期刊文献+
共找到563篇文章
< 1 2 29 >
每页显示 20 50 100
A Short-Term Traffic Flow Forecasting Method Based on a Three-Layer K-Nearest Neighbor Non-Parametric Regression Algorithm 被引量:7
1
作者 Xiyu Pang Cheng Wang Guolin Huang 《Journal of Transportation Technologies》 2016年第4期200-206,共7页
Short-term traffic flow is one of the core technologies to realize traffic flow guidance. In this article, in view of the characteristics that the traffic flow changes repeatedly, a short-term traffic flow forecasting... Short-term traffic flow is one of the core technologies to realize traffic flow guidance. In this article, in view of the characteristics that the traffic flow changes repeatedly, a short-term traffic flow forecasting method based on a three-layer K-nearest neighbor non-parametric regression algorithm is proposed. Specifically, two screening layers based on shape similarity were introduced in K-nearest neighbor non-parametric regression method, and the forecasting results were output using the weighted averaging on the reciprocal values of the shape similarity distances and the most-similar-point distance adjustment method. According to the experimental results, the proposed algorithm has improved the predictive ability of the traditional K-nearest neighbor non-parametric regression method, and greatly enhanced the accuracy and real-time performance of short-term traffic flow forecasting. 展开更多
关键词 Three-Layer traffic flow forecasting K-Nearest Neighbor Non-Parametric Regression
下载PDF
Short-term traffic flow online forecasting based on kernel adaptive filter 被引量:1
2
作者 LI Jun WANG Qiu-li 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2018年第4期326-334,共9页
Considering that the prediction accuracy of the traditional traffic flow forecasting model is low,based on kernel adaptive filter(KAF)algorithm,kernel least mean square(KLMS)algorithm and fixed-budget kernel recursive... Considering that the prediction accuracy of the traditional traffic flow forecasting model is low,based on kernel adaptive filter(KAF)algorithm,kernel least mean square(KLMS)algorithm and fixed-budget kernel recursive least-square(FB-KRLS)algorithm are presented for online adaptive prediction.The computational complexity of the KLMS algorithm is low and does not require additional solution paradigm constraints,but its regularization process can solve the problem of regularization performance degradation in high-dimensional data processing.To reduce the computational complexity,the sparse criterion is introduced into the KLMS algorithm.To further improve forecasting accuracy,FB-KRLS algorithm is proposed.It is an online learning method with fixed memory budget,and it is capable of recursively learning a nonlinear mapping and changing over time.In contrast to a previous approximate linear dependence(ALD)based technique,the purpose of the presented algorithm is not to prune the oldest data point in every time instant but it aims to prune the least significant data point,thus suppressing the growth of kernel matrix.In order to verify the validity of the proposed methods,they are applied to one-step and multi-step predictions of traffic flow in Beijing.Under the same conditions,they are compared with online adaptive ALD-KRLS method and other kernel learning methods.Experimental results show that the proposed KAF algorithms can improve the prediction accuracy,and its online learning ability meets the actual requirements of traffic flow and contributes to real-time online forecasting of traffic flow. 展开更多
关键词 traffic flow forecasting kernel adaptive filtering (KAF) kernel least mean square (KLMS) kernel recursive least square (KRLS) online forecasting
下载PDF
Hourly traffic flow forecasting using a new hybrid modelling method 被引量:9
3
作者 LIU Hui ZHANG Xin-yu +2 位作者 YANG Yu-xiang LI Yan-fei YU Cheng-qing 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第4期1389-1402,共14页
Short-term traffic flow forecasting is a significant part of intelligent transportation system.In some traffic control scenarios,obtaining future traffic flow in advance is conducive to highway management department t... Short-term traffic flow forecasting is a significant part of intelligent transportation system.In some traffic control scenarios,obtaining future traffic flow in advance is conducive to highway management department to have sufficient time to formulate corresponding traffic flow control measures.In hence,it is meaningful to establish an accurate short-term traffic flow method and provide reference for peak traffic flow warning.This paper proposed a new hybrid model for traffic flow forecasting,which is composed of the variational mode decomposition(VMD)method,the group method of data handling(GMDH)neural network,bi-directional long and short term memory(BILSTM)network and ELMAN network,and is optimized by the imperialist competitive algorithm(ICA)method.To illustrate the performance of the proposed model,there are several comparative experiments between the proposed model and other models.The experiment results show that 1)BILSTM network,GMDH network and ELMAN network have better predictive performance than other single models;2)VMD can significantly improve the predictive performance of the ICA-GMDH-BILSTM-ELMAN model.The effect of VMD method is better than that of EEMD method and FEEMD method.To conclude,the proposed model which is made up of the VMD method,the ICA method,the BILSTM network,the GMDH network and the ELMAN network has excellent predictive ability for traffic flow series. 展开更多
关键词 traffic flow forecasting intelligent transportation system imperialist competitive algorithm variational mode decomposition group method of data handling bi-directional long and short term memory ELMAN
下载PDF
Research on traffic flow forecasting model based on cusp catastrophe theory 被引量:2
4
作者 张亚平 裴玉龙 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2004年第1期1-5,共5页
This paper intends to describe the relationship between traffic parameters by using cusp catastrophe theory and to deduce highway capacity and corresponding speed forecasting value through suitable transformation of c... This paper intends to describe the relationship between traffic parameters by using cusp catastrophe theory and to deduce highway capacity and corresponding speed forecasting value through suitable transformation of catastrophe model. The five properties of a catastrophe system are outlined briefly, and then the data collected on freeways of Zhujiang River Delta, Guangdong province, China are examined to ascertain whether they exhibit qualitative properties and attributes of the catastrophe model. The forecasting value of speed and capacity for freeway segments are given based on the catastrophe model. Furthermore, speed-flow curve on freeway is drawn by plotting out congested and uncongested traffic flow and the capacity value for the same freeway segment is also obtained from speed-flow curve to test the feasibility of the application of cusp catastrophe theory in traffic flow analysis. The calculating results of catastrophe model coincide with those of traditional traffic flow models regressed from field observed data, which indicates that the deficiency of traditional analysis of relationship between speed, flow and occupancy in two-dimension can be compensated by analysis of the relationship among speed, flow and occupancy based on catastrophe model in three-dimension. Finally, the prospects and problems of its application in traffic flow research in China are discussed. 展开更多
关键词 capacity cusp catastrophe model speed-flow curve traffic flow forecasting
下载PDF
APPLICATION OF INTELLIGENCE FORECASTING METHOD IN TRAFFIC ANALYSIS OF EGCS 被引量:2
5
作者 宗群 岳有军 +1 位作者 曹燕飞 尚晓光 《Transactions of Tianjin University》 EI CAS 2000年第1期18-21,共4页
Traffic flow forecasting is an important part of elevator group control system (EGCS).This paper applies time series prediction theories based on neural networks(NN) to EGCSs traffic analysis,and establishes a time se... Traffic flow forecasting is an important part of elevator group control system (EGCS).This paper applies time series prediction theories based on neural networks(NN) to EGCSs traffic analysis,and establishes a time series NN traffic flow forecasting model.Simulation results show its validity. 展开更多
关键词 traffic flow time series forecast elevator group control system neural networks
全文增补中
A two-stage short-term traffic flow prediction method based on AVL and AKNN techniques 被引量:1
6
作者 孟梦 邵春福 +2 位作者 黃育兆 王博彬 李慧轩 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第2期779-786,共8页
Short-term traffic flow prediction is one of the essential issues in intelligent transportation systems(ITS). A new two-stage traffic flow prediction method named AKNN-AVL method is presented, which combines an advanc... Short-term traffic flow prediction is one of the essential issues in intelligent transportation systems(ITS). A new two-stage traffic flow prediction method named AKNN-AVL method is presented, which combines an advanced k-nearest neighbor(AKNN)method and balanced binary tree(AVL) data structure to improve the prediction accuracy. The AKNN method uses pattern recognition two times in the searching process, which considers the previous sequences of traffic flow to forecast the future traffic state. Clustering method and balanced binary tree technique are introduced to build case database to reduce the searching time. To illustrate the effects of these developments, the accuracies performance of AKNN-AVL method, k-nearest neighbor(KNN) method and the auto-regressive and moving average(ARMA) method are compared. These methods are calibrated and evaluated by the real-time data from a freeway traffic detector near North 3rd Ring Road in Beijing under both normal and incident traffic conditions.The comparisons show that the AKNN-AVL method with the optimal neighbor and pattern size outperforms both KNN method and ARMA method under both normal and incident traffic conditions. In addition, the combinations of clustering method and balanced binary tree technique to the prediction method can increase the searching speed and respond rapidly to case database fluctuations. 展开更多
关键词 engineering of communication and transportation system short-term traffic flow prediction advanced k-nearest neighbor method pattern recognition balanced binary tree technique
下载PDF
Traffic simulation and forecasting system in Beijing
7
作者 Guo Min Sui Yagang 《Engineering Sciences》 EI 2010年第1期49-52,共4页
Transport system is a time-varying, huge and complex system. In order to have the traffic management department make pre-appropriate traffic management measures to adjust the traffic management control program, and re... Transport system is a time-varying, huge and complex system. In order to have the traffic management department make pre-appropriate traffic management measures to adjust the traffic management control program, and release travel information to travelers, to provide optimal path options to ensure that the transport system operates efficiently and safely, we have to monitor the changing of the state of road traffic and to accurately evaluate the state of the traffic, then to predict the future state of traffic. This paper represents the construction of the road traffic flow simulation including the logical structure and the physical structure, and introduces the system functions of forecasting system in Beijing. 展开更多
关键词 road traffic flow forecasting road traffic flow simulation
下载PDF
Expressway traffic flow prediction using chaos cloud particle swarm algorithm and PPPR model 被引量:2
8
作者 赵泽辉 康海贵 李明伟 《Journal of Southeast University(English Edition)》 EI CAS 2013年第3期328-335,共8页
Aiming at the real-time fluctuation and nonlinear characteristics of the expressway short-term traffic flow forecasting the parameter projection pursuit regression PPPR model is applied to forecast the expressway traf... Aiming at the real-time fluctuation and nonlinear characteristics of the expressway short-term traffic flow forecasting the parameter projection pursuit regression PPPR model is applied to forecast the expressway traffic flow where the orthogonal Hermite polynomial is used to fit the ridge functions and the least square method is employed to determine the polynomial weight coefficient c.In order to efficiently optimize the projection direction a and the number M of ridge functions of the PPPR model the chaos cloud particle swarm optimization CCPSO algorithm is applied to optimize the parameters. The CCPSO-PPPR hybrid optimization model for expressway short-term traffic flow forecasting is established in which the CCPSO algorithm is used to optimize the optimal projection direction a in the inner layer while the number M of ridge functions is optimized in the outer layer.Traffic volume weather factors and travel date of the previous several time intervals of the road section are taken as the input influencing factors. Example forecasting and model comparison results indicate that the proposed model can obtain a better forecasting effect and its absolute error is controlled within [-6,6] which can meet the application requirements of expressway traffic flow forecasting. 展开更多
关键词 expressway traffic flow forecasting projectionpursuit regression particle swarm algorithm chaoticmapping cloud model
下载PDF
Building trust for traffic flow forecasting components in intelligent transportation systems via interpretable ensemble learning
9
作者 Jishun Ou Jingyuan Li +2 位作者 Chen Wang Yun Wang Qinghui Nie 《Digital Transportation and Safety》 2024年第3期126-143,I0001,I0002,共20页
Traffic flow forecasting constitutes a crucial component of intelligent transportation systems(ITSs).Numerous studies have been conducted for traffic flow forecasting during the past decades.However,most existing stud... Traffic flow forecasting constitutes a crucial component of intelligent transportation systems(ITSs).Numerous studies have been conducted for traffic flow forecasting during the past decades.However,most existing studies have concentrated on developing advanced algorithms or models to attain state-of-the-art forecasting accuracy.For real-world ITS applications,the interpretability of the developed models is extremely important but has largely been ignored.This study presents an interpretable traffic flow forecasting framework based on popular tree-ensemble algorithms.The framework comprises multiple key components integrated into a highly flexible and customizable multi-stage pipeline,enabling the seamless incorporation of various algorithms and tools.To evaluate the effectiveness of the framework,the developed tree-ensemble models and another three typical categories of baseline models,including statistical time series,shallow learning,and deep learning,were compared on three datasets collected from different types of roads(i.e.,arterial,expressway,and freeway).Further,the study delves into an in-depth interpretability analysis of the most competitive tree-ensemble models using six categories of interpretable machine learning methods.Experimental results highlight the potential of the proposed framework.The tree-ensemble models developed within this framework achieve competitive accuracy while maintaining high inference efficiency similar to statistical time series and shallow learning models.Meanwhile,these tree-ensemble models offer interpretability from multiple perspectives via interpretable machine-learning techniques.The proposed framework is anticipated to provide reliable and trustworthy decision support across various ITS applications. 展开更多
关键词 traffic flow forecasting Interpretable machine learning Interpretability Ensemble trees Intelligent transportation systems
下载PDF
Traffic flow prediction based on BILSTM model and data denoising scheme 被引量:4
10
作者 Zhong-Yu Li Hong-Xia Ge Rong-Jun Cheng 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第4期191-200,共10页
Accurate prediction of road traffic flow is a significant part in the intelligent transportation systems.Accurate prediction can alleviate traffic congestion,and reduce environmental pollution.For the management depar... Accurate prediction of road traffic flow is a significant part in the intelligent transportation systems.Accurate prediction can alleviate traffic congestion,and reduce environmental pollution.For the management department,it can make effective use of road resources.For individuals,it can help people plan their own travel paths,avoid congestion,and save time.Owing to complex factors on the road,such as damage to the detector and disturbances from environment,the measured traffic volume can contain noise.Reducing the influence of noise on traffic flow prediction is a piece of very important work.Therefore,in this paper we propose a combination algorithm of denoising and BILSTM to effectively improve the performance of traffic flow prediction.At the same time,three denoising algorithms are compared to find the best combination mode.In this paper,the wavelet(WL) denoising scheme,the empirical mode decomposition(EMD) denoising scheme,and the ensemble empirical mode decomposition(EEMD) denoising scheme are all introduced to suppress outliers in traffic flow data.In addition,we combine the denoising schemes with bidirectional long short-term memory(BILSTM)network to predict the traffic flow.The data in this paper are cited from performance measurement system(PeMS).We choose three kinds of road data(mainline,off ramp,on ramp) to predict traffic flow.The results for mainline show that data denoising can improve prediction accuracy.Moreover,prediction accuracy of BILSTM+EEMD scheme is the highest in the three methods(BILSTM+WL,BILSTM+EMD,BILSTM+EEMD).The results for off ramp and on ramp show the same performance as the results for mainline.It is indicated that this model is suitable for different road sections and long-term prediction. 展开更多
关键词 traffic flow prediction bidirectional long short-term memory network data denoising
下载PDF
Short-time prediction for traffic flow based on wavelet de-noising and LSTM model 被引量:3
11
作者 WANG Qingrong LI Tongwei ZHU Changfeng 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2021年第2期195-207,共13页
Aiming at the problem that some existing traffic flow prediction models are only for a single road segment and the model input data are not pre-processed,a heuristic threshold algorithm is used to de-noise the origina... Aiming at the problem that some existing traffic flow prediction models are only for a single road segment and the model input data are not pre-processed,a heuristic threshold algorithm is used to de-noise the original traffic flow data after wavelet decomposition.The correlation coefficients of road traffic flow data are calculated and the data compression matrix of road traffic flow is constructed.Data de-noising minimizes the interference of data to the model,while the correlation analysis of road network data realizes the prediction at the road network level.Utilizing the advantages of long short term memory(LSTM)network in time series data processing,the compression matrix is input into the constructed LSTM model for short-term traffic flow prediction.The LSTM-1 and LSTM-2 models were respectively trained by de-noising processed data and original data.Through simulation experiments,different prediction times were set,and the prediction results of the prediction model proposed in this paper were compared with those of other methods.It is found that the accuracy of the LSTM-2 model proposed in this paper increases by 10.278%on average compared with other prediction methods,and the prediction accuracy reaches 95.58%,which proves that the short-term traffic flow prediction method proposed in this paper is efficient. 展开更多
关键词 short-term traffic flow prediction deep learning wavelet denoising network matrix compression long short term memory(LSTM)network
下载PDF
Flow Direction Level Traffic Flow Prediction Based on a GCN-LSTM Combined Model
12
作者 Fulu Wei Xin Li +3 位作者 Yongqing Guo Zhenyu Wang Qingyin Li Xueshi Ma 《Intelligent Automation & Soft Computing》 SCIE 2023年第8期2001-2018,共18页
Traffic flow prediction plays an important role in intelligent transportation systems and is of great significance in the applications of traffic control and urban planning.Due to the complexity of road traffic flow d... Traffic flow prediction plays an important role in intelligent transportation systems and is of great significance in the applications of traffic control and urban planning.Due to the complexity of road traffic flow data,traffic flow prediction has been one of the challenging tasks to fully exploit the spatiotemporal characteristics of roads to improve prediction accuracy.In this study,a combined flow direction level traffic flow prediction graph convolutional network(GCN)and long short-term memory(LSTM)model based on spatiotemporal characteristics is proposed.First,a GCN model is employed to capture the topological structure of the data graph and extract the spatial features of road networks.Additionally,due to the capability to handle long-term dependencies,the longterm memory is used to predict the time series of traffic flow and extract the time features.The proposed model is evaluated using real-world data,which are obtained from the intersection of Liuquan Road and Zhongrun Avenue in the Zibo High-Tech Zone of China.The results show that the developed combined GCNLSTM flow direction level traffic flow prediction model can perform better than the single models of the LSTM model and GCN model,and the combined ARIMA-LSTM model in traffic flow has a strong spatiotemporal correlation. 展开更多
关键词 flow direction level traffic flow forecasting spatiotemporal characteristics graph convolutional network short-and long-termmemory network
下载PDF
Hybrid Model for Short-Term Passenger Flow Prediction in Rail Transit
13
作者 Yinghua Song Hairong Lyu Wei Zhang 《Journal on Big Data》 2023年第1期19-40,共22页
A precise and timely forecast of short-term rail transit passenger flow provides data support for traffic management and operation,assisting rail operators in efficiently allocating resources and timely relieving pres... A precise and timely forecast of short-term rail transit passenger flow provides data support for traffic management and operation,assisting rail operators in efficiently allocating resources and timely relieving pressure on passenger safety and operation.First,the passenger flow sequence models in the study are broken down using VMD for noise reduction.The objective environment features are then added to the characteristic factors that affect the passenger flow.The target station serves as an additional spatial feature and is mined concurrently using the KNN algorithm.It is shown that the hybrid model VMD-CLSMT has a higher prediction accuracy,by setting BP,CNN,and LSTM reference experiments.All models’second order prediction effects are superior to their first order effects,showing that the residual network can significantly raise model prediction accuracy.Additionally,it confirms the efficacy of supplementary and objective environmental features. 展开更多
关键词 short-term passenger flow forecast variational mode decomposition long and short-term memory convolutional neural network residual network
下载PDF
Improved Social Emotion Optimization Algorithm for Short-Term Traffic Flow Forecasting Based on Back-Propagation Neural Network 被引量:3
14
作者 ZHANG Jun ZHAO Shenwei +1 位作者 WANG Yuanqiang ZHU Xinshan 《Journal of Shanghai Jiaotong university(Science)》 EI 2019年第2期209-219,共11页
The back-propagation neural network(BPNN) is a well-known multi-layer feed-forward neural network which is trained by the error reverse propagation algorithm. It is very suitable for the complex of short-term traffic ... The back-propagation neural network(BPNN) is a well-known multi-layer feed-forward neural network which is trained by the error reverse propagation algorithm. It is very suitable for the complex of short-term traffic flow forecasting; however, BPNN is easy to fall into local optimum and slow convergence. In order to overcome these deficiencies, a new approach called social emotion optimization algorithm(SEOA) is proposed in this paper to optimize the linked weights and thresholds of BPNN. Each individual in SEOA represents a BPNN. The availability of the proposed forecasting models is proved with the actual traffic flow data of the 2 nd Ring Road of Beijing. Experiment of results show that the forecasting accuracy of SEOA is improved obviously as compared with the accuracy of particle swarm optimization back-propagation(PSOBP) and simulated annealing particle swarm optimization back-propagation(SAPSOBP) models. Furthermore, since SEOA does not respond to the negative feedback information, Metropolis rule is proposed to give consideration to both positive and negative feedback information and diversify the adjustment methods. The modified BPNN model, in comparison with social emotion optimization back-propagation(SEOBP) model, is more advantageous to search the global optimal solution. The accuracy of Metropolis rule social emotion optimization back-propagation(MRSEOBP) model is improved about 19.54% as compared with that of SEOBP model in predicting the dramatically changing data. 展开更多
关键词 urban traffic short-term traffic flow forecasting social emotion optimization algorithm(SEOA) back-propagation neural network(BPNN) Metropolis rule
原文传递
A Hybrid Forecasting Framework Based on Support Vector Regression with a Modified Genetic Algorithm and a Random Forest for Traffic Flow Prediction 被引量:22
15
作者 Lizong Zhang Nawaf R Alharbe +2 位作者 Guangchun Luo Zhiyuan Yao Ying Li 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2018年第4期479-492,共14页
The ability to perform short-term traffic flow forecasting is a crucial component of intelligent transportation systems. However, accurate and reliable traffic flow forecasting is still a significant issue due to the ... The ability to perform short-term traffic flow forecasting is a crucial component of intelligent transportation systems. However, accurate and reliable traffic flow forecasting is still a significant issue due to the complexity and variability of real traffic systems. To improve the accuracy of short-term traffic flow forecasting, this paper presents a novel hybrid prediction framework based on Support Vector Regression (SVR) that uses a Random Forest (RF) to select the most informative feature subset and an enhanced Genetic Algorithm (GA) with chaotic characteristics to identify the optimal forecasting model parameters. The framework is evaluated with real-world traffic data collected from eight sensors located near the 1-605 interstate highway in California. Results show that the proposed RF- CGASVR model achieves better performance than other methods. 展开更多
关键词 traffic flow forecasting feature selection parameter optimization genetic algorithm machine learning
原文传递
An attention-based deep learning model for citywide traffic flow forecasting 被引量:1
16
作者 Tao Zhou Bo Huang +2 位作者 Rongrong Li Xiaoqian Liu Zhihui Huang 《International Journal of Digital Earth》 SCIE EI 2022年第1期323-344,共22页
Prompt and accurate traffic flow forecasting is a key foundation of urban traffic management.However,the flows in different areas and feature channels(inflow/outflow)may correspond to different degrees of importance i... Prompt and accurate traffic flow forecasting is a key foundation of urban traffic management.However,the flows in different areas and feature channels(inflow/outflow)may correspond to different degrees of importance in forecasting flows.Many forecasting models inadequately consider this heterogeneity,resulting in decreased predictive accuracy.To overcome this problem,an attention-based hybrid spatiotemporal residual model assisted by spatial and channel information is proposed in this study.By assigning different weights(attention levels)to different regions,the spatial attention module selects relatively important locations from all inputs in the modeling process.Similarly,the channel attention module selects relatively important channels from the multichannel feature map in the modeling process by assigning different weights.The proposed model provides effective selection and attention results for key areas and channels,respectively,during the forecasting process,thereby decreasing the computational overhead and increasing the accuracy.In the case involving Beijing,the proposed model exhibits a 3.7%lower prediction error,and its runtime is 60.9%less the model without attention,indicating that the spatial and channel attention modules are instrumental in increasing the forecasting efficiency.Moreover,in the case involving Shanghai,the proposed model outperforms other models in terms of generalizability and practicality. 展开更多
关键词 Attention mechanism long short-term memory model residual network spatiotemporal forecasting traffic flow
原文传递
时空图神经网络在交通流预测研究中的构建与应用综述 被引量:2
17
作者 汪维泰 王晓强 +2 位作者 李雷孝 陶乙豪 林浩 《计算机工程与应用》 CSCD 北大核心 2024年第8期31-45,共15页
交通流量预测是城市交通管理和规划中的关键问题,而传统预测方法在面对数据稀疏性、非线性关系和复杂动态性等挑战时表现不佳。图神经网络是一种基于非欧结构数据的深度学习方法,近年来在各种复杂网络建模和预测任务中得到广泛应用。为... 交通流量预测是城市交通管理和规划中的关键问题,而传统预测方法在面对数据稀疏性、非线性关系和复杂动态性等挑战时表现不佳。图神经网络是一种基于非欧结构数据的深度学习方法,近年来在各种复杂网络建模和预测任务中得到广泛应用。为了应用于交通流量预测领域,提出了时空图神经网络,其能够捕捉空间和时间相关性,相较之前的预测模型有显著进步。对近年来使用时空图神经网络进行交通流量预测的模型进行分析,概述和比较了多种邻接阵的构造方式,然后从空间相关性和时间相关性的角度列举了构建交通流预测模型的常用组件,并对不同的时空融合方式进行了分类和对比;在应用方面,根据时间尺度的不同将时空图神经网络模型分为长期预测、短期预测与兼顾长短期的预测三类,分析了各自的目标与要求,并列举比较了近年来较为突出的新模型。最后,讨论了现有研究的局限性,对相关模型的未来研究做出展望。 展开更多
关键词 智能交通 交通流量预测 时间序列预测 深度学习 图神经网络
下载PDF
基于流计算和大数据平台的实时交通流预测 被引量:1
18
作者 李星辉 曾碧 魏鹏飞 《计算机工程与设计》 北大核心 2024年第2期553-561,共9页
目前交通流预测实时性差,很难满足在线分析和预测任务的需求,基于此提出一种Flink流计算框架和大数据平台结合的实时交通流预测方法。基于流计算框架实时捕捉和预处理数据,包括采用Flink的transform算子对数据进行校验和处理,将处理后... 目前交通流预测实时性差,很难满足在线分析和预测任务的需求,基于此提出一种Flink流计算框架和大数据平台结合的实时交通流预测方法。基于流计算框架实时捕捉和预处理数据,包括采用Flink的transform算子对数据进行校验和处理,将处理后的数据sink到大数据的HDFS文件系统,交由下一步的大数据并行框架进行分析建模与训练,实现基于流计算和大数据平台的实时交通流预测。实验结果表明,Flink能够实时捕捉和预处理交通流数据,把数据准时无误送入分布式文件系统中,在此基础上借助大数据框架下的并行分析和建模优势,在实时性数据分析与预测方面取得了较好的效果。 展开更多
关键词 大数据 数据并行 流计算框架 实时处理 交通流预测 分布式系统 实时性分析
下载PDF
基于时空关系的高速公路交通流量预测 被引量:1
19
作者 田俊山 曾俊铖 +5 位作者 丁峰 徐劲 江龑 周成 李英达 王歆远 《工程科学学报》 EI CSCD 北大核心 2024年第9期1623-1629,共7页
高速公路交通流量预测对于交通拥堵预警、分流诱导和智慧高速公路建设具有重要意义.交通流具有复杂的时空依赖性,各个交通节点之间的空间关系随时间动态变化,时空关系的融合也缺乏高效的手段,因此对交通流量进行准确的预测具有挑战性.对... 高速公路交通流量预测对于交通拥堵预警、分流诱导和智慧高速公路建设具有重要意义.交通流具有复杂的时空依赖性,各个交通节点之间的空间关系随时间动态变化,时空关系的融合也缺乏高效的手段,因此对交通流量进行准确的预测具有挑战性.对此,提出一种基于动态图卷积网络与时空特征提取模块的高速公路交通流量预测方法.首先,通过动态图调节模块,提取交通流量序列的空间关系,根据提取到的空间特征,计算不同路网节点的道路相似性,并调整交通路网图结构;其次,通过时空特征提取模块,利用更新后的空间结构,结合时序处理方法,对交通流量数据的时空依赖关系进行建模.为检验模型效果,在美国加州高速公路性能测量系统(Performance measurement system,PeMS)所制作的数据集PeMS03、PeMS04、PeMS08和福州京台线高速公路数据集中进行实验对比,平均绝对误差分别为15.6、19.7、16.8和5.21,结果表明,本文提出的方法在高速公路交通流量预测中具有较好的表现. 展开更多
关键词 交通工程 交通流预测 时空预测 图神经网络 图卷积 高速路网交通流
下载PDF
高速公路施工控制区动态交通流预测的LSTM-BiGRU-Attention模型
20
作者 韩晓 陈昕 肇毓 《交通科技与经济》 2024年第1期17-23,共7页
为提前准确预知高速公路施工控制区交通流变化趋势,解决交通流时间序列中的长期依赖问题,文中建立了高速公路施工控制区动态交通流预测的LSTM-BiGRU-Attention模型。首先,将预处理后的动态交通流数据集按时间步长顺序输入到LSTM网络,对... 为提前准确预知高速公路施工控制区交通流变化趋势,解决交通流时间序列中的长期依赖问题,文中建立了高速公路施工控制区动态交通流预测的LSTM-BiGRU-Attention模型。首先,将预处理后的动态交通流数据集按时间步长顺序输入到LSTM网络,对交通流信息建模和学习。然后,引入BiGRU和Attention机制以更好地捕捉上下文信息和提供更具针对性的权重分配。最后,将构建的LSTM-BiGRU-Attention模型与其他模型进行交通流预测对比,评估模型性能。实验以G35济广高速公路某施工控制区交通运行情况为案例进行研究,结果显示该模型的平均绝对误差MAE为1.91,均方根误差RMSE为2.83,决定系数R^(2)为0.79,平均绝对百分数误差MAPE为3.23。对比其他模型,LSTM-BiGRU-Attention模型的4个评估指标均有所下降,说明该模型可为高速公路施工控制区提供更加精准的预测。 展开更多
关键词 交通管理与控制 交通流预测 LSTM-BiGRU-Attention模型 动态交通流 实验对比
下载PDF
上一页 1 2 29 下一页 到第
使用帮助 返回顶部