To evaluate the effect of acute high-altitude exposure on sensory and short-term memory using interactive software,we transported 30 volunteers in a sport utility vehicle to a 4280 m plateau within3 h.We measured thei...To evaluate the effect of acute high-altitude exposure on sensory and short-term memory using interactive software,we transported 30 volunteers in a sport utility vehicle to a 4280 m plateau within3 h.We measured their memory performance on the plain(initial arrival)and 3 h after arrival on the plateau using six measures.展开更多
Bisphenol A (BPA), a toxicant which can leach into food from plastic containers, is reported to induce neurotoxicity among others via oxidative mechanisms. However, antioxidant compounds have been suggested to mitigat...Bisphenol A (BPA), a toxicant which can leach into food from plastic containers, is reported to induce neurotoxicity among others via oxidative mechanisms. However, antioxidant compounds have been suggested to mitigate BPA-induced toxicities. Garcinia kola (GK) and its bioactive compound, kolaviron, are well-established natural antioxidants, which can exert protective effects against BPA-induced toxicities. This study was designed to investigate the likely mitigating effect of GK and kolaviron on BPA-induced memory impairment and hippocampal neuroinflammation in male Wistar rats. Thirty-five rats were equally grouped and treated as follows: I and II received distilled water and corn oil, respectively at 0.2 mL, while III - VII received BPA (50 mg/kg), BPA + GK (200 mg/kg), BPA + kolaviron (200 mg/kg), GK and kolaviron, respectively for 28 days p.o. Thereafter, behavioral studies were done using the Novel Object Recognition and Y maze tests. Subsequently under anaesthesia, the hippocampus in each animal was dissected out, homogenized and analysed for malondialdehyde, superoxide dismutase, catalase, reduced glutathione, glutathione transferase, nitrites, interleukin-6, tumour necrosis factor-α, acetylcholinesterase, glutamate acid decarboxylase, and arginase activity. Data were analyzed by ANOVA and Tukey Post-hoc test at p p Garcinia kola and Kolaviron mitigate bisphenol A-induced memory impairment and neuroinflammation via antioxidant potentiation and neurotransmitter balance.展开更多
Isoflurane and sevoflurane are both inhalation anesthetics,but in clinical application,sevoflurane has been considered to be less suitable for long-term anesthesia because of its catabolic compounds and potential neph...Isoflurane and sevoflurane are both inhalation anesthetics,but in clinical application,sevoflurane has been considered to be less suitable for long-term anesthesia because of its catabolic compounds and potential nephrotoxicity.Nevertheless,recent studies have shown that these two inhalation anesthetics are similar in hepatorenal toxicity,cost,and long-term anesthetic effect.Moreover,sevoflurane possibly has less cognitive impact on young mice.In this study,C57BL/6 mice aged 8–10 weeks were exposed to 1.2%isoflurane or 2.4%sevoflurane for 6 hours.Cognitive function and memory were examined in young mice using the novel object recognition,contextual fear conditioning,and cued-fear extinction tests.Western blot assay was performed to detect expression levels of D1 dopamine receptor,catechol-O-methyltransferase,phospho-glycogen synthase kinase-3β,and total glycogen synthase kinase-3βin the hippocampus.Our results show that impaired performance was not detected in mice exposed to sevoflurane during the novel object recognition test.Contextual memory impairment in the fear conditioning test was shorter in the sevoflurane group than the isoflurane group.Long-term sevoflurane exposure did not affect memory consolidation,while isoflurane led to memory consolidation and reduced retention.Downregulation of hippocampal D1 dopamine receptors and phosphorylated glycogen synthase kinase-3β/total glycogen synthase kinase-3βand upregulation of catechol-O-methyltransferase may be associated with differing memory performance after exposure to isoflurane or sevoflurane.These results confirm that sevoflurane has less effect on cognitive impairment than isoflurane,which may be related to expression of D1 dopamine receptors and catechol-O-methyltransferase and phosphorylation of glycogen synthase kinase-3βin the hippocampus.This study was approved by the Institutional Animal Care and Use Committee,Nanjing University,China on November 20,2017(approval No.20171102).展开更多
Objective: To assess functional relationship by calculating inter- and intra-hemispheric electroencephalography (EEG) coherence at rest and during a working memory task of patients with mild cognitive impairment (...Objective: To assess functional relationship by calculating inter- and intra-hemispheric electroencephalography (EEG) coherence at rest and during a working memory task of patients with mild cognitive impairment (MCI). Methods: The sample consisted of 69 subjects: 35 patients (n = 17 males, n = 18 females; 52-71 years old) and 34 normal controls (n = 17 males, n = 17 females; 51 -63 years old). Mini-mental state examination (MMSE) of two groups revealed that the scores of MCI patients did not differ significantly from those of normal controls (P〉0.05). In EEG recording, subjects were performed at rest and during working memory task. EEG signals from F3-F4, C3-C4, P3-P4, T5-T6 and O1-O2 electrode pairs are resulted from the inter-hemispheric action, and EEG signals from F3-C3, F4-C4, C3-P3, C4-P4, P3-O1, P4-O2, T5-C3, T6-C4, T5-P3 and T6-P4 electrode pairs are resulted from the intra-hemispheric action for delta (1.0-3.5 Hz), theta (4.0-7.5 Hz), alpha-1 (8.0-10.0 Hz), alpha-2 (10.5-13.0 Hz), beta-1 (13.5-18.0 Hz) and beta-2 (18.5-30.0 Hz) frequency bands. The influence of inter- and intra-hemispheric coherence on EEG activity with eyes closed was examined using fast Fourier transformation from the 16 sampled channels. Results: During working memory tasks, the inter- and intra-hemispheric EEG coherences in all bands were significantly higher in the MCI group in comparison with those in the control group (P〈0.05). However, there was no significant difference in inter- and intra-hemispheric EEG coherences between two groups at rest. Conclusion: Experimental results comprise evidence that MCI patients have higher degree of functional connectivity between hemispheres and in hemispheres during working condition, It suggests that MCI may be associated with compensatory processes during working memory tasks between hemispheres and in hemispheres. Moreover, failure of normal cortical connections may exist in MCI patients.展开更多
The α5 subunit-containing gamma-amino butyric acid type A receptors(α5 GABAARs) are a distinct subpopulation that are specifically distributed in the mammalian hippocampus and also mediate tonic inhibitory currents ...The α5 subunit-containing gamma-amino butyric acid type A receptors(α5 GABAARs) are a distinct subpopulation that are specifically distributed in the mammalian hippocampus and also mediate tonic inhibitory currents in hippocampal neurons. These tonic currents can be enhanced by low-dose isoflurane, which is associated with learning and memory impairment. Inverse agonists of α5 GABAARs, such as L-655,708, are able to reverse the short-term memory deficit caused by low-dose isoflurane in young animals. However, whether these negative allosteric modulators have the same effects on aged rats remains unclear. In the present study, we mainly investigated the effects of L-655,708 on low-dose(1.3%) isoflurane-induced learning and memory impairment in elderly rats. Young(3-month-old) and aged(24-month-old) Wistar rats were randomly assigned to receive L-655,708 0.5 hour before or 23.5 hours after 1.3% isoflurane anesthesia.The Morris Water Maze tests demonstrated that L-655,708 injected before or after anesthesia could reverse the memory deficit in young rats. But in aged rats, application of L-655,708 only before anesthesia showed similar effects. Reverse transcription-polymerase chain reaction showed that low-dose isoflurane decreased the mRNA expression of α5 GABAARs in aging hippocampal neurons but increased that in young animals. These findings indicate that L-655,708 prevented but could not reverse 1.3% isoflurane-induced spatial learning and memory impairment in aged Wistar rats. All experimental procedures and protocols were approved by the Experimental Animal Ethics Committee of Academy of Military Medical Science of China(approval No. NBCDSER-IACUC-2015128) in December 2015.展开更多
Objective Arsenic(As) and fluoride(F) are two of the most common elements contaminating groundwater resources. A growing number of studies have found that As and F can cause neurotoxicity in infants and children, lead...Objective Arsenic(As) and fluoride(F) are two of the most common elements contaminating groundwater resources. A growing number of studies have found that As and F can cause neurotoxicity in infants and children, leading to cognitive, learning, and memory impairments. However, early biomarkers of learning and memory impairment induced by As and/or F remain unclear. In the present study, the mechanisms by which As and/or F cause learning memory impairment are explored at the multi-omics level(microbiome and metabolome).Methods We stablished an SD rats model exposed to arsenic and/or fluoride from intrauterine to adult period.Results Arsenic and/fluoride exposed groups showed reduced neurobehavioral performance and lesions in the hippocampal CA1 region. 16S rRNA gene sequencing revealed that As and/or F exposure significantly altered the composition and diversity of the gut microbiome, featuring the Lachnospiraceae_NK4A136_group, Ruminococcus_1, Prevotellaceae_NK3B31_group, [Eubacterium]_xylanophilum_group. Metabolome analysis showed that As and/or F-induced learning and memory impairment may be related to tryptophan, lipoic acid, glutamate, gamma-aminobutyric acidergic(GABAergic) synapse, and arachidonic acid(AA) metabolism. The gut microbiota, metabolites, and learning memory indicators were significantly correlated.Conclusion Learning memory impairment triggered by As and/or F exposure may be mediated by different gut microbes and their associated metabolites.展开更多
Cognitive impairment caused by chemotherapy,referred to as“chemobrain,”is observed in approximately 70% of cancer survivors.However,it is not completely understood how chemotherapy induces cognitive dysfunction,and ...Cognitive impairment caused by chemotherapy,referred to as“chemobrain,”is observed in approximately 70% of cancer survivors.However,it is not completely understood how chemotherapy induces cognitive dysfunction,and clinical treatment strategies for this problem are lacking.Metformin,used as a first-line treatment for type 2 diabetes mellitus,is reported to reduce the effects of chemobrain.Recently,several studies have examined the effect of metformin in rescuing chemobrain.This review discusses recent clinical/preclinical studies that addressed some mechanisms of chemobrain and evaluates the effect of metformin in rescuing chemobrain and its potential mechanisms of action.展开更多
Stress changes due to changes in fluid pressure and temperature in a faulted formation may lead to the opening/shearing of the fault.This can be due to subsurface(geo)engineering activities such as fluid injections an...Stress changes due to changes in fluid pressure and temperature in a faulted formation may lead to the opening/shearing of the fault.This can be due to subsurface(geo)engineering activities such as fluid injections and geologic disposal of nuclear waste.Such activities are expected to rise in the future making it necessary to assess their short-and long-term safety.Here,a new machine learning(ML)approach to model pore pressure and fault displacements in response to high-pressure fluid injection cycles is developed.The focus is on fault behavior near the injection borehole.To capture the temporal dependencies in the data,long short-term memory(LSTM)networks are utilized.To prevent error accumulation within the forecast window,four critical measures to train a robust LSTM model for predicting fault response are highlighted:(i)setting an appropriate value of LSTM lag,(ii)calibrating the LSTM cell dimension,(iii)learning rate reduction during weight optimization,and(iv)not adopting an independent injection cycle as a validation set.Several numerical experiments were conducted,which demonstrated that the ML model can capture peaks in pressure and associated fault displacement that accompany an increase in fluid injection.The model also captured the decay in pressure and displacement during the injection shut-in period.Further,the ability of an ML model to highlight key changes in fault hydromechanical activation processes was investigated,which shows that ML can be used to monitor risk of fault activation and leakage during high pressure fluid injections.展开更多
Objective:To evaluate the neuroprotective effects of the organic components of scallop shells(scallop shell extract) on memory impairment and locomotor activity induced by scopolamine or 5-methyl-10,11-dihydro-5H-dibe...Objective:To evaluate the neuroprotective effects of the organic components of scallop shells(scallop shell extract) on memory impairment and locomotor activity induced by scopolamine or 5-methyl-10,11-dihydro-5H-dibenzo(a,d) cyclohepten-5,10-imine(MK801).Methods:Effect of the scallop shell extract on memory impairment and locomotor activity was investigated using the Y-maze test,the Morris water maze test,and the open field test.Results:Scallop shell extract significantly reduced scopolamine-induced short-term memory impairment and partially reduced scopolamine-induced spatial memory impairment in the Morris water maze test.Scallop shell extract suppressed scopolamine-induced elevation of acetylcholine esterase activity in the cerebral cortex.Treatment with scallop shell extract reversed the increase in locomotor activity induced by scopolamine.Scallop shell extract also suppressed the increase in locomotor activity induced by MK801.Conclusions:Our results provide initial evidence that scallop shell extract reduces scopolamine-induced memory impairment and suppresses MK-801-induced hyperlocomotion.展开更多
Managing memory deficits is a central problem among older adults with mild cognitive impairment (MCI). This study examined the effects of memory training on memory performance in an understudied “oldest-old” populat...Managing memory deficits is a central problem among older adults with mild cognitive impairment (MCI). This study examined the effects of memory training on memory performance in an understudied “oldest-old” population ranging in age from 90 to 99 years. Eighteen mild to moderately cognitive-impaired older seniors, 90 years and older were recruited from memory clinics established in senior living communities. Treatment sessions took place, on average, twice weekly, for 55 minutes. Memory intervention included nineteen computer-based exercises customized to focus on memory loss. The specificity of memory training was very clear;memory training produced significant effects (F(3,51) = 2.81, p = 0.05) on memory performance, especially after 6 months of training, while other outcome measures showed no effects as predicted. Based on the results, it can be concluded that interventions targeting cognition and memory in the oldest-old MCI population can significantly improve memory function and reduce cognitive deficits.展开更多
A fast-charging policy is widely employed to alleviate the inconvenience caused by the extended charging time of electric vehicles. However, fast charging exacerbates battery degradation and shortens battery lifespan....A fast-charging policy is widely employed to alleviate the inconvenience caused by the extended charging time of electric vehicles. However, fast charging exacerbates battery degradation and shortens battery lifespan. In addition, there is still a lack of tailored health estimations for fast-charging batteries;most existing methods are applicable at lower charging rates. This paper proposes a novel method for estimating the health of lithium-ion batteries, which is tailored for multi-stage constant current-constant voltage fast-charging policies. Initially, short charging segments are extracted by monitoring current switches,followed by deriving voltage sequences using interpolation techniques. Subsequently, a graph generation layer is used to transform the voltage sequence into graphical data. Furthermore, the integration of a graph convolution network with a long short-term memory network enables the extraction of information related to inter-node message transmission, capturing the key local and temporal features during the battery degradation process. Finally, this method is confirmed by utilizing aging data from 185 cells and 81 distinct fast-charging policies. The 4-minute charging duration achieves a balance between high accuracy in estimating battery state of health and low data requirements, with mean absolute errors and root mean square errors of 0.34% and 0.66%, respectively.展开更多
With the advancement of artificial intelligence,traffic forecasting is gaining more and more interest in optimizing route planning and enhancing service quality.Traffic volume is an influential parameter for planning ...With the advancement of artificial intelligence,traffic forecasting is gaining more and more interest in optimizing route planning and enhancing service quality.Traffic volume is an influential parameter for planning and operating traffic structures.This study proposed an improved ensemble-based deep learning method to solve traffic volume prediction problems.A set of optimal hyperparameters is also applied for the suggested approach to improve the performance of the learning process.The fusion of these methodologies aims to harness ensemble empirical mode decomposition’s capacity to discern complex traffic patterns and long short-term memory’s proficiency in learning temporal relationships.Firstly,a dataset for automatic vehicle identification is obtained and utilized in the preprocessing stage of the ensemble empirical mode decomposition model.The second aspect involves predicting traffic volume using the long short-term memory algorithm.Next,the study employs a trial-and-error approach to select a set of optimal hyperparameters,including the lookback window,the number of neurons in the hidden layers,and the gradient descent optimization.Finally,the fusion of the obtained results leads to a final traffic volume prediction.The experimental results show that the proposed method outperforms other benchmarks regarding various evaluation measures,including mean absolute error,root mean squared error,mean absolute percentage error,and R-squared.The achieved R-squared value reaches an impressive 98%,while the other evaluation indices surpass the competing.These findings highlight the accuracy of traffic pattern prediction.Consequently,this offers promising prospects for enhancing transportation management systems and urban infrastructure planning.展开更多
Breast cancer is a significant threat to the global population,affecting not only women but also a threat to the entire population.With recent advancements in digital pathology,Eosin and hematoxylin images provide enh...Breast cancer is a significant threat to the global population,affecting not only women but also a threat to the entire population.With recent advancements in digital pathology,Eosin and hematoxylin images provide enhanced clarity in examiningmicroscopic features of breast tissues based on their staining properties.Early cancer detection facilitates the quickening of the therapeutic process,thereby increasing survival rates.The analysis made by medical professionals,especially pathologists,is time-consuming and challenging,and there arises a need for automated breast cancer detection systems.The upcoming artificial intelligence platforms,especially deep learning models,play an important role in image diagnosis and prediction.Initially,the histopathology biopsy images are taken from standard data sources.Further,the gathered images are given as input to the Multi-Scale Dilated Vision Transformer,where the essential features are acquired.Subsequently,the features are subjected to the Bidirectional Long Short-Term Memory(Bi-LSTM)for classifying the breast cancer disorder.The efficacy of the model is evaluated using divergent metrics.When compared with other methods,the proposed work reveals that it offers impressive results for detection.展开更多
To investigate the features of electroencephalography (EEG) power and coherence at rest and during a working memory task of patients with mild cognitive impairment (MCI). Thirty-five patients (17 males, 18 female...To investigate the features of electroencephalography (EEG) power and coherence at rest and during a working memory task of patients with mild cognitive impairment (MCI). Thirty-five patients (17 males, 18 females; 52-71 years old) and 34 sex- and age-matched controls (17 males, 17 females; 51-63 years old) were recruited in the present study. Mini-Mental State Examination (MMSE) of 35 patients with MCI and 34 normal controls revealed that the scores of MCI patients did not differ significantly from those of normal controls (P〉0.05). Then, EEGs at rest and during working memory task with three levels of working memory load were recorded. The EEG power was computed over 10 channels: fight and left frontal (F3, F4), central (C3, C4), parietal (P3, P4), temporal (T5, T6) and occipital (O1, O2); inter-hemispheric coherences were computed from five electrode pairs of F3-F4, C3-C4, P3-P4, T5-T6 and O1-O2 for delta (1.0-3.5 Hz), theta (4.0-7.5 Hz), alpha-1 (8.0-10.0 Hz), alpha-2 (10.5-13.0 Hz), beta-1 (13.5-18.0 Hz) and beta-2 (18.5-30.0 Hz) frequency bands. All values of the EEG power of MCI patients were found to be higher than those of normal controls at rest and during working memory tasks. Furthermore, the values of EEG power in the theta, alpha-1, alpha-2 and beta-1 bands of patients with MCI were significantly high (P〈0.05) in comparison with those of normal controls. Correlation analysis indicated a significant negative correlation between the EEG powers and MMSE scores. In addition, during working memory tasks, the EEG coherences in all bands were significantly higher in the MCI group in comparison with those in the control group (P〈0.05). However, there was no significant difference in EEG coherences between two groups at rest. These findings comprise evidence that MCI patients have higher EEG power at rest, and higher EEG power and coherence during working conditions. It suggests that MCI may be associated with compensatory processes at rest and during working memory tasks. Moreover, failure of normal cortical connections may be exist in MCI patients.展开更多
Aim: To observe the rats’ learning and memory acquisition ability disturbance induced by BI-D1870. Methods: Male SD rats were randomly divided into control group, solvent control group and BI-D1870 group. The rats in...Aim: To observe the rats’ learning and memory acquisition ability disturbance induced by BI-D1870. Methods: Male SD rats were randomly divided into control group, solvent control group and BI-D1870 group. The rats in the control group were intraperitoneally injected with saline, while those in the solvent control group were intraperitoneally injected with DMSO + sulfobutyl-β-cyclodextrin solvent, and those in the BI-D1870 group were intraperitoneally injected with BI-D1870. All the rats’ appearance and behavior were daily observed, and body weight was recorded on the day 15, 30, 45, 60, 75 and 82 of BI-D1870 injected. Morris water maze was used to screen the rats’ learning and memory acquisition ability on the day 22 - 25, 52 - 55, and 82 - 85 of training by BI-D1870 treated. The successful rates of the rats’ memory impairment were respectively calculated for three times screening. Results: During the whole experiment, there was no obvious difference in appearance and fur color in all rats. The rats’ agitation began to appear on the day 10th of BI-D1870 given. The agitation rats’ number and rats’ body weight gradually increased along with BI-D1870 treated (P P Conclusion: Intraperitoneal injection of BI-D1870 can induce the rats’ learning and memory acquisition ability disorder.展开更多
Background: Cognitive impairment becomes more common with ageing and may benefit from intervention. In a Spanish speaking population, detection of cognitive impairment by a general practitioner in Primary Care can be ...Background: Cognitive impairment becomes more common with ageing and may benefit from intervention. In a Spanish speaking population, detection of cognitive impairment by a general practitioner in Primary Care can be a problem, as many of the standard tests target English speaking populations. The Memory Impairment Screen (MIS-A) is a validated test using English words to detect Alzheimer’s Disease (AD) and other dementias. We have modified this test to suit a Spanish speaking population and added a new component, delayed recall. We have called our new test the Memory Impairment Screen with Delayed Recall (MIS-D). Objectives: 1) To test a Spanish version of MIS-A and MIS-D. 2) To assess the discriminative validity of MIS-D as a screening tool for the amnestic variant of Mild Cognitive Impairment (aMCI) in a group of Spanish speaking people aged 65 years old and over. Methods: A case-control study of a cohort of 739 native Spanish speaking residents of Buenos Aires aged 65 years old and over, of whom 436 were healthy controls and 303 had a diagnosis of aMCI. Measurements: Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NVP) were estimated for MIS-D and MIS-A. Results: Normative values for MIS-A and MIS-D were obtained from the control population. Both age and education significantly affected these values (p < 0.0001). Control participants showed significant differences for both modalities, MIS-A and MIS-D. The cut-off for MIS-A should be 7.5 and for MIS-D, 5.5. Comparison between control population and aMCI population using ROC curve gave a result of 5.5 in MIS-D, with 97% specificity and 76% sensitivity. Conclusion: MIS-D was positively predictive of aMCI, with 97% specificity and 76% sensitivity in a sample of Spanish speaking patients aged 65 years old and over in Buenos Aires.展开更多
Objective: The functional relationship between calculated alpha band spectral power and inter-/intra-hemispheric coherence during a three-level working memory task of patients with mild cognitive impairment (MCI) w...Objective: The functional relationship between calculated alpha band spectral power and inter-/intra-hemispheric coherence during a three-level working memory task of patients with mild cognitive impairment (MCI) was investigated. Methods:Subjects included 35 MCI patients according to the DSM-Ⅳ criteria (mean age: 62.3, SD: 6.5) and 34 healthy controls (mean age:57.4, SD: 4.0) were selected from the community at large. All subjects performed a simple calculation and recall task with three levels of working memory load while electroencephalograph (EEG) signal was recorded. The spectral EEG power was computed over alphal (8.0~10.0 Hz) and alpha2 (10.5~13.0 Hz) frequency bands and was compared between rest stage and working memory processing stage by two-way ANOVA. Post hoc testing analyzed the differences between each two levels of working memory load during task processing. The inter-hemisphere EEG coherence of frontal (F3-F4), central (C3-C4), parietal (P3-P4), temporal (T5-T6) as well as occipital (O1-O2) was compared between MCI patients and normal controls. The EEG signals from F3-C3,F4-C4, C3-P3, C4-P4, P3-O1, P4-O2, T5-C3, T6-C4, T5-P3 and T6-P4 electrode pairs resulted from the intra-hemispheric action for alphal and alpha2 frequency bands. Result: There was significantly higher EEG power from MCI patients than from normal controls both at rest and during working memory processing. Significant differences existed between rest condition and three-level working memory tasks (P〈0.001). The inter- and intra-hemispheric coherence during working memory tasks showed a "drop to rise" tendency compared to that at rest condition. There was significantly higher coherence in MCI patients than in the controls.When task difficulties increased, the cortical connectivity of intra-hemispheric diminished while the inter-hemispheric connectivity dominantly maintained the cognitive processing in MCI patients. Conclusion: The results of the present study indicate that the alpha frequency band may be the characteristic band in distinguishing MCI patients from normal controls during working memory tasks. MCI patients exhibit greater inter-hemispheric connectivity than intra-hemispheric connectivity when memory demands increase. MCI patients mobilize a compensatory mechanism to maintain the processing effectiveness while the processing efficiency is reduced.展开更多
Rehabilitation of episodic memory declines typically focuses on alleviating the demand for recall and improving the retrieval process. Modulating the encoding is not commonly practiced, but may nevertheless be importa...Rehabilitation of episodic memory declines typically focuses on alleviating the demand for recall and improving the retrieval process. Modulating the encoding is not commonly practiced, but may nevertheless be important. Seventeen event-related potential (ERP) studies interpreted using the subsequent memory effect, an index of successful encoding, are reviewed and the factors involved in encoding are discussed. The nature of the materials used for testing, modes of encoding, and the nature of the retrieval task are highlighted as important factors. Meaningful materials and processing information semantically enhance encoding to episodic memory. The stud-ies reviewed reveal that older persons process information more uniformly without elaboration compared with their younger counterparts. Although people with mild cognitive impairment have encoding and retrieval deficits, an elaborative type of encoding training that draws on successful encoding factors may help to improve memory performance.展开更多
Prior to development of diffusion tensor imaging (DTI), there were many difficulties in visualization and estimation of the Papez circuit in the live human brain (Papez, 1995). Diffusion tensor tractography (DTT...Prior to development of diffusion tensor imaging (DTI), there were many difficulties in visualization and estimation of the Papez circuit in the live human brain (Papez, 1995). Diffusion tensor tractography (DTT), derived from DTI, allows for identification and visualization of neural tracts in the Papez circuit (Concha et al., 2005; Kwon et al., 2010; Granziera et al., 2011; Jang and Yeo, 2013; Jang et al., 2014a). In the current study, using DTT, we report on a patient who showed injured thalamocortical tract between the anterior thalamic nuclei and the cingulate gyrus following a putaminal hemorrhage.展开更多
Objective: To investigate the influence of calcium carbonate supplementation on cognitive function in mice. Methods: Mice were fed diets containing 1.0% calcium carbonate for 8 weeks, following which they were evaluat...Objective: To investigate the influence of calcium carbonate supplementation on cognitive function in mice. Methods: Mice were fed diets containing 1.0% calcium carbonate for 8 weeks, following which they were evaluated for memory function using object recognition, Y-maze, and Barnes maze tests. Next, the expression levels of cAMP response element binding protein(CREB) and phosphorylated CREB, which is involved in the memory process were investigated in both the hippocampus and cerebral cortex using western blotting methods. Results: Mice fed on a diet containing calcium carbonate showed memory impairments in object recognition, Y-maze, and Barnes maze tests with respect to the mice that were on a control diet. Further, mice that were fed a diet containing calcium carbonate and a nimodipine(an L-type calcium channel antagonist), reversed calcium carbonate-induced memory impairments, thus suggesting that excessive entry of calcium in cells may cause memory impairments. A study using western blot revealed that expression of CREB and phosphorylated CREB in hippocampus and cerebral cortex was significantly lower in the calcium carbonatefed mice than in the control-diet-fed mice. Conclusions: These results suggest that a calcium carbonate diet may cause memory impairment by decreasing CREB expression. This is the first report of calcium carbonate supplementation causing memory impairment. This simple animal model may be useful as a novel cognitive impairment model for drug development.展开更多
基金supported by a grant from the National Science Foundation of China(No.81301134,81371444)a research program from the logistics department of PLA(No.CLZ15C005)
文摘To evaluate the effect of acute high-altitude exposure on sensory and short-term memory using interactive software,we transported 30 volunteers in a sport utility vehicle to a 4280 m plateau within3 h.We measured their memory performance on the plain(initial arrival)and 3 h after arrival on the plateau using six measures.
文摘Bisphenol A (BPA), a toxicant which can leach into food from plastic containers, is reported to induce neurotoxicity among others via oxidative mechanisms. However, antioxidant compounds have been suggested to mitigate BPA-induced toxicities. Garcinia kola (GK) and its bioactive compound, kolaviron, are well-established natural antioxidants, which can exert protective effects against BPA-induced toxicities. This study was designed to investigate the likely mitigating effect of GK and kolaviron on BPA-induced memory impairment and hippocampal neuroinflammation in male Wistar rats. Thirty-five rats were equally grouped and treated as follows: I and II received distilled water and corn oil, respectively at 0.2 mL, while III - VII received BPA (50 mg/kg), BPA + GK (200 mg/kg), BPA + kolaviron (200 mg/kg), GK and kolaviron, respectively for 28 days p.o. Thereafter, behavioral studies were done using the Novel Object Recognition and Y maze tests. Subsequently under anaesthesia, the hippocampus in each animal was dissected out, homogenized and analysed for malondialdehyde, superoxide dismutase, catalase, reduced glutathione, glutathione transferase, nitrites, interleukin-6, tumour necrosis factor-α, acetylcholinesterase, glutamate acid decarboxylase, and arginase activity. Data were analyzed by ANOVA and Tukey Post-hoc test at p p Garcinia kola and Kolaviron mitigate bisphenol A-induced memory impairment and neuroinflammation via antioxidant potentiation and neurotransmitter balance.
基金supported by the National Natural Science Foundation of China,No.81730033(to XPG),No.81701371(to TJX)
文摘Isoflurane and sevoflurane are both inhalation anesthetics,but in clinical application,sevoflurane has been considered to be less suitable for long-term anesthesia because of its catabolic compounds and potential nephrotoxicity.Nevertheless,recent studies have shown that these two inhalation anesthetics are similar in hepatorenal toxicity,cost,and long-term anesthetic effect.Moreover,sevoflurane possibly has less cognitive impact on young mice.In this study,C57BL/6 mice aged 8–10 weeks were exposed to 1.2%isoflurane or 2.4%sevoflurane for 6 hours.Cognitive function and memory were examined in young mice using the novel object recognition,contextual fear conditioning,and cued-fear extinction tests.Western blot assay was performed to detect expression levels of D1 dopamine receptor,catechol-O-methyltransferase,phospho-glycogen synthase kinase-3β,and total glycogen synthase kinase-3βin the hippocampus.Our results show that impaired performance was not detected in mice exposed to sevoflurane during the novel object recognition test.Contextual memory impairment in the fear conditioning test was shorter in the sevoflurane group than the isoflurane group.Long-term sevoflurane exposure did not affect memory consolidation,while isoflurane led to memory consolidation and reduced retention.Downregulation of hippocampal D1 dopamine receptors and phosphorylated glycogen synthase kinase-3β/total glycogen synthase kinase-3βand upregulation of catechol-O-methyltransferase may be associated with differing memory performance after exposure to isoflurane or sevoflurane.These results confirm that sevoflurane has less effect on cognitive impairment than isoflurane,which may be related to expression of D1 dopamine receptors and catechol-O-methyltransferase and phosphorylation of glycogen synthase kinase-3βin the hippocampus.This study was approved by the Institutional Animal Care and Use Committee,Nanjing University,China on November 20,2017(approval No.20171102).
基金Project (No. 2003B070) supported by the Science and TechnologyProgram of Zhejiang Province, China
文摘Objective: To assess functional relationship by calculating inter- and intra-hemispheric electroencephalography (EEG) coherence at rest and during a working memory task of patients with mild cognitive impairment (MCI). Methods: The sample consisted of 69 subjects: 35 patients (n = 17 males, n = 18 females; 52-71 years old) and 34 normal controls (n = 17 males, n = 17 females; 51 -63 years old). Mini-mental state examination (MMSE) of two groups revealed that the scores of MCI patients did not differ significantly from those of normal controls (P〉0.05). In EEG recording, subjects were performed at rest and during working memory task. EEG signals from F3-F4, C3-C4, P3-P4, T5-T6 and O1-O2 electrode pairs are resulted from the inter-hemispheric action, and EEG signals from F3-C3, F4-C4, C3-P3, C4-P4, P3-O1, P4-O2, T5-C3, T6-C4, T5-P3 and T6-P4 electrode pairs are resulted from the intra-hemispheric action for delta (1.0-3.5 Hz), theta (4.0-7.5 Hz), alpha-1 (8.0-10.0 Hz), alpha-2 (10.5-13.0 Hz), beta-1 (13.5-18.0 Hz) and beta-2 (18.5-30.0 Hz) frequency bands. The influence of inter- and intra-hemispheric coherence on EEG activity with eyes closed was examined using fast Fourier transformation from the 16 sampled channels. Results: During working memory tasks, the inter- and intra-hemispheric EEG coherences in all bands were significantly higher in the MCI group in comparison with those in the control group (P〈0.05). However, there was no significant difference in inter- and intra-hemispheric EEG coherences between two groups at rest. Conclusion: Experimental results comprise evidence that MCI patients have higher degree of functional connectivity between hemispheres and in hemispheres during working condition, It suggests that MCI may be associated with compensatory processes during working memory tasks between hemispheres and in hemispheres. Moreover, failure of normal cortical connections may exist in MCI patients.
文摘The α5 subunit-containing gamma-amino butyric acid type A receptors(α5 GABAARs) are a distinct subpopulation that are specifically distributed in the mammalian hippocampus and also mediate tonic inhibitory currents in hippocampal neurons. These tonic currents can be enhanced by low-dose isoflurane, which is associated with learning and memory impairment. Inverse agonists of α5 GABAARs, such as L-655,708, are able to reverse the short-term memory deficit caused by low-dose isoflurane in young animals. However, whether these negative allosteric modulators have the same effects on aged rats remains unclear. In the present study, we mainly investigated the effects of L-655,708 on low-dose(1.3%) isoflurane-induced learning and memory impairment in elderly rats. Young(3-month-old) and aged(24-month-old) Wistar rats were randomly assigned to receive L-655,708 0.5 hour before or 23.5 hours after 1.3% isoflurane anesthesia.The Morris Water Maze tests demonstrated that L-655,708 injected before or after anesthesia could reverse the memory deficit in young rats. But in aged rats, application of L-655,708 only before anesthesia showed similar effects. Reverse transcription-polymerase chain reaction showed that low-dose isoflurane decreased the mRNA expression of α5 GABAARs in aging hippocampal neurons but increased that in young animals. These findings indicate that L-655,708 prevented but could not reverse 1.3% isoflurane-induced spatial learning and memory impairment in aged Wistar rats. All experimental procedures and protocols were approved by the Experimental Animal Ethics Committee of Academy of Military Medical Science of China(approval No. NBCDSER-IACUC-2015128) in December 2015.
基金supported by National Natural Science Foundation of China [No. 81773405 to Y.Q. and No. 82173644to X.Y.]Shanxi Natural Science Foundation of China [No.202203021211246 and No. 202103021224242]。
文摘Objective Arsenic(As) and fluoride(F) are two of the most common elements contaminating groundwater resources. A growing number of studies have found that As and F can cause neurotoxicity in infants and children, leading to cognitive, learning, and memory impairments. However, early biomarkers of learning and memory impairment induced by As and/or F remain unclear. In the present study, the mechanisms by which As and/or F cause learning memory impairment are explored at the multi-omics level(microbiome and metabolome).Methods We stablished an SD rats model exposed to arsenic and/or fluoride from intrauterine to adult period.Results Arsenic and/fluoride exposed groups showed reduced neurobehavioral performance and lesions in the hippocampal CA1 region. 16S rRNA gene sequencing revealed that As and/or F exposure significantly altered the composition and diversity of the gut microbiome, featuring the Lachnospiraceae_NK4A136_group, Ruminococcus_1, Prevotellaceae_NK3B31_group, [Eubacterium]_xylanophilum_group. Metabolome analysis showed that As and/or F-induced learning and memory impairment may be related to tryptophan, lipoic acid, glutamate, gamma-aminobutyric acidergic(GABAergic) synapse, and arachidonic acid(AA) metabolism. The gut microbiota, metabolites, and learning memory indicators were significantly correlated.Conclusion Learning memory impairment triggered by As and/or F exposure may be mediated by different gut microbes and their associated metabolites.
基金This work was supported by the Deanship of Scientific Research,Qassim University。
文摘Cognitive impairment caused by chemotherapy,referred to as“chemobrain,”is observed in approximately 70% of cancer survivors.However,it is not completely understood how chemotherapy induces cognitive dysfunction,and clinical treatment strategies for this problem are lacking.Metformin,used as a first-line treatment for type 2 diabetes mellitus,is reported to reduce the effects of chemobrain.Recently,several studies have examined the effect of metformin in rescuing chemobrain.This review discusses recent clinical/preclinical studies that addressed some mechanisms of chemobrain and evaluates the effect of metformin in rescuing chemobrain and its potential mechanisms of action.
基金supported by the US Department of Energy (DOE),the Office of Nuclear Energy,Spent Fuel and Waste Science and Technology Campaign,under Contract Number DE-AC02-05CH11231the National Energy Technology Laboratory under the award number FP00013650 at Lawrence Berkeley National Laboratory.
文摘Stress changes due to changes in fluid pressure and temperature in a faulted formation may lead to the opening/shearing of the fault.This can be due to subsurface(geo)engineering activities such as fluid injections and geologic disposal of nuclear waste.Such activities are expected to rise in the future making it necessary to assess their short-and long-term safety.Here,a new machine learning(ML)approach to model pore pressure and fault displacements in response to high-pressure fluid injection cycles is developed.The focus is on fault behavior near the injection borehole.To capture the temporal dependencies in the data,long short-term memory(LSTM)networks are utilized.To prevent error accumulation within the forecast window,four critical measures to train a robust LSTM model for predicting fault response are highlighted:(i)setting an appropriate value of LSTM lag,(ii)calibrating the LSTM cell dimension,(iii)learning rate reduction during weight optimization,and(iv)not adopting an independent injection cycle as a validation set.Several numerical experiments were conducted,which demonstrated that the ML model can capture peaks in pressure and associated fault displacement that accompany an increase in fluid injection.The model also captured the decay in pressure and displacement during the injection shut-in period.Further,the ability of an ML model to highlight key changes in fault hydromechanical activation processes was investigated,which shows that ML can be used to monitor risk of fault activation and leakage during high pressure fluid injections.
文摘Objective:To evaluate the neuroprotective effects of the organic components of scallop shells(scallop shell extract) on memory impairment and locomotor activity induced by scopolamine or 5-methyl-10,11-dihydro-5H-dibenzo(a,d) cyclohepten-5,10-imine(MK801).Methods:Effect of the scallop shell extract on memory impairment and locomotor activity was investigated using the Y-maze test,the Morris water maze test,and the open field test.Results:Scallop shell extract significantly reduced scopolamine-induced short-term memory impairment and partially reduced scopolamine-induced spatial memory impairment in the Morris water maze test.Scallop shell extract suppressed scopolamine-induced elevation of acetylcholine esterase activity in the cerebral cortex.Treatment with scallop shell extract reversed the increase in locomotor activity induced by scopolamine.Scallop shell extract also suppressed the increase in locomotor activity induced by MK801.Conclusions:Our results provide initial evidence that scallop shell extract reduces scopolamine-induced memory impairment and suppresses MK-801-induced hyperlocomotion.
文摘Managing memory deficits is a central problem among older adults with mild cognitive impairment (MCI). This study examined the effects of memory training on memory performance in an understudied “oldest-old” population ranging in age from 90 to 99 years. Eighteen mild to moderately cognitive-impaired older seniors, 90 years and older were recruited from memory clinics established in senior living communities. Treatment sessions took place, on average, twice weekly, for 55 minutes. Memory intervention included nineteen computer-based exercises customized to focus on memory loss. The specificity of memory training was very clear;memory training produced significant effects (F(3,51) = 2.81, p = 0.05) on memory performance, especially after 6 months of training, while other outcome measures showed no effects as predicted. Based on the results, it can be concluded that interventions targeting cognition and memory in the oldest-old MCI population can significantly improve memory function and reduce cognitive deficits.
基金National Key Research and Development Program of China (Grant No. 2022YFE0102700)National Natural Science Foundation of China (Grant No. 52102420)+2 种基金research project “Safe Da Batt” (03EMF0409A) funded by the German Federal Ministry of Digital and Transport (BMDV)China Postdoctoral Science Foundation (Grant No. 2023T160085)Sichuan Science and Technology Program (Grant No. 2024NSFSC0938)。
文摘A fast-charging policy is widely employed to alleviate the inconvenience caused by the extended charging time of electric vehicles. However, fast charging exacerbates battery degradation and shortens battery lifespan. In addition, there is still a lack of tailored health estimations for fast-charging batteries;most existing methods are applicable at lower charging rates. This paper proposes a novel method for estimating the health of lithium-ion batteries, which is tailored for multi-stage constant current-constant voltage fast-charging policies. Initially, short charging segments are extracted by monitoring current switches,followed by deriving voltage sequences using interpolation techniques. Subsequently, a graph generation layer is used to transform the voltage sequence into graphical data. Furthermore, the integration of a graph convolution network with a long short-term memory network enables the extraction of information related to inter-node message transmission, capturing the key local and temporal features during the battery degradation process. Finally, this method is confirmed by utilizing aging data from 185 cells and 81 distinct fast-charging policies. The 4-minute charging duration achieves a balance between high accuracy in estimating battery state of health and low data requirements, with mean absolute errors and root mean square errors of 0.34% and 0.66%, respectively.
文摘With the advancement of artificial intelligence,traffic forecasting is gaining more and more interest in optimizing route planning and enhancing service quality.Traffic volume is an influential parameter for planning and operating traffic structures.This study proposed an improved ensemble-based deep learning method to solve traffic volume prediction problems.A set of optimal hyperparameters is also applied for the suggested approach to improve the performance of the learning process.The fusion of these methodologies aims to harness ensemble empirical mode decomposition’s capacity to discern complex traffic patterns and long short-term memory’s proficiency in learning temporal relationships.Firstly,a dataset for automatic vehicle identification is obtained and utilized in the preprocessing stage of the ensemble empirical mode decomposition model.The second aspect involves predicting traffic volume using the long short-term memory algorithm.Next,the study employs a trial-and-error approach to select a set of optimal hyperparameters,including the lookback window,the number of neurons in the hidden layers,and the gradient descent optimization.Finally,the fusion of the obtained results leads to a final traffic volume prediction.The experimental results show that the proposed method outperforms other benchmarks regarding various evaluation measures,including mean absolute error,root mean squared error,mean absolute percentage error,and R-squared.The achieved R-squared value reaches an impressive 98%,while the other evaluation indices surpass the competing.These findings highlight the accuracy of traffic pattern prediction.Consequently,this offers promising prospects for enhancing transportation management systems and urban infrastructure planning.
基金Deanship of Research and Graduate Studies at King Khalid University for funding this work through Small Group Research Project under Grant Number RGP1/261/45.
文摘Breast cancer is a significant threat to the global population,affecting not only women but also a threat to the entire population.With recent advancements in digital pathology,Eosin and hematoxylin images provide enhanced clarity in examiningmicroscopic features of breast tissues based on their staining properties.Early cancer detection facilitates the quickening of the therapeutic process,thereby increasing survival rates.The analysis made by medical professionals,especially pathologists,is time-consuming and challenging,and there arises a need for automated breast cancer detection systems.The upcoming artificial intelligence platforms,especially deep learning models,play an important role in image diagnosis and prediction.Initially,the histopathology biopsy images are taken from standard data sources.Further,the gathered images are given as input to the Multi-Scale Dilated Vision Transformer,where the essential features are acquired.Subsequently,the features are subjected to the Bidirectional Long Short-Term Memory(Bi-LSTM)for classifying the breast cancer disorder.The efficacy of the model is evaluated using divergent metrics.When compared with other methods,the proposed work reveals that it offers impressive results for detection.
文摘To investigate the features of electroencephalography (EEG) power and coherence at rest and during a working memory task of patients with mild cognitive impairment (MCI). Thirty-five patients (17 males, 18 females; 52-71 years old) and 34 sex- and age-matched controls (17 males, 17 females; 51-63 years old) were recruited in the present study. Mini-Mental State Examination (MMSE) of 35 patients with MCI and 34 normal controls revealed that the scores of MCI patients did not differ significantly from those of normal controls (P〉0.05). Then, EEGs at rest and during working memory task with three levels of working memory load were recorded. The EEG power was computed over 10 channels: fight and left frontal (F3, F4), central (C3, C4), parietal (P3, P4), temporal (T5, T6) and occipital (O1, O2); inter-hemispheric coherences were computed from five electrode pairs of F3-F4, C3-C4, P3-P4, T5-T6 and O1-O2 for delta (1.0-3.5 Hz), theta (4.0-7.5 Hz), alpha-1 (8.0-10.0 Hz), alpha-2 (10.5-13.0 Hz), beta-1 (13.5-18.0 Hz) and beta-2 (18.5-30.0 Hz) frequency bands. All values of the EEG power of MCI patients were found to be higher than those of normal controls at rest and during working memory tasks. Furthermore, the values of EEG power in the theta, alpha-1, alpha-2 and beta-1 bands of patients with MCI were significantly high (P〈0.05) in comparison with those of normal controls. Correlation analysis indicated a significant negative correlation between the EEG powers and MMSE scores. In addition, during working memory tasks, the EEG coherences in all bands were significantly higher in the MCI group in comparison with those in the control group (P〈0.05). However, there was no significant difference in EEG coherences between two groups at rest. These findings comprise evidence that MCI patients have higher EEG power at rest, and higher EEG power and coherence during working conditions. It suggests that MCI may be associated with compensatory processes at rest and during working memory tasks. Moreover, failure of normal cortical connections may be exist in MCI patients.
文摘Aim: To observe the rats’ learning and memory acquisition ability disturbance induced by BI-D1870. Methods: Male SD rats were randomly divided into control group, solvent control group and BI-D1870 group. The rats in the control group were intraperitoneally injected with saline, while those in the solvent control group were intraperitoneally injected with DMSO + sulfobutyl-β-cyclodextrin solvent, and those in the BI-D1870 group were intraperitoneally injected with BI-D1870. All the rats’ appearance and behavior were daily observed, and body weight was recorded on the day 15, 30, 45, 60, 75 and 82 of BI-D1870 injected. Morris water maze was used to screen the rats’ learning and memory acquisition ability on the day 22 - 25, 52 - 55, and 82 - 85 of training by BI-D1870 treated. The successful rates of the rats’ memory impairment were respectively calculated for three times screening. Results: During the whole experiment, there was no obvious difference in appearance and fur color in all rats. The rats’ agitation began to appear on the day 10th of BI-D1870 given. The agitation rats’ number and rats’ body weight gradually increased along with BI-D1870 treated (P P Conclusion: Intraperitoneal injection of BI-D1870 can induce the rats’ learning and memory acquisition ability disorder.
文摘Background: Cognitive impairment becomes more common with ageing and may benefit from intervention. In a Spanish speaking population, detection of cognitive impairment by a general practitioner in Primary Care can be a problem, as many of the standard tests target English speaking populations. The Memory Impairment Screen (MIS-A) is a validated test using English words to detect Alzheimer’s Disease (AD) and other dementias. We have modified this test to suit a Spanish speaking population and added a new component, delayed recall. We have called our new test the Memory Impairment Screen with Delayed Recall (MIS-D). Objectives: 1) To test a Spanish version of MIS-A and MIS-D. 2) To assess the discriminative validity of MIS-D as a screening tool for the amnestic variant of Mild Cognitive Impairment (aMCI) in a group of Spanish speaking people aged 65 years old and over. Methods: A case-control study of a cohort of 739 native Spanish speaking residents of Buenos Aires aged 65 years old and over, of whom 436 were healthy controls and 303 had a diagnosis of aMCI. Measurements: Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NVP) were estimated for MIS-D and MIS-A. Results: Normative values for MIS-A and MIS-D were obtained from the control population. Both age and education significantly affected these values (p < 0.0001). Control participants showed significant differences for both modalities, MIS-A and MIS-D. The cut-off for MIS-A should be 7.5 and for MIS-D, 5.5. Comparison between control population and aMCI population using ROC curve gave a result of 5.5 in MIS-D, with 97% specificity and 76% sensitivity. Conclusion: MIS-D was positively predictive of aMCI, with 97% specificity and 76% sensitivity in a sample of Spanish speaking patients aged 65 years old and over in Buenos Aires.
基金Project (No.2003B070) supported by the Science and TechnologyProgram of Zhejiang Province, China
文摘Objective: The functional relationship between calculated alpha band spectral power and inter-/intra-hemispheric coherence during a three-level working memory task of patients with mild cognitive impairment (MCI) was investigated. Methods:Subjects included 35 MCI patients according to the DSM-Ⅳ criteria (mean age: 62.3, SD: 6.5) and 34 healthy controls (mean age:57.4, SD: 4.0) were selected from the community at large. All subjects performed a simple calculation and recall task with three levels of working memory load while electroencephalograph (EEG) signal was recorded. The spectral EEG power was computed over alphal (8.0~10.0 Hz) and alpha2 (10.5~13.0 Hz) frequency bands and was compared between rest stage and working memory processing stage by two-way ANOVA. Post hoc testing analyzed the differences between each two levels of working memory load during task processing. The inter-hemisphere EEG coherence of frontal (F3-F4), central (C3-C4), parietal (P3-P4), temporal (T5-T6) as well as occipital (O1-O2) was compared between MCI patients and normal controls. The EEG signals from F3-C3,F4-C4, C3-P3, C4-P4, P3-O1, P4-O2, T5-C3, T6-C4, T5-P3 and T6-P4 electrode pairs resulted from the intra-hemispheric action for alphal and alpha2 frequency bands. Result: There was significantly higher EEG power from MCI patients than from normal controls both at rest and during working memory processing. Significant differences existed between rest condition and three-level working memory tasks (P〈0.001). The inter- and intra-hemispheric coherence during working memory tasks showed a "drop to rise" tendency compared to that at rest condition. There was significantly higher coherence in MCI patients than in the controls.When task difficulties increased, the cortical connectivity of intra-hemispheric diminished while the inter-hemispheric connectivity dominantly maintained the cognitive processing in MCI patients. Conclusion: The results of the present study indicate that the alpha frequency band may be the characteristic band in distinguishing MCI patients from normal controls during working memory tasks. MCI patients exhibit greater inter-hemispheric connectivity than intra-hemispheric connectivity when memory demands increase. MCI patients mobilize a compensatory mechanism to maintain the processing effectiveness while the processing efficiency is reduced.
文摘Rehabilitation of episodic memory declines typically focuses on alleviating the demand for recall and improving the retrieval process. Modulating the encoding is not commonly practiced, but may nevertheless be important. Seventeen event-related potential (ERP) studies interpreted using the subsequent memory effect, an index of successful encoding, are reviewed and the factors involved in encoding are discussed. The nature of the materials used for testing, modes of encoding, and the nature of the retrieval task are highlighted as important factors. Meaningful materials and processing information semantically enhance encoding to episodic memory. The stud-ies reviewed reveal that older persons process information more uniformly without elaboration compared with their younger counterparts. Although people with mild cognitive impairment have encoding and retrieval deficits, an elaborative type of encoding training that draws on successful encoding factors may help to improve memory performance.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education,Science and Technology,No.2012R1A1A4A01001873
文摘Prior to development of diffusion tensor imaging (DTI), there were many difficulties in visualization and estimation of the Papez circuit in the live human brain (Papez, 1995). Diffusion tensor tractography (DTT), derived from DTI, allows for identification and visualization of neural tracts in the Papez circuit (Concha et al., 2005; Kwon et al., 2010; Granziera et al., 2011; Jang and Yeo, 2013; Jang et al., 2014a). In the current study, using DTT, we report on a patient who showed injured thalamocortical tract between the anterior thalamic nuclei and the cingulate gyrus following a putaminal hemorrhage.
文摘Objective: To investigate the influence of calcium carbonate supplementation on cognitive function in mice. Methods: Mice were fed diets containing 1.0% calcium carbonate for 8 weeks, following which they were evaluated for memory function using object recognition, Y-maze, and Barnes maze tests. Next, the expression levels of cAMP response element binding protein(CREB) and phosphorylated CREB, which is involved in the memory process were investigated in both the hippocampus and cerebral cortex using western blotting methods. Results: Mice fed on a diet containing calcium carbonate showed memory impairments in object recognition, Y-maze, and Barnes maze tests with respect to the mice that were on a control diet. Further, mice that were fed a diet containing calcium carbonate and a nimodipine(an L-type calcium channel antagonist), reversed calcium carbonate-induced memory impairments, thus suggesting that excessive entry of calcium in cells may cause memory impairments. A study using western blot revealed that expression of CREB and phosphorylated CREB in hippocampus and cerebral cortex was significantly lower in the calcium carbonatefed mice than in the control-diet-fed mice. Conclusions: These results suggest that a calcium carbonate diet may cause memory impairment by decreasing CREB expression. This is the first report of calcium carbonate supplementation causing memory impairment. This simple animal model may be useful as a novel cognitive impairment model for drug development.