Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currentl...Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currently,least squares(LS)+auto-regressive(AR)hybrid method is one of the main techniques of PM prediction.Besides,the weighted LS+AR hybrid method performs well for PM short-term prediction.However,the corresponding covariance information of LS fitting residuals deserves further exploration in the AR model.In this study,we have derived a modified stochastic model for the LS+AR hybrid method,namely the weighted LS+weighted AR hybrid method.By using the PM data products of IERS EOP 14 C04,the numerical results indicate that for PM short-term forecasting,the proposed weighted LS+weighted AR hybrid method shows an advantage over both the LS+AR hybrid method and the weighted LS+AR hybrid method.Compared to the mean absolute errors(MAEs)of PMX/PMY sho rt-term prediction of the LS+AR hybrid method and the weighted LS+AR hybrid method,the weighted LS+weighted AR hybrid method shows average improvements of 6.61%/12.08%and 0.24%/11.65%,respectively.Besides,for the slopes of the linear regression lines fitted to the errors of each method,the growth of the prediction error of the proposed method is slower than that of the other two methods.展开更多
Accurate forecasting of time series is crucial across various domains.Many prediction tasks rely on effectively segmenting,matching,and time series data alignment.For instance,regardless of time series with the same g...Accurate forecasting of time series is crucial across various domains.Many prediction tasks rely on effectively segmenting,matching,and time series data alignment.For instance,regardless of time series with the same granularity,segmenting them into different granularity events can effectively mitigate the impact of varying time scales on prediction accuracy.However,these events of varying granularity frequently intersect with each other,which may possess unequal durations.Even minor differences can result in significant errors when matching time series with future trends.Besides,directly using matched events but unaligned events as state vectors in machine learning-based prediction models can lead to insufficient prediction accuracy.Therefore,this paper proposes a short-term forecasting method for time series based on a multi-granularity event,MGE-SP(multi-granularity event-based short-termprediction).First,amethodological framework for MGE-SP established guides the implementation steps.The framework consists of three key steps,including multi-granularity event matching based on the LTF(latest time first)strategy,multi-granularity event alignment using a piecewise aggregate approximation based on the compression ratio,and a short-term prediction model based on XGBoost.The data from a nationwide online car-hailing service in China ensures the method’s reliability.The average RMSE(root mean square error)and MAE(mean absolute error)of the proposed method are 3.204 and 2.360,lower than the respective values of 4.056 and 3.101 obtained using theARIMA(autoregressive integratedmoving average)method,as well as the values of 4.278 and 2.994 obtained using k-means-SVR(support vector regression)method.The other experiment is conducted on stock data froma public data set.The proposed method achieved an average RMSE and MAE of 0.836 and 0.696,lower than the respective values of 1.019 and 0.844 obtained using the ARIMA method,as well as the values of 1.350 and 1.172 obtained using the k-means-SVR method.展开更多
Accurate short-termphotovoltaic(PV)power prediction helps to improve the economic efficiency of power stations and is of great significance to the arrangement of grid scheduling plans.In order to improve the accuracy ...Accurate short-termphotovoltaic(PV)power prediction helps to improve the economic efficiency of power stations and is of great significance to the arrangement of grid scheduling plans.In order to improve the accuracy of PV power prediction further,this paper proposes a data cleaning method combining density clustering and support vector machine.It constructs a short-termPVpower predictionmodel based on particle swarmoptimization(PSO)optimized Long Short-Term Memory(LSTM)network.Firstly,the input features are determined using Pearson’s correlation coefficient.The feature information is clustered using density-based spatial clustering of applications withnoise(DBSCAN),and then,the data in each cluster is cleanedusing support vectormachines(SVM).Secondly,the PSO is used to optimize the hyperparameters of the LSTM network to obtain the optimal network structure.Finally,different power prediction models are established,and the PV power generation prediction results are obtained.The results show that the data methods used are effective and that the PSO-LSTM power prediction model based on DBSCAN-SVM data cleaning outperforms existing typical methods,especially under non-sunny days,and that the model effectively improves the accuracy of short-term PV power prediction.展开更多
Considering the instability of the output power of photovoltaic(PV)generation system,to improve the power regulation ability of PV power during grid-connected operation,based on the quantitative analysis of meteorolog...Considering the instability of the output power of photovoltaic(PV)generation system,to improve the power regulation ability of PV power during grid-connected operation,based on the quantitative analysis of meteorological conditions,a short-term prediction method of PV power based on LMD-EE-ESN with iterative error correction was proposed.Firstly,through the fuzzy clustering processing of meteorological conditions,taking the power curves of PV power generation in sunny,rainy or snowy,cloudy,and changeable weather as the reference,the local mean decomposition(LMD)was carried out respectively,and their energy entropy(EE)was taken as the meteorological characteristics.Then,the historical generation power series was decomposed by LMD algorithm,and the hierarchical prediction of the power curve was realized by echo state network(ESN)prediction algorithm combined with meteorological characteristics.Finally,the iterative error theory was applied to the correction of power prediction results.The analysis of the historical data in the PV power generation system shows that this method avoids the influence of meteorological conditions in the short-term prediction of PV output power,and improves the accuracy of power prediction on the condition of hierarchical prediction and iterative error correction.展开更多
The fluctuation of wind power affects the operating safety and power consumption of the electric power grid and restricts the grid connection of wind power on a large scale.Therefore,wind power forecasting plays a key...The fluctuation of wind power affects the operating safety and power consumption of the electric power grid and restricts the grid connection of wind power on a large scale.Therefore,wind power forecasting plays a key role in improving the safety and economic benefits of the power grid.This paper proposes a wind power predicting method based on a convolutional graph attention deep neural network with multi-wind farm data.Based on the graph attention network and attention mechanism,the method extracts spatial-temporal characteristics from the data of multiple wind farms.Then,combined with a deep neural network,a convolutional graph attention deep neural network model is constructed.Finally,the model is trained with the quantile regression loss function to achieve the wind power deterministic and probabilistic prediction based on multi-wind farm spatial-temporal data.A wind power dataset in the U.S.is taken as an example to demonstrate the efficacy of the proposed model.Compared with the selected baseline methods,the proposed model achieves the best prediction performance.The point prediction errors(i.e.,root mean square error(RMSE)and normalized mean absolute percentage error(NMAPE))are 0.304 MW and 1.177%,respectively.And the comprehensive performance of probabilistic prediction(i.e.,con-tinuously ranked probability score(CRPS))is 0.580.Thus,the significance of multi-wind farm data and spatial-temporal feature extraction module is self-evident.展开更多
A statistical downscaling approach was developed to improve seasonal-to-interannual prediction of summer rainfall over North China by considering the effect of decadal variability based on observational datasets and d...A statistical downscaling approach was developed to improve seasonal-to-interannual prediction of summer rainfall over North China by considering the effect of decadal variability based on observational datasets and dynamical model outputs.Both predictands and predictors were first decomposed into interannual and decadal components.Two predictive equations were then built separately for the two distinct timescales by using multivariate linear regressions based on independent sample validation.For the interannual timescale,850-hPa meridional wind and 500-hPa geopotential heights from multiple dynamical models' hindcasts and SSTs from observational datasets were used to construct predictors.For the decadal timescale,two well-known basin-scale SST decadal oscillation (the Atlantic Multidecadal Oscillation and the Pacific Decadal Oscillation) indices were used as predictors.Then,the downscaled predictands were combined to represent the predicted/hindcasted total rainfall.The prediction was compared with the models' raw hindcasts and those from a similar approach but without timescale decomposition.In comparison to hindcasts from individual models or their multi-model ensemble mean,the skill of the present scheme was found to be significantly higher,with anomaly correlation coefficients increasing from nearly neutral to over 0.4 and with RMSE decreasing by up to 0.6 mm d-1.The improvements were also seen in the station-based temporal correlation of the predictions with observed rainfall,with the coefficients ranging from-0.1 to 0.87,obviously higher than the models' raw hindcasted rainfall results.Thus,the present approach exhibits a great advantage and may be appropriate for use in operational predictions.展开更多
We present a verification of the short-term predictions of solar X-ray bursts for the maximum phase (2000–2001) of Solar Cycle 23, issued by two prediction centers. The results are that the rate of correct prediction...We present a verification of the short-term predictions of solar X-ray bursts for the maximum phase (2000–2001) of Solar Cycle 23, issued by two prediction centers. The results are that the rate of correct predictions is about equal for RWC-China and WWA; the rate of too high predictions is greater for RWC-China than for WWA, while the rate of too low predictions is smaller for RWC-China than for WWA.展开更多
Storm surges pose significant danger and havoc to the coastal residents’safety,property,and lives,particularly at offshore locations with shallow water levels.Predictions of storm surges with hours of warning time ar...Storm surges pose significant danger and havoc to the coastal residents’safety,property,and lives,particularly at offshore locations with shallow water levels.Predictions of storm surges with hours of warning time are important for evacuation measures in low-lying regions and coastal management plans.In addition to experienced predictions and numerical models,artificial intelligence(AI)techniques are also being used widely for short-term storm surge prediction owing to their merits in good level of prediction accuracy and rapid computations.Convolutional neural network(CNN)and long short-term memory(LSTM)are two of the most important models among AI techniques.However,they have been scarcely utilised for surge level(SL)forecasting,and combinations of the two models are even rarer.This study applied CNN and LSTM both individually and in combination towards multi-step ahead short-term storm surge level prediction using observed SL and wind information.The architectures of the CNN,LSTM,and two sequential techniques of combining the models(LSTM–CNN and CNN–LSTM)were constructed via a trial-and-error approach and knowledge obtained from previous studies.As a case study,11 a of hourly observed SL and wind data of the Xiuying Station,Hainan Province,China,were organised as inputs for training to verify the feasibility and superiority of the proposed models.The results show that CNN and LSTM had evident advantages over support vector regression(SVR)and multilayer perceptron(MLP),and the combined models outperformed the individual models(CNN and LSTM),mostly by 4%–6%.However,on comparing the model computed predictions during two severe typhoons that resulted in extreme storm surges,the accuracy was found to improve by over 10%at all forecasting steps.展开更多
In this paper, the process of medium- and short-term prediction (submitted in special cards) of the Artux earthquake (MS=6.9) and the Usurian earthquake (MS=5.8) in Xinjiang area, is introduced. The imminent seismic r...In this paper, the process of medium- and short-term prediction (submitted in special cards) of the Artux earthquake (MS=6.9) and the Usurian earthquake (MS=5.8) in Xinjiang area, is introduced. The imminent seismic risk regions are judged based on long- and medium-term seismic risk regions and annual seismic risk regions determined by national seismologic analysis, combined with large seismic situation analysis. We trace and analyze the seismic situation in large areas, and judge principal risk regions or belts of seismic activity in a year, by integrating the large area’s seismicity with geodetic deformation evolutional characteristics. As much as possible using information, we study synthetically observational information for long-medium- and short-term (time domain) and large-medium -small dimensions (space domain), and approach the forecast region of forthcoming earthquakes from the large to small magnitude. A better effect has been obtained. Some questions about earthquake prediction are discussed.展开更多
In order to achieve high short-term prediction accuracy of ionospheric TEC,first,we transform a seasonal time series for ionospheric Total Electron Content (TEC) into a stationary time series by seasonal differences a...In order to achieve high short-term prediction accuracy of ionospheric TEC,first,we transform a seasonal time series for ionospheric Total Electron Content (TEC) into a stationary time series by seasonal differences and regular differences with a full consideration of the Multiplicative Seasonal model.Next,we use the Autoregressive Integrated Moving Average (ARIMA) model taken from time series analysis theory for modeling the stationary TEC values to predict the TEC series.Using TEC data from 2008 to 2012 provided by the Center for Orbit Determination in Europe (CODE) as sample data,we analyzed the precision of this method for prediction of ionospheric TEC values which vary from high to low latitudes during both quiet and active ionospheric periods.The effect of the TEC sample’s length on the predicted accuracy is analyzed,too.Results from numerical experiments show that during the ionospheric quiet period the average relative prediction accuracy for a six day time span reaches up to 83.3% with average prediction residual errors of about 0.18±1.9 TECu.During ionospheric active periods it changes to 86.6% with an average prediction residual error of about 0.69±2.6 TECu.For the quiet periods,above 90% of predicted residual is less than ±3 TECu while during active periods,it is only about 81%.The two periods show that that the higher the latitude,the higher the absolute precision,and the lower the predicted relative accuracy.In addition,the results show that prediction accuracy will improve with an increase of the TEC sample sequences length,but it will gradually reduce if the length exceeds the optimal length,about 30 days.On the other hand,with the same TEC sample,as the predicted days increase,the predictive accuracy decreases.Athough the predictive accuracy is not apparent at the beginning,it will be significantly reduced after 30 days.展开更多
Based on the data recorded by the regional digital seismic network of Yunnan and using new methods, the short-term variations of the ambient stress field of Yunnan and its adjacent areas are monitored in real time. Wi...Based on the data recorded by the regional digital seismic network of Yunnan and using new methods, the short-term variations of the ambient stress field of Yunnan and its adjacent areas are monitored in real time. With the in-depth analyses of the spatial-temporal evolution of the ambient stress field prior to the 2004, Shuangbai M_S5.0 earthquake, concrete procedures for predicting the three elements of the earthquake are presented.展开更多
Input data of the system are two-dimensional images and one-dimensional distributions of total and polarized solar emission at 5.2 cm wavelength obtained with SSRT. Together with photoheliograms, magnetograms, Hα-fil...Input data of the system are two-dimensional images and one-dimensional distributions of total and polarized solar emission at 5.2 cm wavelength obtained with SSRT. Together with photoheliograms, magnetograms, Hα-filtergrams and characteristics of active regions received from other sources, they form the initial database. The first stage includes superimposing the images, identifying microwave sources with active regions, assigning NOAA numbers to the sources, and determining for each active region the heliolatitude, extent, and inclination angle of the group's axis to the equator. These data are used to calculate the boundaries of longitude zones for each active region. A next stage involves determining the brightness temperatures of microwave sources less than the polarization distribution, the degree of polarization, and microwave emission flux, as well as calculating the parameters of microwave sources. Each parameter is assigned its own value of the weight factor, and the sum of values is used to draw the conclusion about the flare occurrence probability in each active region and on the Sun in general.展开更多
Tropical cyclones(TCs)are one of the most serious types of natural disasters,and accurate TC activity predictions are key to disaster prevention and mitigation.Recently,TC track predictions have made significant progr...Tropical cyclones(TCs)are one of the most serious types of natural disasters,and accurate TC activity predictions are key to disaster prevention and mitigation.Recently,TC track predictions have made significant progress,but the ability to predict their intensity is obviously lagging behind.At present,research on TC intensity prediction takes atmospheric reanalysis data as the research object and mines the relationship between TC-related environmental factors and intensity through deep learning.However,reanalysis data are non-real-time in nature,which does not meet the requirements for operational forecasting applications.Therefore,a TC intensity prediction model named TC-Rolling is proposed,which can simultaneously extract the degree of symmetry for strong TC convective cloud and convection intensity,and fuse the deviation-angle variance with satellite images to construct the correlation between TC convection structure and intensity.For TCs'complex dynamic processes,a convolutional neural network(CNN)is used to learn their temporal and spatial features.For real-time intensity estimation,multi-task learning acts as an implicit time-series enhancement.The model is designed with a rolling strategy that aims to moderate the long-term dependent decay problem and improve accuracy for short-term intensity predictions.Since multiple tasks are correlated,the loss function of 12 h and 24 h are corrected.After testing on a sample of TCs in the Northwest Pacific,with a 4.48 kt root-mean-square error(RMSE)of 6 h intensity prediction,5.78 kt for 12 h,and 13.94 kt for 24 h,TC records from official agencies are used to assess the validity of TC-Rolling.展开更多
Harnessing solar power is essential for addressing the dual challenges of global warming and the depletion of traditional energy sources.However,the fluctuations and intermittency of photovoltaic(PV)power pose challen...Harnessing solar power is essential for addressing the dual challenges of global warming and the depletion of traditional energy sources.However,the fluctuations and intermittency of photovoltaic(PV)power pose challenges for its extensive incorporation into power grids.Thus,enhancing the precision of PV power prediction is particularly important.Although existing studies have made progress in short-term prediction,issues persist,particularly in the underutilization of temporal features and the neglect of correlations between satellite cloud images and PV power data.These factors hinder improvements in PV power prediction performance.To overcome these challenges,this paper proposes a novel PV power prediction method based on multi-stage temporal feature learning.First,the improved LSTMand SA-ConvLSTMare employed to extract the temporal feature of PV power and the spatial-temporal feature of satellite cloud images,respectively.Subsequently,a novel hybrid attention mechanism is proposed to identify the interplay between the two modalities,enhancing the capacity to focus on the most relevant features.Finally,theTransformermodel is applied to further capture the short-termtemporal patterns and long-term dependencies within multi-modal feature information.The paper also compares the proposed method with various competitive methods.The experimental results demonstrate that the proposed method outperforms the competitive methods in terms of accuracy and reliability in short-term PV power prediction.展开更多
Short-term prediction of on-street parking occupancy is essential to the ITS system,which can guide drivers in finding vacant parking spaces.And the spatial dependencies and exogenous dependencies need to be considere...Short-term prediction of on-street parking occupancy is essential to the ITS system,which can guide drivers in finding vacant parking spaces.And the spatial dependencies and exogenous dependencies need to be considered simultaneously,which makes short-term prediction of on-street parking occupancy challenging.Therefore,this paper proposes a deep learning model for predicting block-level parking occupancy.First,the importance of multiple points of interest(POI)in different buffers is sorted by Boruta,used for feature selection.The results show that different types of POI data should consider different buffer radii.Then based on the real on-street parking data,long short-term memory(LSTM)that can address the time dependencies is applied to predict the parking occupancy.The results demonstrate that LSTM considering POI data after Boruta selection(LSTM(+BORUTA))outperforms other baseline methods,including LSTM,with an average testing MAPE of 11.78%.The selection process of POI data helps LSTM reduce training time and slightly improve the prediction performance,which indicates that complex correlations among the same type of POI data in different buffer zones will also affect the prediction accuracy of LSTM.When there are more restaurants on both sides of the street,the prediction performance of LSTM(+BORUTA)is significantly better than that of LSTM.展开更多
In the global challenge of Coronavirus disease 2019(COVID-19)pandemic,accurate prediction of daily new cases is crucial for epidemic prevention and socioeconomic planning.In contrast to traditional local,one-dimension...In the global challenge of Coronavirus disease 2019(COVID-19)pandemic,accurate prediction of daily new cases is crucial for epidemic prevention and socioeconomic planning.In contrast to traditional local,one-dimensional time-series data-based infection models,the study introduces an innovative approach by formulating the short-term prediction problem of new cases in a region as multidimensional,gridded time series for both input and prediction targets.A spatial-temporal depth prediction model for COVID-19(ConvLSTM)is presented,and further ConvLSTM by integrating historical meteorological factors(Meteor-ConvLSTM)is refined,considering the influence of meteorological factors on the propagation of COVID-19.The correlation between 10 meteorological factors and the dynamic progression of COVID-19 was evaluated,employing spatial analysis techniques(spatial autocorrelation analysis,trend surface analysis,etc.)to describe the spatial and temporal characteristics of the epidemic.Leveraging the original ConvLSTM,an artificial neural network layer is introduced to learn how meteorological factors impact the infection spread,providing a 5-day forecast at a 0.01°×0.01°pixel resolution.Simulation results using real dataset from the 3.15 outbreak in Shanghai demonstrate the efficacy of Meteor-ConvLSTM,with reduced RMSE of 0.110 and increased R^(2) of 0.125(original ConvLSTM:RMSE=0.702,R^(2)=0.567;Meteor-ConvLSTM:RMSE=0.592,R^(2)=0.692),showcasing its utility for investigating the epidemiological characteristics,transmission dynamics,and epidemic development.展开更多
Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley a...Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley additive explanation(SHAP)to predict the flue pressure and take targeted adjustment measures.First,the sintering process data were collected and processed.A flue pressure prediction model was then constructed after comparing different feature selection methods and model algorithms using SHAP+extremely random-ized trees(ET).The prediction accuracy of the model within the error range of±0.25 kPa was 92.63%.SHAP analysis was employed to improve the interpretability of the prediction model.The effects of various sintering operation parameters on flue pressure,the relation-ship between the numerical range of key operation parameters and flue pressure,the effect of operation parameter combinations on flue pressure,and the prediction process of the flue pressure prediction model on a single sample were analyzed.A flue pressure optimization module was also constructed and analyzed when the prediction satisfied the judgment conditions.The operating parameter combination was then pushed.The flue pressure was increased by 5.87%during the verification process,achieving a good optimization effect.展开更多
Chaos,occurring in a deterministic system,has permeated various fields such as mathematics,physics,and life science.Consequently,the prediction of chaotic time series has received widespread attention and made signifi...Chaos,occurring in a deterministic system,has permeated various fields such as mathematics,physics,and life science.Consequently,the prediction of chaotic time series has received widespread attention and made signifi-cant progress.However,many problems,such as high computational complexity and difficulty in hardware im-plementation,could not be solved by existing schemes.To overcome the problems,we employ the chaotic system of a vertical-cavity surface-emitting laser(VCSEL)mutual coupling network to generate chaotic time series through optical system simulation and experimentation in this paper.Furthermore,a photonic reservoir com-puting based on VCSEL,along with a feedback loop,is proposed for the short-term prediction of the chaotic time series.The relationship between the prediction difficulty of the reservoir computing(RC)system and the differ-ence in complexity of the chaotic time series has been studied with emphasis.Additionally,the attention coefficient of injection strength and feedback strength,prediction duration,and other factors on system perfor-mance are considered in both simulation and experiment.The use of the RC system to predict the chaotic time series generated by actual chaotic systems is significant for expanding the practical application scenarios of the RC.展开更多
Accurate origin–destination(OD)demand prediction is crucial for the efficient operation and management of urban rail transit(URT)systems,particularly during a pandemic.However,this task faces several limitations,incl...Accurate origin–destination(OD)demand prediction is crucial for the efficient operation and management of urban rail transit(URT)systems,particularly during a pandemic.However,this task faces several limitations,including real-time availability,sparsity,and high-dimensionality issues,and the impact of the pandemic.Consequently,this study proposes a unified framework called the physics-guided adaptive graph spatial–temporal attention network(PAG-STAN)for metro OD demand prediction under pandemic conditions.Specifically,PAG-STAN introduces a real-time OD estimation module to estimate real-time complete OD demand matrices.Subsequently,a novel dynamic OD demand matrix compression module is proposed to generate dense real-time OD demand matrices.Thereafter,PAG-STAN leverages various heterogeneous data to learn the evolutionary trend of future OD ridership during the pandemic.Finally,a masked physics-guided loss function(MPG-loss function)incorporates the physical quantity information between the OD demand and inbound flow into the loss function to enhance model interpretability.PAG-STAN demonstrated favorable performance on two real-world metro OD demand datasets under the pandemic and conventional scenarios,highlighting its robustness and sensitivity for metro OD demand prediction.A series of ablation studies were conducted to verify the indispensability of each module in PAG-STAN.展开更多
To tackle the problem of inaccurate short-term bus load prediction,especially during holidays,a Transformer-based scheme with tailored architectural enhancements is proposed.First,the input data are clustered to reduc...To tackle the problem of inaccurate short-term bus load prediction,especially during holidays,a Transformer-based scheme with tailored architectural enhancements is proposed.First,the input data are clustered to reduce complexity and capture inherent characteristics more effectively.Gated residual connections are then employed to selectively propagate salient features across layers,while an attention mechanism focuses on identifying prominent patterns in multivariate time-series data.Ultimately,a pre-trained structure is incorporated to reduce computational complexity.Experimental results based on extensive data show that the proposed scheme achieves improved prediction accuracy over comparative algorithms by at least 32.00%consistently across all buses evaluated,and the fitting effect of holiday load curves is outstanding.Meanwhile,the pre-trained structure drastically reduces the training time of the proposed algorithm by more than 65.75%.The proposed scheme can efficiently predict bus load results while enhancing robustness for holiday predictions,making it better adapted to real-world prediction scenarios.展开更多
基金supported by National Natural Science Foundation of China,China(No.42004016)HuBei Natural Science Fund,China(No.2020CFB329)+1 种基金HuNan Natural Science Fund,China(No.2023JJ60559,2023JJ60560)the State Key Laboratory of Geodesy and Earth’s Dynamics self-deployment project,China(No.S21L6101)。
文摘Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currently,least squares(LS)+auto-regressive(AR)hybrid method is one of the main techniques of PM prediction.Besides,the weighted LS+AR hybrid method performs well for PM short-term prediction.However,the corresponding covariance information of LS fitting residuals deserves further exploration in the AR model.In this study,we have derived a modified stochastic model for the LS+AR hybrid method,namely the weighted LS+weighted AR hybrid method.By using the PM data products of IERS EOP 14 C04,the numerical results indicate that for PM short-term forecasting,the proposed weighted LS+weighted AR hybrid method shows an advantage over both the LS+AR hybrid method and the weighted LS+AR hybrid method.Compared to the mean absolute errors(MAEs)of PMX/PMY sho rt-term prediction of the LS+AR hybrid method and the weighted LS+AR hybrid method,the weighted LS+weighted AR hybrid method shows average improvements of 6.61%/12.08%and 0.24%/11.65%,respectively.Besides,for the slopes of the linear regression lines fitted to the errors of each method,the growth of the prediction error of the proposed method is slower than that of the other two methods.
基金funded by the Fujian Province Science and Technology Plan,China(Grant Number 2019H0017).
文摘Accurate forecasting of time series is crucial across various domains.Many prediction tasks rely on effectively segmenting,matching,and time series data alignment.For instance,regardless of time series with the same granularity,segmenting them into different granularity events can effectively mitigate the impact of varying time scales on prediction accuracy.However,these events of varying granularity frequently intersect with each other,which may possess unequal durations.Even minor differences can result in significant errors when matching time series with future trends.Besides,directly using matched events but unaligned events as state vectors in machine learning-based prediction models can lead to insufficient prediction accuracy.Therefore,this paper proposes a short-term forecasting method for time series based on a multi-granularity event,MGE-SP(multi-granularity event-based short-termprediction).First,amethodological framework for MGE-SP established guides the implementation steps.The framework consists of three key steps,including multi-granularity event matching based on the LTF(latest time first)strategy,multi-granularity event alignment using a piecewise aggregate approximation based on the compression ratio,and a short-term prediction model based on XGBoost.The data from a nationwide online car-hailing service in China ensures the method’s reliability.The average RMSE(root mean square error)and MAE(mean absolute error)of the proposed method are 3.204 and 2.360,lower than the respective values of 4.056 and 3.101 obtained using theARIMA(autoregressive integratedmoving average)method,as well as the values of 4.278 and 2.994 obtained using k-means-SVR(support vector regression)method.The other experiment is conducted on stock data froma public data set.The proposed method achieved an average RMSE and MAE of 0.836 and 0.696,lower than the respective values of 1.019 and 0.844 obtained using the ARIMA method,as well as the values of 1.350 and 1.172 obtained using the k-means-SVR method.
基金supported in part by the Inner Mongolia Autonomous Region Science and Technology Project Fund(2021GG0336)Inner Mongolia Natural Science Fund(2023ZD20).
文摘Accurate short-termphotovoltaic(PV)power prediction helps to improve the economic efficiency of power stations and is of great significance to the arrangement of grid scheduling plans.In order to improve the accuracy of PV power prediction further,this paper proposes a data cleaning method combining density clustering and support vector machine.It constructs a short-termPVpower predictionmodel based on particle swarmoptimization(PSO)optimized Long Short-Term Memory(LSTM)network.Firstly,the input features are determined using Pearson’s correlation coefficient.The feature information is clustered using density-based spatial clustering of applications withnoise(DBSCAN),and then,the data in each cluster is cleanedusing support vectormachines(SVM).Secondly,the PSO is used to optimize the hyperparameters of the LSTM network to obtain the optimal network structure.Finally,different power prediction models are established,and the PV power generation prediction results are obtained.The results show that the data methods used are effective and that the PSO-LSTM power prediction model based on DBSCAN-SVM data cleaning outperforms existing typical methods,especially under non-sunny days,and that the model effectively improves the accuracy of short-term PV power prediction.
基金supported by National Natural Science Foundation of China(No.516667017).
文摘Considering the instability of the output power of photovoltaic(PV)generation system,to improve the power regulation ability of PV power during grid-connected operation,based on the quantitative analysis of meteorological conditions,a short-term prediction method of PV power based on LMD-EE-ESN with iterative error correction was proposed.Firstly,through the fuzzy clustering processing of meteorological conditions,taking the power curves of PV power generation in sunny,rainy or snowy,cloudy,and changeable weather as the reference,the local mean decomposition(LMD)was carried out respectively,and their energy entropy(EE)was taken as the meteorological characteristics.Then,the historical generation power series was decomposed by LMD algorithm,and the hierarchical prediction of the power curve was realized by echo state network(ESN)prediction algorithm combined with meteorological characteristics.Finally,the iterative error theory was applied to the correction of power prediction results.The analysis of the historical data in the PV power generation system shows that this method avoids the influence of meteorological conditions in the short-term prediction of PV output power,and improves the accuracy of power prediction on the condition of hierarchical prediction and iterative error correction.
基金supported by the Science and Technology Project of State Grid Corporation of China(4000-202122070A-0-0-00).
文摘The fluctuation of wind power affects the operating safety and power consumption of the electric power grid and restricts the grid connection of wind power on a large scale.Therefore,wind power forecasting plays a key role in improving the safety and economic benefits of the power grid.This paper proposes a wind power predicting method based on a convolutional graph attention deep neural network with multi-wind farm data.Based on the graph attention network and attention mechanism,the method extracts spatial-temporal characteristics from the data of multiple wind farms.Then,combined with a deep neural network,a convolutional graph attention deep neural network model is constructed.Finally,the model is trained with the quantile regression loss function to achieve the wind power deterministic and probabilistic prediction based on multi-wind farm spatial-temporal data.A wind power dataset in the U.S.is taken as an example to demonstrate the efficacy of the proposed model.Compared with the selected baseline methods,the proposed model achieves the best prediction performance.The point prediction errors(i.e.,root mean square error(RMSE)and normalized mean absolute percentage error(NMAPE))are 0.304 MW and 1.177%,respectively.And the comprehensive performance of probabilistic prediction(i.e.,con-tinuously ranked probability score(CRPS))is 0.580.Thus,the significance of multi-wind farm data and spatial-temporal feature extraction module is self-evident.
基金supported by the Special Program in the Public Interest of the China Meteorological Administration (Grant No. GYHY201006022)the Strategic Special Projects of the Chinese Academy of Sciences (Grant No. XDA05090000)
文摘A statistical downscaling approach was developed to improve seasonal-to-interannual prediction of summer rainfall over North China by considering the effect of decadal variability based on observational datasets and dynamical model outputs.Both predictands and predictors were first decomposed into interannual and decadal components.Two predictive equations were then built separately for the two distinct timescales by using multivariate linear regressions based on independent sample validation.For the interannual timescale,850-hPa meridional wind and 500-hPa geopotential heights from multiple dynamical models' hindcasts and SSTs from observational datasets were used to construct predictors.For the decadal timescale,two well-known basin-scale SST decadal oscillation (the Atlantic Multidecadal Oscillation and the Pacific Decadal Oscillation) indices were used as predictors.Then,the downscaled predictands were combined to represent the predicted/hindcasted total rainfall.The prediction was compared with the models' raw hindcasts and those from a similar approach but without timescale decomposition.In comparison to hindcasts from individual models or their multi-model ensemble mean,the skill of the present scheme was found to be significantly higher,with anomaly correlation coefficients increasing from nearly neutral to over 0.4 and with RMSE decreasing by up to 0.6 mm d-1.The improvements were also seen in the station-based temporal correlation of the predictions with observed rainfall,with the coefficients ranging from-0.1 to 0.87,obviously higher than the models' raw hindcasted rainfall results.Thus,the present approach exhibits a great advantage and may be appropriate for use in operational predictions.
基金Supported by the National Natural Science Foundation of China
文摘We present a verification of the short-term predictions of solar X-ray bursts for the maximum phase (2000–2001) of Solar Cycle 23, issued by two prediction centers. The results are that the rate of correct predictions is about equal for RWC-China and WWA; the rate of too high predictions is greater for RWC-China than for WWA, while the rate of too low predictions is smaller for RWC-China than for WWA.
基金The National Key Research and Development Program of China under contract No.2016YFC1402609the Open Fund of the Key Laboratory of Marine Hazards Forecasting+1 种基金Ministry of Natural Resources under contract No.LOMF 1804the National Natural Science Foundation of China under contract No.42077438。
文摘Storm surges pose significant danger and havoc to the coastal residents’safety,property,and lives,particularly at offshore locations with shallow water levels.Predictions of storm surges with hours of warning time are important for evacuation measures in low-lying regions and coastal management plans.In addition to experienced predictions and numerical models,artificial intelligence(AI)techniques are also being used widely for short-term storm surge prediction owing to their merits in good level of prediction accuracy and rapid computations.Convolutional neural network(CNN)and long short-term memory(LSTM)are two of the most important models among AI techniques.However,they have been scarcely utilised for surge level(SL)forecasting,and combinations of the two models are even rarer.This study applied CNN and LSTM both individually and in combination towards multi-step ahead short-term storm surge level prediction using observed SL and wind information.The architectures of the CNN,LSTM,and two sequential techniques of combining the models(LSTM–CNN and CNN–LSTM)were constructed via a trial-and-error approach and knowledge obtained from previous studies.As a case study,11 a of hourly observed SL and wind data of the Xiuying Station,Hainan Province,China,were organised as inputs for training to verify the feasibility and superiority of the proposed models.The results show that CNN and LSTM had evident advantages over support vector regression(SVR)and multilayer perceptron(MLP),and the combined models outperformed the individual models(CNN and LSTM),mostly by 4%–6%.However,on comparing the model computed predictions during two severe typhoons that resulted in extreme storm surges,the accuracy was found to improve by over 10%at all forecasting steps.
文摘In this paper, the process of medium- and short-term prediction (submitted in special cards) of the Artux earthquake (MS=6.9) and the Usurian earthquake (MS=5.8) in Xinjiang area, is introduced. The imminent seismic risk regions are judged based on long- and medium-term seismic risk regions and annual seismic risk regions determined by national seismologic analysis, combined with large seismic situation analysis. We trace and analyze the seismic situation in large areas, and judge principal risk regions or belts of seismic activity in a year, by integrating the large area’s seismicity with geodetic deformation evolutional characteristics. As much as possible using information, we study synthetically observational information for long-medium- and short-term (time domain) and large-medium -small dimensions (space domain), and approach the forecast region of forthcoming earthquakes from the large to small magnitude. A better effect has been obtained. Some questions about earthquake prediction are discussed.
基金The National Nature Science Foundation of China(41474025,41374035)The Fundamental Research Funds for the Central Universities(2014214020201).
文摘In order to achieve high short-term prediction accuracy of ionospheric TEC,first,we transform a seasonal time series for ionospheric Total Electron Content (TEC) into a stationary time series by seasonal differences and regular differences with a full consideration of the Multiplicative Seasonal model.Next,we use the Autoregressive Integrated Moving Average (ARIMA) model taken from time series analysis theory for modeling the stationary TEC values to predict the TEC series.Using TEC data from 2008 to 2012 provided by the Center for Orbit Determination in Europe (CODE) as sample data,we analyzed the precision of this method for prediction of ionospheric TEC values which vary from high to low latitudes during both quiet and active ionospheric periods.The effect of the TEC sample’s length on the predicted accuracy is analyzed,too.Results from numerical experiments show that during the ionospheric quiet period the average relative prediction accuracy for a six day time span reaches up to 83.3% with average prediction residual errors of about 0.18±1.9 TECu.During ionospheric active periods it changes to 86.6% with an average prediction residual error of about 0.69±2.6 TECu.For the quiet periods,above 90% of predicted residual is less than ±3 TECu while during active periods,it is only about 81%.The two periods show that that the higher the latitude,the higher the absolute precision,and the lower the predicted relative accuracy.In addition,the results show that prediction accuracy will improve with an increase of the TEC sample sequences length,but it will gradually reduce if the length exceeds the optimal length,about 30 days.On the other hand,with the same TEC sample,as the predicted days increase,the predictive accuracy decreases.Athough the predictive accuracy is not apparent at the beginning,it will be significantly reduced after 30 days.
基金the Key Science andTechnology R&D Project of the 10th "Five-Year Plan" of Yunnan Province , entitled "Study of Med- and Short-term Prediction Techniques for Strong Earthquakein Yunnan"(2001NG46) andthe construction of Earthquake Monitoring andPrevention Center of West Yunnan (YN150105T037-045)
文摘Based on the data recorded by the regional digital seismic network of Yunnan and using new methods, the short-term variations of the ambient stress field of Yunnan and its adjacent areas are monitored in real time. With the in-depth analyses of the spatial-temporal evolution of the ambient stress field prior to the 2004, Shuangbai M_S5.0 earthquake, concrete procedures for predicting the three elements of the earthquake are presented.
基金Supported by the Education and Science Ministry of Russian Federation (477.2003.2)Russian Federal Program "Astronomy"the China-Russia Joint Research Center on Space Weather, Chinese Academy of Sciences
文摘Input data of the system are two-dimensional images and one-dimensional distributions of total and polarized solar emission at 5.2 cm wavelength obtained with SSRT. Together with photoheliograms, magnetograms, Hα-filtergrams and characteristics of active regions received from other sources, they form the initial database. The first stage includes superimposing the images, identifying microwave sources with active regions, assigning NOAA numbers to the sources, and determining for each active region the heliolatitude, extent, and inclination angle of the group's axis to the equator. These data are used to calculate the boundaries of longitude zones for each active region. A next stage involves determining the brightness temperatures of microwave sources less than the polarization distribution, the degree of polarization, and microwave emission flux, as well as calculating the parameters of microwave sources. Each parameter is assigned its own value of the weight factor, and the sum of values is used to draw the conclusion about the flare occurrence probability in each active region and on the Sun in general.
基金jointly supported by the National Natural Science Foundation of China(Grant Nos.42075138 and 42375147)the Program on Key Basic Research Project of Jiangsu(Grant No.BE2023829)。
文摘Tropical cyclones(TCs)are one of the most serious types of natural disasters,and accurate TC activity predictions are key to disaster prevention and mitigation.Recently,TC track predictions have made significant progress,but the ability to predict their intensity is obviously lagging behind.At present,research on TC intensity prediction takes atmospheric reanalysis data as the research object and mines the relationship between TC-related environmental factors and intensity through deep learning.However,reanalysis data are non-real-time in nature,which does not meet the requirements for operational forecasting applications.Therefore,a TC intensity prediction model named TC-Rolling is proposed,which can simultaneously extract the degree of symmetry for strong TC convective cloud and convection intensity,and fuse the deviation-angle variance with satellite images to construct the correlation between TC convection structure and intensity.For TCs'complex dynamic processes,a convolutional neural network(CNN)is used to learn their temporal and spatial features.For real-time intensity estimation,multi-task learning acts as an implicit time-series enhancement.The model is designed with a rolling strategy that aims to moderate the long-term dependent decay problem and improve accuracy for short-term intensity predictions.Since multiple tasks are correlated,the loss function of 12 h and 24 h are corrected.After testing on a sample of TCs in the Northwest Pacific,with a 4.48 kt root-mean-square error(RMSE)of 6 h intensity prediction,5.78 kt for 12 h,and 13.94 kt for 24 h,TC records from official agencies are used to assess the validity of TC-Rolling.
基金supported by the Science and Technology Project of Jiangsu Coastal Power Infrastructure Intelligent Engineering Research Center“Photovoltaic Power Prediction System Driven by Deep Learning and Multi-Source Data Fusion”(F2024-5044).
文摘Harnessing solar power is essential for addressing the dual challenges of global warming and the depletion of traditional energy sources.However,the fluctuations and intermittency of photovoltaic(PV)power pose challenges for its extensive incorporation into power grids.Thus,enhancing the precision of PV power prediction is particularly important.Although existing studies have made progress in short-term prediction,issues persist,particularly in the underutilization of temporal features and the neglect of correlations between satellite cloud images and PV power data.These factors hinder improvements in PV power prediction performance.To overcome these challenges,this paper proposes a novel PV power prediction method based on multi-stage temporal feature learning.First,the improved LSTMand SA-ConvLSTMare employed to extract the temporal feature of PV power and the spatial-temporal feature of satellite cloud images,respectively.Subsequently,a novel hybrid attention mechanism is proposed to identify the interplay between the two modalities,enhancing the capacity to focus on the most relevant features.Finally,theTransformermodel is applied to further capture the short-termtemporal patterns and long-term dependencies within multi-modal feature information.The paper also compares the proposed method with various competitive methods.The experimental results demonstrate that the proposed method outperforms the competitive methods in terms of accuracy and reliability in short-term PV power prediction.
基金supported in part by the National Key Research and Development Program of China(Project No.2018YFB1600900)the Jiangsu Province Transportation Key Project of Science(Project No.2019Z01)Zhejiang Provincial Natural Science Foundation of China(No.LTGG23E080005).
文摘Short-term prediction of on-street parking occupancy is essential to the ITS system,which can guide drivers in finding vacant parking spaces.And the spatial dependencies and exogenous dependencies need to be considered simultaneously,which makes short-term prediction of on-street parking occupancy challenging.Therefore,this paper proposes a deep learning model for predicting block-level parking occupancy.First,the importance of multiple points of interest(POI)in different buffers is sorted by Boruta,used for feature selection.The results show that different types of POI data should consider different buffer radii.Then based on the real on-street parking data,long short-term memory(LSTM)that can address the time dependencies is applied to predict the parking occupancy.The results demonstrate that LSTM considering POI data after Boruta selection(LSTM(+BORUTA))outperforms other baseline methods,including LSTM,with an average testing MAPE of 11.78%.The selection process of POI data helps LSTM reduce training time and slightly improve the prediction performance,which indicates that complex correlations among the same type of POI data in different buffer zones will also affect the prediction accuracy of LSTM.When there are more restaurants on both sides of the street,the prediction performance of LSTM(+BORUTA)is significantly better than that of LSTM.
基金the Self-supporting Program of Guangzhou Laboratory(SRPG22-007)the Collaborative Research Project of the National Natural Science Foundation of China(L2224041)+2 种基金and the Chinese Academy of Sciences(XK2022DxC005)Frontier of Interdisciplinary Research on Monitoring and Prediction of Pathogenic Microorganisms in the Atmosphereand the Fundamental Research Funds for the Central Universities(lzujbky-2023-ey10)。
文摘In the global challenge of Coronavirus disease 2019(COVID-19)pandemic,accurate prediction of daily new cases is crucial for epidemic prevention and socioeconomic planning.In contrast to traditional local,one-dimensional time-series data-based infection models,the study introduces an innovative approach by formulating the short-term prediction problem of new cases in a region as multidimensional,gridded time series for both input and prediction targets.A spatial-temporal depth prediction model for COVID-19(ConvLSTM)is presented,and further ConvLSTM by integrating historical meteorological factors(Meteor-ConvLSTM)is refined,considering the influence of meteorological factors on the propagation of COVID-19.The correlation between 10 meteorological factors and the dynamic progression of COVID-19 was evaluated,employing spatial analysis techniques(spatial autocorrelation analysis,trend surface analysis,etc.)to describe the spatial and temporal characteristics of the epidemic.Leveraging the original ConvLSTM,an artificial neural network layer is introduced to learn how meteorological factors impact the infection spread,providing a 5-day forecast at a 0.01°×0.01°pixel resolution.Simulation results using real dataset from the 3.15 outbreak in Shanghai demonstrate the efficacy of Meteor-ConvLSTM,with reduced RMSE of 0.110 and increased R^(2) of 0.125(original ConvLSTM:RMSE=0.702,R^(2)=0.567;Meteor-ConvLSTM:RMSE=0.592,R^(2)=0.692),showcasing its utility for investigating the epidemiological characteristics,transmission dynamics,and epidemic development.
基金supported by the General Program of the National Natural Science Foundation of China(No.52274326)the China Baowu Low Carbon Metallurgy Innovation Foundation(No.BWLCF202109)the Seventh Batch of Ten Thousand Talents Plan of China(No.ZX20220553).
文摘Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley additive explanation(SHAP)to predict the flue pressure and take targeted adjustment measures.First,the sintering process data were collected and processed.A flue pressure prediction model was then constructed after comparing different feature selection methods and model algorithms using SHAP+extremely random-ized trees(ET).The prediction accuracy of the model within the error range of±0.25 kPa was 92.63%.SHAP analysis was employed to improve the interpretability of the prediction model.The effects of various sintering operation parameters on flue pressure,the relation-ship between the numerical range of key operation parameters and flue pressure,the effect of operation parameter combinations on flue pressure,and the prediction process of the flue pressure prediction model on a single sample were analyzed.A flue pressure optimization module was also constructed and analyzed when the prediction satisfied the judgment conditions.The operating parameter combination was then pushed.The flue pressure was increased by 5.87%during the verification process,achieving a good optimization effect.
基金National Natural Science Foundation of China(61674119,61974177,62204196,62205258)National Key Research and Development Program of China(2018YFE0201200,2021YFB2801900,2021YFB2801902,2021YFB2801904)+1 种基金National Outstanding Youth Science Fund Project of National Natural Science Foundation of China(62022062)Fundamental Research Funds for the Central Universities(JB210114).
文摘Chaos,occurring in a deterministic system,has permeated various fields such as mathematics,physics,and life science.Consequently,the prediction of chaotic time series has received widespread attention and made signifi-cant progress.However,many problems,such as high computational complexity and difficulty in hardware im-plementation,could not be solved by existing schemes.To overcome the problems,we employ the chaotic system of a vertical-cavity surface-emitting laser(VCSEL)mutual coupling network to generate chaotic time series through optical system simulation and experimentation in this paper.Furthermore,a photonic reservoir com-puting based on VCSEL,along with a feedback loop,is proposed for the short-term prediction of the chaotic time series.The relationship between the prediction difficulty of the reservoir computing(RC)system and the differ-ence in complexity of the chaotic time series has been studied with emphasis.Additionally,the attention coefficient of injection strength and feedback strength,prediction duration,and other factors on system perfor-mance are considered in both simulation and experiment.The use of the RC system to predict the chaotic time series generated by actual chaotic systems is significant for expanding the practical application scenarios of the RC.
基金supported by the National Natural Science Foundation of China(72288101,72201029,and 72322022).
文摘Accurate origin–destination(OD)demand prediction is crucial for the efficient operation and management of urban rail transit(URT)systems,particularly during a pandemic.However,this task faces several limitations,including real-time availability,sparsity,and high-dimensionality issues,and the impact of the pandemic.Consequently,this study proposes a unified framework called the physics-guided adaptive graph spatial–temporal attention network(PAG-STAN)for metro OD demand prediction under pandemic conditions.Specifically,PAG-STAN introduces a real-time OD estimation module to estimate real-time complete OD demand matrices.Subsequently,a novel dynamic OD demand matrix compression module is proposed to generate dense real-time OD demand matrices.Thereafter,PAG-STAN leverages various heterogeneous data to learn the evolutionary trend of future OD ridership during the pandemic.Finally,a masked physics-guided loss function(MPG-loss function)incorporates the physical quantity information between the OD demand and inbound flow into the loss function to enhance model interpretability.PAG-STAN demonstrated favorable performance on two real-world metro OD demand datasets under the pandemic and conventional scenarios,highlighting its robustness and sensitivity for metro OD demand prediction.A series of ablation studies were conducted to verify the indispensability of each module in PAG-STAN.
文摘To tackle the problem of inaccurate short-term bus load prediction,especially during holidays,a Transformer-based scheme with tailored architectural enhancements is proposed.First,the input data are clustered to reduce complexity and capture inherent characteristics more effectively.Gated residual connections are then employed to selectively propagate salient features across layers,while an attention mechanism focuses on identifying prominent patterns in multivariate time-series data.Ultimately,a pre-trained structure is incorporated to reduce computational complexity.Experimental results based on extensive data show that the proposed scheme achieves improved prediction accuracy over comparative algorithms by at least 32.00%consistently across all buses evaluated,and the fitting effect of holiday load curves is outstanding.Meanwhile,the pre-trained structure drastically reduces the training time of the proposed algorithm by more than 65.75%.The proposed scheme can efficiently predict bus load results while enhancing robustness for holiday predictions,making it better adapted to real-world prediction scenarios.