and 13.5%, respectively. When the wind velocity is-10 m/s and-30 m/s, the pressure amplitude on the train head increases by 3.0% and 17.7%, respectively. The wall pressure amplitude at 400 m away from the tunnel entrance increases by 3.6% and 18.6%, respectively. The pressure waveform slightly changes under ambient wind due to the influence of ambient wind on the pressure wave propagation speed. 展开更多
关键词 HIGH-SPEED TRAIN AMBIENT wind pressure wave tunnel
下载PDF
A wind tunnel simulation of the dynamic processes involved in sand dune formation on the western coast of Hainan Island 被引量:11
5
作者 LI Sen LIU Xianwan +2 位作者 LI Huichuan ZHENG Yinghua WEI Xinghu 《Journal of Geographical Sciences》 SCIE CSCD 2007年第4期453-468,共16页
The western coast of Hainan Island exhibits a savanna landscape. Many types of sand dunes, including transverse dune ridges, longitudinal dune ridges, elliptical dunes, coppice dunes, and climbing dunes, are widely di... The western coast of Hainan Island exhibits a savanna landscape. Many types of sand dunes, including transverse dune ridges, longitudinal dune ridges, elliptical dunes, coppice dunes, and climbing dunes, are widely distributed in the coastal zone. In winter, high-frequency and high-energy NE winds (dominant winds) are prevalent, with a resultant drift direction (RDD) of S35.6°W. In spring, low-frequency and low-energy SW secondary winds prevail, with a RDD of N25.1°E. Wind tunnel simulations revealed that the airflow over the dune surface is the main factor controlling the erosion and deposition patterns of dune surfaces and the morphological development of dunes. In the region's bidirectional wind environment, with two seasonally distinct energy levels, the airflow over the surface of elliptical dunes, barchan dunes, and transverse dune ridges will exhibit a transverse pattern, whereas the airflow over longitudinal dunes ridges exhibits a lateral pattern and that over climbing dunes exhibits a climbing-circumfluent pattern. These patterns represent different dynamic processes. The coastal dunes on the western coast of Hainan Island are influenced by factors such as onshore winds, sand sources, coastal slopes, rivers, and forest shelter belts. The source of the sand that supplements these dunes particularly influences the development pattern: when there is more sand, the pattern shows positive equilibrium deposition between dune ridges and dunes; otherwise, it shows negative equilibrium deposition. The presence or absence of forest shelter belts also influences deposition and dune development patterns and transformation of dune forms. Coastal dunes and inland desert dunes experience similar dynamic processes, but the former have more diversified shapes and more complex formation mechanisms. 展开更多
关键词 western coast of Hainan Island coastal dune surface airflow dynamic processes wind tunnel simulation
下载PDF
Wind tunnel experiments on dust emissions from different landform types 被引量:6
6
作者 WU Wei YAN Ping +3 位作者 WANG Yong DONG Miao MENG Xiaonan JI Xinran 《Journal of Arid Land》 SCIE CSCD 2018年第4期548-560,共13页
The measurement and assessment of dust emissions from different landforms are important to understand the atmospheric loading of PM10 (particulate matter ≤10 μm aerodynamic diameter) and to assess natural sources ... The measurement and assessment of dust emissions from different landforms are important to understand the atmospheric loading of PM10 (particulate matter ≤10 μm aerodynamic diameter) and to assess natural sources of dust; however, the methodology and technique for determining the dust still present significant research challenges. In the past, specialized field observation and field wind tunnel studies have been used to understand the dust emission. A series of wind tunnel tests were carried out to identify natural sources of dust and measure the magnitudes of dust emissions from different landforms. The method used in this study allowed the measurement of the PM10 emission rate using a laboratory based environmental boundary layer wind tunnel. Results indicated that PM10 emissions demonstrated strong temporal variation and were primarily driven by aerodynamic entrainment. Sand dunes, playa, and alluvial fans had the largest dust emission rates (0.8-5.4 mg/(me.s)) while sandy gravel, Gobi desert and abandoned lands had the lowest emission rates (0.003-0.126 mg/(m2.s)). Dust emissions were heavily dependent on the surface conditions, especially the availability of loose surface dust. High dust emissions were a result of the availability of dust- particle materials for entrainment while low dust emissions were a result of surface crusts and gravel cover. Soil surface property (surface crusts and gravel cover) plays an important role in controlling the availability of dust-sized particles for entrainment. The dust emission rate depended not only on the surface conditions but also on the friction velocity. The emission rate of PM10 varies as a power function of the friction velocity. Although dynamic abrasion processes have a strong influence on the amount of dust entrainment, aerodynamic entrainment may provide an important mechanism for dust emissions. Large volumes of dust entrained by aerodynamic entrainment cannot only occur at low shear velocity without saltation, but may dominate the entrainment process in many arid and semi-arid environments. So it may also be responsible for large magnitude dust storms. Playa and alluvial fan landforms, prior to developing a surface crust, may be the main sources of dust storms in Qinghai Province. 展开更多
关键词 emission rates PMIO fugitive dust LANDFORMS wind tunnel dust dynamics
下载PDF
Experiment about Drag Reduction of Bionic Non-smooth Surface in Low Speed Wind Tunnel 被引量:5
7
作者 Tian Li-mei Ren Lu-quan +1 位作者 Han Zhi-wu Zhang Shi-cun 《Journal of Bionic Engineering》 SCIE EI CSCD 2005年第1期15-24,共10页
The body surface of some organisms has non-smooth structure, which is related to drag reduction in moving fluid. To imitate these structures, models with a non-smooth surface were made. In order to find a relationship... The body surface of some organisms has non-smooth structure, which is related to drag reduction in moving fluid. To imitate these structures, models with a non-smooth surface were made. In order to find a relationship between drag reduction and the non-smooth surface, an orthogonal design test was employed in a low speed wind tunnel. Six factors likely to influence drag reduction were considered, and each factor tested at three levels. The six factors were the configuration, diameter/bottom width, height/depth, distribution, the arrangement of the rough structures on the experimental model and the wind speed. It was shown that the non-smooth surface causes drag reduction and the distribution of non-smooth structures on the model, and wind speed, are the predominant factors affecting drag reduction. Using analysis of variance, the optimal combination and levels were obtained, which were a wind speed of 44 m/s, distribution of the non-smooth structure on the tail of the experimental model, the configuration of riblets, diameter/bottom width of i mm, height/depth of 0.5 mm, arranged in a rhombic formation. At the optimal combination mentioned above, the 99% confidence interval for drag reduction was 11.13% to 22.30%. 展开更多
关键词 non-smooth structure drag reduction orthogonal experiment low speed wind tunnel
下载PDF
Effects of sand sedimentation and wind erosion around sand barrier:Numerical simulation and wind tunnel test studies 被引量:5
8
作者 ZHANG Kai ZHANG Hai-long +3 位作者 DENG Yu-hui QU Jian-jun WANG Zheng-hui LI Sheng 《Journal of Mountain Science》 SCIE CSCD 2023年第4期962-978,共17页
Based on numerical simulations,this study highlights the sedimentation and erosion problems around a sand barrier through the relationship between the shear stress of the surface around the sand barrier and the critic... Based on numerical simulations,this study highlights the sedimentation and erosion problems around a sand barrier through the relationship between the shear stress of the surface around the sand barrier and the critical shear stress of sand grains.The numerical simulation results were verified using data measured by the wind tunnel test.The results showed that when the porosity was the same,the size and position of the vortex on the leeward side of the sand barrier were related to the inlet wind speed.As the wind speed increased,the vortex volume increased and the positions of the separation and reattachment points moved toward the leeward side.When the porosity of the sand barrier was 30%,the strength of the acceleration zone above the sand barrier was the highest,and the strength of the acceleration zone was negatively correlated with the porosity.Sand erosion and sedimentation distance were related to wind speed.With an increase in wind speed,the sand grain forward erosion or reverse erosion areas on the leeward side of the sand barrier gradually replaced the sedimentation area.With an increase in porosity,the sand sedimentation distance on the leeward side of the sand barrier gradually shortened,and the sand erosion area gradually disappeared.The sand sedimentation distance on the leeward side of the sand barrier with 30%porosity was the longest.The numerical simulation results were in good agreement with the wind tunnel test results.Based on the sand erosion and sedimentation results of the numerical simulation and wind tunnel test,when the porosity was 30%,the protection effect of the High Density Polyethylene(HDPE)board sand barrier was best. 展开更多
关键词 Sand sedimentation wind erosion Numerical simulation wind tunnel test
下载PDF
An Investigation into the Effects of the Reynolds Number on High-Speed Trains Using a Low Temperature Wind Tunnel Test Facility 被引量:6
9
作者 Yundong Han Dawei Chen +1 位作者 Shaoqing Liu Gang Xu 《Fluid Dynamics & Materials Processing》 EI 2020年第1期1-19,共19页
A series of tests have been conducted using a Cryogenic Wind Tunnel to study the effect of Reynolds number(Re)on the aerodynamic force and surface pressure experienced by a high speed train.The test Reynolds number ha... A series of tests have been conducted using a Cryogenic Wind Tunnel to study the effect of Reynolds number(Re)on the aerodynamic force and surface pressure experienced by a high speed train.The test Reynolds number has been varied from 1 million to 10 million,which is the highest Reynolds number a wind tunnel has ever achieved for a train test.According to our results,the drag coefficient of the leading car decreases with higher Reynolds number for yaw angles up to 30º.The drag force coefficient drops about 0.06 when Re is raised from 1 million to 10 million.The side force is caused by the high pressure at the windward side and the low pressure generated by the vortex at the lee side.Both pressure distributions are not appreciably affected by Reynolds number changes at yaw angles up to 30°.The lift force coefficient increases with higher Re,though the change is small.At a yaw angle of zero the down force coefficient is reduced by a scale factor of about 0.03 when the Reynolds number is raised over the considered range.At higher yaw angles the lift force coefficient is reduced about 0.1.Similar to the side force coefficient,the rolling moment coefficient does not change much with Re.The magnitude of the pitching moment coefficient increases with higher Re.This indicates that the load on the front bogie is higher at higher Reynolds numbers.The yawing moment coefficient increases with Re.This effect is more evident at higher yaw angles.The yawing moment coefficient increases by about 6%when Re is raised from 1 million to 10 million.The influence of Re on the rolling moment coefficient around the leeward rail is relatively smaller.It increases by about 2%over the considered range of Re. 展开更多
关键词 High-speed train wind tunnel test reynolds number effect aerodynamic performance yaw angle
下载PDF
Effects of different poses and wind speeds on flow field of dish solar concentrator based on virtual wind tunnel experiment with constant wind 被引量:5
10
作者 LIU Guan-lin E Jia-qiang +2 位作者 LIU Teng ZUO Wei ZHANG Qing-ling 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第8期1948-1957,共10页
In order to improve structure performance of the dish solar concentrator,a three-dimensional model of dish solar concentrator was established based on the high-precision numerical algorithms.And a virtual wind tunnel ... In order to improve structure performance of the dish solar concentrator,a three-dimensional model of dish solar concentrator was established based on the high-precision numerical algorithms.And a virtual wind tunnel experiment with constant wind is adopted to investigate the pressure distribution of the reflective surface,velocity distribution of the fluid domain for the dish solar concentrator in different poses and wind speeds distribution.Some results about wind pressure distribution before and after dish solar concentrator surface and wind load velocity distribution in the entire fluid domain had been obtained.In particular,it is necessary to point out that the stiffness at the center of the dish solar concentrator should be relatively raised.The results can provide a theoretical basis for the improvement of solar concentrator dish structure as well as the failure analysis of dish solar concentrator in engineering practice. 展开更多
关键词 CONCENTRATOR fluid–solid interaction pressure distribution velocity distribution virtual wind tunnel experiment
下载PDF
Wind tunnel simulation of the effects of freeze–thaw cycles on soil erosion in the Qinghai–Tibet Plateau 被引量:2
11
作者 ShengBo Xie JianJun Qu Tao Wang 《Research in Cold and Arid Regions》 CSCD 2016年第3期187-195,共9页
Intense freezing and thawing actions occur in the Qinghai-Tibet Plateau because of its high elevation and cold temperature. The plateau's unique environment makes it easy to generate wind erosion under dry, windy wea... Intense freezing and thawing actions occur in the Qinghai-Tibet Plateau because of its high elevation and cold temperature. The plateau's unique environment makes it easy to generate wind erosion under dry, windy weather conditions, resulting in the emergence ofdesertification. As a major form of freeze-thaw erosion, freeze-thaw and wind erosion is displayed prominently on the Qinghai-Tibet Plateau. Therefore, in this study, soil samples were collected from the surface of the plateau to undergo freeze-thaw and wind erosion simulation experiments. Results show that wind erosion strength increases with an increasing number of freeze-thaw cycles, water content in the freezing-thawing process, and the difference in freeze-thaw temperatures. Therefore, in the conditions of water participation, the main reason for the freeze-thaw and wind erosion in the Qinghai-Tibet Plateau is the damage to the soil structure by repeated, fierce freeze-thaw actions, and the sand-bearing wind is the main driving force for this process. The research results have theoretical significance for exploring the formation mechanism of freeze-thaw and wind erosion in the Qinghai-Tibet Plateau, and provide a scientific basis for freeze-thaw desertification control in the plateau. 展开更多
关键词 freeze-thaw cycles wind erosion strength wind tunnel simulation Qinghai-Tibet Plateau
下载PDF
Wind tunnel test on the effect of metal net fences on sand flux in a Gobi Desert, China 被引量:20
12
作者 WANG Tao QU Jianjun +2 位作者 LING Yuquan XIE Shengbo XIAO Jianhua 《Journal of Arid Land》 SCIE CSCD 2017年第6期888-899,共12页
The Lanzhou-Xinjiang High-speed Railway runs through an expansive windy area in a Gobi Desert, and sand-blocking fences were built to protect the railway from destruction by wind-blown sand. However, the shielding eff... The Lanzhou-Xinjiang High-speed Railway runs through an expansive windy area in a Gobi Desert, and sand-blocking fences were built to protect the railway from destruction by wind-blown sand. However, the shielding effect of the sand-blocking fence is below the expectation. In this study, effects of metal net fences with porosities of 0.5 and 0.7 were tested in a wind tunnel to determine the effectiveness of the employed two kinds of fences in reducing wind velocity and restraining wind-blown sand. Specifically, the horizontal wind velocities and sediment flux densities above the gravel surface were measured under different free-stream wind velocities for the following conditions: no fence at all, single fence with a porosity of 0.5, single fence with a porosity of 0.7, double fences with a porosity of 0.5, and double fences with a porosity of 0.7. Experimental results showed that the horizontal wind velocity was more significantly decreased by the fence with a porosity of 0.5, especially for the double fences. The horizontal wind velocity decreased approximately 65% at a distance of 3.25 m(i.e., 13 H, where H denotes the fence height) downwind the double fences, and no reverse flow or vortex was observed on the leeward side. The sediment flux density decreased exponentially with height above the gravel surface downwind in all tested fences. The reduction percentage of total sediment flux density was higher for the fence with a porosity of 0.5 than for the fence with a porosity of 0.7, especially for the double fences. Furthermore, the decreasing percentage of total sediment flux density decreased with increasing free-stream wind velocity. The results suggest that compared with metal net fence with a porosity of 0.7, the metal net fence with a porosity of 0.5 is more effective for controlling wind-blown sand in the expansive windy area where the Lanzhou-Xinjiang High-speed Railway runs through. 展开更多
关键词 wind-blown sand wind tunnel experiment porous fence flow field sediment flux density Lanzhou-Xinjiang High-speed Railway Gobi Desert
下载PDF
Wind tunnel experiment of drag of isolated tree models in surface boundary layer 被引量:1
13
作者 关德新 朱廷曜 韩士杰 《Journal of Forestry Research》 CAS CSCD 2000年第3期156-160,共5页
For very sparse tree land individual tree was the basic element of interaction between atmosphere and the surface. Drag of isolated tree was preliminary aerodynamic index for analyzing the atmospheric boundary layer o... For very sparse tree land individual tree was the basic element of interaction between atmosphere and the surface. Drag of isolated tree was preliminary aerodynamic index for analyzing the atmospheric boundary layer of this kind of surface. A simple pendulum method was designed and carried out in wind tunnel to measure drag of isolated tree models according to balance law of moment of force. The method was easy to conduct and with small error The results showed that the drag and drag coefficient of isolated tree increased with decreasing of its permeability or porosity. Relationship between drag coefficient and permeability of isolated tree empirically was expressed by quadric curve. 展开更多
关键词 Drag of ISOLATED TREE wind tunnel experiments PENDULUM method
下载PDF
Wind tunnel measurement of aerodynamic characteristics of trains passing each other on a simply supported box girder bridge 被引量:9
14
作者 Xiaozhen Li Yiling Tan +2 位作者 Xiaowei Qiu Zhenhua Gong Ming Wang 《Railway Engineering Science》 2021年第2期152-162,共11页
The aerodynamic performance of high-speed trains passing each other was investigated on a simply supported box girder bridge,with a span of 32 m,under crosswinds.The bridge and train models,modeled at a geometric scal... The aerodynamic performance of high-speed trains passing each other was investigated on a simply supported box girder bridge,with a span of 32 m,under crosswinds.The bridge and train models,modeled at a geometric scale ratio of 1:30,were used to test the aerodynamic forces of the train,with the help of a designed moving test rig in the XNJD-3 wind tunnel.The effects of wind speed,train speed,and yaw angle on the aerodynamic coefficients of the train were analyzed.The static and moving model tests were compared to demonstrate how the movement of the train influences its aerodynamic characteristics.The results show that the sheltering effect introduced by trains passing each other can cause a sudden change in force on the leeward train,which is further influenced by the wind and running speeds.Detailed analyses related to the effect of wind and train speeds on the aerodynamic coefficients were conducted.The relationship between the change in aerodynamic coefficients and yaw angle was finally described by a series of proposed fitting formulas. 展开更多
关键词 Aerodynamic coefficient Two trains passing each other Simply supported box girder bridge wind tunnel
下载PDF
Piezoelectric Vibration Control in Wind Tunnel Tests 被引量:3
15
作者 SHEN Xing HUANG Yun +3 位作者 ZHANG Lei YANG Xinghua KOU Xiping YU Li 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第3期437-449,共13页
In wind tunnel tests,long cantilever stings are usually used to support aerodynamic models.However,this kind of sting support system is prone to vibration problems due to its low damping,which limits the test envelope... In wind tunnel tests,long cantilever stings are usually used to support aerodynamic models.However,this kind of sting support system is prone to vibration problems due to its low damping,which limits the test envelope and affects the data quality.It is shown in many studies that the sting vibration can be effectively reduced by using active sting dampers based on piezoelectric actuators.This paper attempts to review the research progress of piezoelectric vibration control in wind tunnel tests,covering the design of active sting dampers,control methods and wind tunnel applications.First of all,different design schemes of active sting dampers are briefly introduced,along with the vibration damping principle.Then,a comprehensive review of the control methods for active sting dampers is presented,ranging from classic control methods,like PID control algorithm,to various intelligent control methods.Furthermore,the applications of active sting dampers and controllers in different wind tunnels are summarized to evaluate their vibration damping effect.Finally,the remaining problems that need to be solved in the future development of piezoelectric vibration control in wind tunnel tests are discussed. 展开更多
关键词 wind tunnel sting vibration active damper piezoelectric actuator active vibration control
下载PDF
Reinvestigation of the scaling law of the windblown sand launch velocity with a wind tunnel experiment 被引量:1
16
作者 ZHANG Yang LI Min +1 位作者 WANG Yuan YANG Bin 《Journal of Arid Land》 SCIE CSCD 2019年第5期664-673,共10页
Windblown sand transport is a leading factor in the geophysical evolution of arid and semi-arid regions.The evolution speed is usually indicated by the sand transport rate that is a function of launch velocity of sand... Windblown sand transport is a leading factor in the geophysical evolution of arid and semi-arid regions.The evolution speed is usually indicated by the sand transport rate that is a function of launch velocity of sand particle,which has been investigated by the experimental measurement and numerical simulation.However,the obtained results in literatures are inconsistent.Some researchers have discovered a relation between average launch velocity and wind shear velocity,while some other researchers have suggested that average launch velocity is independent of wind shear velocity.The inconsistence of launch velocity leads to a controversy in the scaling law of the sand transport rate in the windblown case.On the contrary,in subaqueous case,the scaling law of the sand transport rate has been widely accepted as a cubic function of fluid shear velocity.In order to explain the debates surrounding the windblown case and the difference between windblown and subaquatic cases,this study reinvestigates the scaling law of the vertical launch velocity of windblown transported sand particles by using a dimensional analysis in consideration of the compatibility of the characteristic time of sand particle motion and that of air flow.Then a wind tunnel experiment is conducted to confirm the revisited scaling law,where the sand particle motion pictures are recorded by a high-speed camera and then the launch velocity is solved by the particle tracking velocimetry.By incorporating the results of dimensional analysis and wind tunnel experiment,it can be concluded that,the ratio of saltons number to reptons number determines the scaling law of sand particle launch velocity and that of sand transport rate,and using this ratio is able to explain the discrepancies among the classical models of steady sand transport.Moreover,the resulting scaling law can explain the sand sieving phenomenon:a greater fraction of large grains is observed as the distance to the wind tunnel entrance becomes larger. 展开更多
关键词 windblown SAND transport SCALING law LAUNCH VELOCITY dimensional analysis wind tunnel
下载PDF
A field investigation of wind erosion in the farming–pastoral ecotone of northern China using a portable wind tunnel: a case study in Yanchi County 被引量:1
17
作者 nan ling dong zhibao +5 位作者 xiao weiqiang li chao xiao nan song shaopeng xiao fengjun du lingtong 《Journal of Arid Land》 SCIE CSCD 2018年第1期27-38,共12页
The farming-pastoral ecotone in northern China is an extremely fr@e ecological zone where wind erosion of cropland and rangeland is easy to occur. In this study, using a portable wind tunnel as a wind simulator, we co... The farming-pastoral ecotone in northern China is an extremely fr@e ecological zone where wind erosion of cropland and rangeland is easy to occur. In this study, using a portable wind tunnel as a wind simulator, we conducted field simulated wind erosion experiments combined with laboratory analysis to investigate wind erosion of soils in trampled rangeland, non-tilled cropland and tilled cropland in Yanchi County, China. The results showed that compared with rangeland, the cropland had a higher soil water holding capacity and lower soil bulk density. The wind erosion rate of trampled rangeland was much higher than those of non-tilled cropland and tilled cropland. For cropland, the wind erosion rate of the soil after tilling was surprisingly less than that of the soil before tilling. With increasing of wind speed, the volume mean diameter of the eroded sediment collected by the trough in the wind tunnel generally increased while the clay and silt content decreased for all soils. The temporal variation in wind erosion of the trampled rangeland indicated that particle entrainment and dust emission decreased exponentially with erosion time through the successive wind erosion events due to the exhaustion of erodible particles. 展开更多
关键词 wind erosion rate wind tunnel eroded sediment soil particle size CROPLAND RANGELAND semi-arid region
下载PDF
Excavation influence of triangular-distribution tunnels for wind pavilion group of a metro station 被引量:2
18
作者 CHEN Tao ZHOU Kun +4 位作者 WEI Jun LIU Xiao-chun LIN Yu-liang ZHANG Jian SHEN Quan 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第12期3852-3874,共23页
For the Guanshui Road Station tunnel project of Guiyang Metro Line 2,the wind pavilion group was moved out of the main tunnel to reduce the number of openings in the main tunnel,and the wind pavilion group was excavat... For the Guanshui Road Station tunnel project of Guiyang Metro Line 2,the wind pavilion group was moved out of the main tunnel to reduce the number of openings in the main tunnel,and the wind pavilion group was excavated in a triangular configuration at the entrance of the main tunnel.Based on the finite element software ABAQUS,a three-dimensional model is established to study the influence of different triangular-distribution tunnels excavation schemes on the surface settlement and tunnel stability.The objective of this study is to reveal the change rules of surface settlement,deformation and force in the support structures and the surrounding rock and identify the best excavation scheme for this tunnel configuration.Results show that to control the surface settlement and the deformation of the support structures,the optimal excavation sequence involves excavating the upper fresh air exhaust tunnel before the lower running tunnel.To control the stress of the support structures,the optimal excavation involves excavating the lower running tunnel before the upper fresh air exhaust tunnel.In this project,the most reasonable excavation sequence of the tunnel is from top to bottom.The most reasonable thickness of tunnel penetration is 5 m. 展开更多
关键词 station tunnel wind pavilion group finite element analysis tunnel and surrounding rock deformation stress analysis
下载PDF
A wind tunnel investigation on the transverse motion of aeolian sand 被引量:2
19
作者 ZhenTing Wang QianHua Zhang ZhiBao Dong 《Research in Cold and Arid Regions》 2011年第1期13-16,共4页
A wind tunnel experiment was performed to investigate aeolian grain motions in the transverse direction, which is perpendicular to the incoming flow and parallels the sand bed. The trajectories in the horizontal plane... A wind tunnel experiment was performed to investigate aeolian grain motions in the transverse direction, which is perpendicular to the incoming flow and parallels the sand bed. The trajectories in the horizontal plane were recorded by high-speed camera. Statistical analysis of 630 trajectories shows that both the motion orientation and the time-averaged speed follow Gaussian distributions. An exclusive method was used to analyze the driving mechanism. It was concluded that the three-dimensional turbulent air flow, rather than the spin of grain or grain-bed collisions, controls the transverse motion. 展开更多
关键词 aeolian sand transport transverse motion wind tunnel
下载PDF
Thermodynamic Effects on Particle Movement:Wind Tunnel Simulation Results 被引量:2
20
作者 NIU Qinghe QU Jianjun +1 位作者 ZHANG Kecun LIU Xianwan 《Chinese Geographical Science》 SCIE CSCD 2012年第2期178-187,共10页
Sand/dust storms are some of the main hazards in arid and semi-arid zones. These storms also influence global environmental changes. By field observations, empirical statistics, and numerical simulations, pioneer rese... Sand/dust storms are some of the main hazards in arid and semi-arid zones. These storms also influence global environmental changes. By field observations, empirical statistics, and numerical simulations, pioneer researchers on these natural events have concluded the existence of a positive relationship between thermodynamic effects and sand/dust storms. Thermodynamic effects induce an unsteady stratified atmosphere to influence the process of these storms. However, studies on the relationship of thermodynamic effects with particles (i.e., sand and dust) are limited. In this article, wind tunnel with heating was used to simulate the quantitative relationship between thermodynamic effects and particle movement on different surfaces. Compared with the cold state, the threshold wind velocity of particles is found to be significantly decrease under the hot state. The largest decrease percentage exceedes 9% on fine and coarse sand surfaces. The wind velocity also has a three-power function in the sand transport rate under the hot state with increased sand transport. Thermodynamic effects are stronger on loose surfaces and fine particles, but weaker on compacted surfaces and coarse particles. 展开更多
关键词 thermodynamic effect threshold wind velocity nel simulation drifting sand flux structure sand transport rate wind tunnel simulation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部