Traditional short-time fractional Fourier transform(STFrFT)has a single and fixed window function,which can not be adjusted adaptively according to the characteristics of fre-quency and frequency change rate.In order ...Traditional short-time fractional Fourier transform(STFrFT)has a single and fixed window function,which can not be adjusted adaptively according to the characteristics of fre-quency and frequency change rate.In order to overcome the shortcomings,the STFrFT method with adaptive window function is proposed.In this method,the window function of STFrFT is ad-aptively adjusted by establishing a library containing multiple window functions and taking the minimum information entropy as the criterion,so as to obtain a time-frequency distribution that better matches the desired signal.This method takes into account the time-frequency resolution characteristics of STFrFT and the excellent characteristics of adaptive adjustment to window func-tion,improves the time-frequency aggregation on the basis of eliminating cross term interference,and provides a new tool for improving the time-frequency analysis ability of complex modulated sig-nals.展开更多
The high-rise frame structure has become more and more widespread, like its damage from the complication of the environment. The traditional method of damage detection, which is only suitable for the stationary signal...The high-rise frame structure has become more and more widespread, like its damage from the complication of the environment. The traditional method of damage detection, which is only suitable for the stationary signal, does not apply to a high-rise frame structure because its damage signal is non-stationary. Thus, this paper presents an application of the short-time Fourier transform(STFT) to damage detection of high-rise frame structures. Compared with the fast Fourier transform, STFT is found to be able to express the frequency spectrum property of the time interval using the signal within this interval. Application of STFT to analyzing a Matlab model and the shaking table test with a twelve-story frame-structure model reveals that there is a positive correlation between the slope of the frequency versus time and the damage level. If the slope is equal to or greater than zero, the structure is not damaged. If the slope is smaller than zero, the structure is damaged, and the less the slope is, the more serious the damage is. The damage results from calculation based on the Matlab model are consistent with those from the shaking table test, demonstrating that STFT can be a reliable tool for the damage detection of high-rise frame structures.展开更多
Let and denote respectively the functionswhere λ≥1, The author discusses the similarity transformation of the regularizing functionals of these functions and the similar property of their Fourier transformation.
Fault detection of an induction motor was carried out using the information of the stator current. After synchronizing the actual data, Fourier and wavelet transformations were adopted in order to obtain the sideband ...Fault detection of an induction motor was carried out using the information of the stator current. After synchronizing the actual data, Fourier and wavelet transformations were adopted in order to obtain the sideband or detail value characteristics under healthy and various faulty operating conditions. The most reliable phase current among the three phase currents was selected using an approach that employs the fuzzy entropy measure. Data were trained with a neural network system, and the fault detection algorithm was verified using the unknown data. Results of the proposed approach based on Fourier and wavelet transformations indicate that the faults can be properly classified into six categories. The training error is 5.3×10-7, and the average test error is 0.103.展开更多
By converting the triangular functions in the integration kernel of the fractional Fourier transformation to the hyperbolic function,i.e.,tan α → tanh α,sin α →〉 sinh α,we find the quantum mechanical fractional...By converting the triangular functions in the integration kernel of the fractional Fourier transformation to the hyperbolic function,i.e.,tan α → tanh α,sin α →〉 sinh α,we find the quantum mechanical fractional squeezing transformation(FrST) which satisfies additivity.By virtue of the integration technique within the ordered product of operators(IWOP) we derive the unitary operator responsible for the FrST,which is composite and is made of e^iπa+a/2 and exp[iα/2(a^2 +a^+2).The FrST may be implemented in combinations of quadratic nonlinear crystals with different phase mismatches.展开更多
Deepfake-generated fake faces,commonly utilized in identity-related activities such as political propaganda,celebrity impersonations,evidence forgery,and familiar fraud,pose new societal threats.Although current deepf...Deepfake-generated fake faces,commonly utilized in identity-related activities such as political propaganda,celebrity impersonations,evidence forgery,and familiar fraud,pose new societal threats.Although current deepfake generators strive for high realism in visual effects,they do not replicate biometric signals indicative of cardiac activity.Addressing this gap,many researchers have developed detection methods focusing on biometric characteristics.These methods utilize classification networks to analyze both temporal and spectral domain features of the remote photoplethysmography(rPPG)signal,resulting in high detection accuracy.However,in the spectral analysis,existing approaches often only consider the power spectral density and neglect the amplitude spectrum—both crucial for assessing cardiac activity.We introduce a novel method that extracts rPPG signals from multiple regions of interest through remote photoplethysmography and processes them using Fast Fourier Transform(FFT).The resultant time-frequency domain signal samples are organized into matrices to create Matrix Visualization Heatmaps(MVHM),which are then utilized to train an image classification network.Additionally,we explored various combinations of time-frequency domain representations of rPPG signals and the impact of attention mechanisms.Our experimental results show that our algorithm achieves a remarkable detection accuracy of 99.22%in identifying fake videos,significantly outperforming mainstream algorithms and demonstrating the effectiveness of Fourier Transform and attention mechanisms in detecting fake faces.展开更多
Enhancing the security of the wireless communication is necessary to guarantee the reliable of the data transmission, due to the broadcast nature of wireless channels. In this paper, we provide a novel technology refe...Enhancing the security of the wireless communication is necessary to guarantee the reliable of the data transmission, due to the broadcast nature of wireless channels. In this paper, we provide a novel technology referred to as doubly multiple parameters weighted fractional Fourier transform(DMWFRFT), which can strengthen the physical layer security of wireless communication. This paper introduces the concept of DM-WFRFT based on multiple parameters WFRFT(MP-WFRFT), and then presents its four properties. Based on these properties, the parameters decryption probability is analyzed in terms of the number of parameters. The number of parameters for DM-WFRFT is more than that of the MP-WFRFT,which indicates that the proposed scheme can further strengthen the the physical layer security. Lastly, some numerical simulations are carried out to illustrate that the efficiency of proposed DM-WFRFT is related to preventing eavesdropping, and the effect of parameters variety on the system performance is associated with the bit error ratio(BER).展开更多
Radioheliographs can obtain solar images at high temporal and spatial resolution,with a high dynamic range.These are among the most important instruments for studying solar radio bursts,understanding solar eruption ev...Radioheliographs can obtain solar images at high temporal and spatial resolution,with a high dynamic range.These are among the most important instruments for studying solar radio bursts,understanding solar eruption events,and conducting space weather forecasting.This study aims to explore the effective use of radioheliographs for solar observations,specifically for imaging coronal mass ejections(CME),to track their evolution and provide space weather warnings.We have developed an imaging simulation program based on the principle of aperture synthesis imaging,covering the entire data processing flow from antenna configuration to dirty map generation.For grid processing,we propose an improved non-uniform fast Fourier transform(NUFFT)method to provide superior image quality.Using simulated imaging of radio coronal mass ejections,we provide practical recommendations for the performance of radioheliographs.This study provides important support for the validation and calibration of radioheliograph data processing,and is expected to profoundly enhance our understanding of solar activities.展开更多
Code acquisition is the kernel operation for signal synchronization in the spread-spectrum receiver.To reduce the computational complexity and latency of code acquisition,this paper proposes an efficient scheme employ...Code acquisition is the kernel operation for signal synchronization in the spread-spectrum receiver.To reduce the computational complexity and latency of code acquisition,this paper proposes an efficient scheme employing sparse Fourier transform(SFT)and the relevant hardware architecture for field programmable gate array(FPGA)and application-specific integrated circuit(ASIC)implementation.Efforts are made at both the algorithmic level and the implementation level to enable merged searching of code phase and Doppler frequency without incurring massive hardware expenditure.Compared with the existing code acquisition approaches,it is shown from theoretical analysis and experimental results that the proposed design can shorten processing latency and reduce hardware complexity without degrading the acquisition probability.展开更多
This study presents a comparative analysis of two image enhancement techniques, Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT), in the context of improving the clarity of high-quality 3D seismic d...This study presents a comparative analysis of two image enhancement techniques, Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT), in the context of improving the clarity of high-quality 3D seismic data obtained from the Tano Basin in West Africa, Ghana. The research focuses on a comparative analysis of image clarity in seismic attribute analysis to facilitate the identification of reservoir features within the subsurface structures. The findings of the study indicate that CWT has a significant advantage over FFT in terms of image quality and identifying subsurface structures. The results demonstrate the superior performance of CWT in providing a better representation, making it more effective for seismic attribute analysis. The study highlights the importance of choosing the appropriate image enhancement technique based on the specific application needs and the broader context of the study. While CWT provides high-quality images and superior performance in identifying subsurface structures, the selection between these methods should be made judiciously, taking into account the objectives of the study and the characteristics of the signals being analyzed. The research provides valuable insights into the decision-making process for selecting image enhancement techniques in seismic data analysis, helping researchers and practitioners make informed choices that cater to the unique requirements of their studies. Ultimately, this study contributes to the advancement of the field of subsurface imaging and geological feature identification.展开更多
Many domains, including communication, signal processing, and image processing, use the Fourier Transform as a mathematical tool for signal analysis. Although it can analyze signals with steady and transitory properti...Many domains, including communication, signal processing, and image processing, use the Fourier Transform as a mathematical tool for signal analysis. Although it can analyze signals with steady and transitory properties, it has limits. The Wavelet Packet Decomposition (WPD) is a novel technique that we suggest in this study as a way to improve the Fourier Transform and get beyond these drawbacks. In this experiment, we specifically considered the utilization of Daubechies level 4 for the wavelet transformation. The choice of Daubechies level 4 was motivated by several reasons. Daubechies wavelets are known for their compact support, orthogonality, and good time-frequency localization. By choosing Daubechies level 4, we aimed to strike a balance between preserving important transient information and avoiding excessive noise or oversmoothing in the transformed signal. Then we compared the outcomes of our suggested approach to the conventional Fourier Transform using a non-stationary signal. The findings demonstrated that the suggested method offered a more accurate representation of non-stationary and transient signals in the frequency domain. Our method precisely showed a 12% reduction in MSE and a 3% rise in PSNR for the standard Fourier transform, as well as a 35% decrease in MSE and an 8% increase in PSNR for voice signals when compared to the traditional wavelet packet decomposition method.展开更多
We newly construct two mutually-conjugate tripartite entangled state representations, based on which we propose the formulation of three-mode entangled fractional Fourier transformation (EFFT) and derive the transfo...We newly construct two mutually-conjugate tripartite entangled state representations, based on which we propose the formulation of three-mode entangled fractional Fourier transformation (EFFT) and derive the transformation kernel. The EFFT's additivity property is proved and the eigenmode of EFFT is derived. As an application, we calculate the EFFT of the three-mode squeezed vacuum state.展开更多
Based on our previous paper (Commun.Theor.Phys.39 (2003) 417) we derive the convolution theoremof fractional Fourier transformation in the context of quantum mechanics,which seems a convenient and neat way.Generalizat...Based on our previous paper (Commun.Theor.Phys.39 (2003) 417) we derive the convolution theoremof fractional Fourier transformation in the context of quantum mechanics,which seems a convenient and neat way.Generalization of this method to the complex fractional Fourier transformation case is also possible.展开更多
Starting from the optical fractional Fourier transform (FFT) and using the technique of integration withinan ordered product of operators we establish a formalism of FFT for quantum mechanical wave functions. In doing...Starting from the optical fractional Fourier transform (FFT) and using the technique of integration withinan ordered product of operators we establish a formalism of FFT for quantum mechanical wave functions. In doing so, theessence of FFT can be seen more clearly, and the FFT of some wave functions can be derived more directly and concisely.We also point out that different FFT integral kernels correspond to different quantum mechanical representations. Theyare generalized FFT. The relationship between the FFT and the rotated Wigner operator is studied by virtue of theWeyl ordered form of the Wigner operator.展开更多
Using the Weyl quantization scheme and based on the Fourier slice transformation (FST) of the Wigner operator, we construct a new expansion formula of the density operator p, with the expansion coefficient being the...Using the Weyl quantization scheme and based on the Fourier slice transformation (FST) of the Wigner operator, we construct a new expansion formula of the density operator p, with the expansion coefficient being the FST of p's classical Weyl correspondence, and the latter the Fourier transformation of p's quantum tomogram. The coordinate momentum intermediate representation is used as the Radon transformation of the Wigner operator.展开更多
With the aid of Plancherel-Godement Theorem, we prove that every positive distributionT onSO (3, 1) which is bi-invariant underSO(3) corresponds to a measure μ on ω=∝σC|s(2-s)>=0∝, and μ can be decomposed int...With the aid of Plancherel-Godement Theorem, we prove that every positive distributionT onSO (3, 1) which is bi-invariant underSO(3) corresponds to a measure μ on ω=∝σC|s(2-s)>=0∝, and μ can be decomposed intoμ=μ 1+μ 2, whereμ 1 is a bounded measure on 0<=s<=2 andμ 2 is slowly increasing measure on (sχC|Re(s)=1)}展开更多
In this paper a novel technique, Authentication and Secret Message Transmission using Discrete Fourier Transformation (ASMTDFT) has been proposed to authenticate an image and also some secret message or image can be t...In this paper a novel technique, Authentication and Secret Message Transmission using Discrete Fourier Transformation (ASMTDFT) has been proposed to authenticate an image and also some secret message or image can be transmitted over the network. Instead of direct embedding a message or image within the source image, choosing a window of size 2 x 2 of the source image in sliding window manner and then con-vert it from spatial domain to frequency domain using Discrete Fourier Transform (DFT). The bits of the authenticating message or image are then embedded at LSB within the real part of the transformed image. Inverse DFT is performed for the transformation from frequency domain to spatial domain as final step of encoding. Decoding is done through the reverse procedure. The experimental results have been discussed and compared with the existing steganography algorithm S-Tools. Histogram analysis and Chi-Square test of source image with embedded image shows the better results in comparison with the S-Tools.展开更多
With the help of su(2) algebra technique, a new equivalent form of the fractional Fourier transformation is given. Two examples are illustrated for their physical application in quantum optics.
The image security problem is an important area in information security, and image encryption plays a vital role in this day. To protect the image encryption from the attack of quantum algorithm appeared recently, an ...The image security problem is an important area in information security, and image encryption plays a vital role in this day. To protect the image encryption from the attack of quantum algorithm appeared recently, an image encryption method based on quantum Fourier transformation is proposed here. First, the image encryption and Fourier transformation are discussed here, then a encryption function is proposed. Second, a quantum Fourier transformation is introduced to quantum encryption, and the full step of quantum encryption is given as well. Third, the security of the proposed quantum encryption if analyzed, and some propositions are also presented. Lastly, some conclusions are indicated and some possible directions are also listed.展开更多
This paper serves two purposes. One is to modify Strichartz's results with respect to the asymptotic averages of the Fourier transform of μ on , self-similar measure defined by Hutchinson. Another purpose is to c...This paper serves two purposes. One is to modify Strichartz's results with respect to the asymptotic averages of the Fourier transform of μ on , self-similar measure defined by Hutchinson. Another purpose is to consider a singular integral operator on μ and show that this op- erator is of type (p,p)(1<p<∞).展开更多
基金supported by the National Natural Science Found-ation of China(No.61571454)Special Fund for Taishan Scholar Project(No.201712072)。
文摘Traditional short-time fractional Fourier transform(STFrFT)has a single and fixed window function,which can not be adjusted adaptively according to the characteristics of fre-quency and frequency change rate.In order to overcome the shortcomings,the STFrFT method with adaptive window function is proposed.In this method,the window function of STFrFT is ad-aptively adjusted by establishing a library containing multiple window functions and taking the minimum information entropy as the criterion,so as to obtain a time-frequency distribution that better matches the desired signal.This method takes into account the time-frequency resolution characteristics of STFrFT and the excellent characteristics of adaptive adjustment to window func-tion,improves the time-frequency aggregation on the basis of eliminating cross term interference,and provides a new tool for improving the time-frequency analysis ability of complex modulated sig-nals.
文摘The high-rise frame structure has become more and more widespread, like its damage from the complication of the environment. The traditional method of damage detection, which is only suitable for the stationary signal, does not apply to a high-rise frame structure because its damage signal is non-stationary. Thus, this paper presents an application of the short-time Fourier transform(STFT) to damage detection of high-rise frame structures. Compared with the fast Fourier transform, STFT is found to be able to express the frequency spectrum property of the time interval using the signal within this interval. Application of STFT to analyzing a Matlab model and the shaking table test with a twelve-story frame-structure model reveals that there is a positive correlation between the slope of the frequency versus time and the damage level. If the slope is equal to or greater than zero, the structure is not damaged. If the slope is smaller than zero, the structure is damaged, and the less the slope is, the more serious the damage is. The damage results from calculation based on the Matlab model are consistent with those from the shaking table test, demonstrating that STFT can be a reliable tool for the damage detection of high-rise frame structures.
文摘Let and denote respectively the functionswhere λ≥1, The author discusses the similarity transformation of the regularizing functionals of these functions and the similar property of their Fourier transformation.
基金Project supported by the Second Stage of Brain Korea 21 Projects
文摘Fault detection of an induction motor was carried out using the information of the stator current. After synchronizing the actual data, Fourier and wavelet transformations were adopted in order to obtain the sideband or detail value characteristics under healthy and various faulty operating conditions. The most reliable phase current among the three phase currents was selected using an approach that employs the fuzzy entropy measure. Data were trained with a neural network system, and the fault detection algorithm was verified using the unknown data. Results of the proposed approach based on Fourier and wavelet transformations indicate that the faults can be properly classified into six categories. The training error is 5.3×10-7, and the average test error is 0.103.
基金supported by the National Natural Science Foundation of China(Grant No.11304126)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20130532)+2 种基金the Natural Science Fund for Colleges and Universities in Jiangsu Province,China(Grant No.13KJB140003)the Postdoctoral Science Foundation of China(Grant No.2013M541608)the Postdoctoral Science Foundation of Jiangsu Province,China(Grant No.1202012B)
文摘By converting the triangular functions in the integration kernel of the fractional Fourier transformation to the hyperbolic function,i.e.,tan α → tanh α,sin α →〉 sinh α,we find the quantum mechanical fractional squeezing transformation(FrST) which satisfies additivity.By virtue of the integration technique within the ordered product of operators(IWOP) we derive the unitary operator responsible for the FrST,which is composite and is made of e^iπa+a/2 and exp[iα/2(a^2 +a^+2).The FrST may be implemented in combinations of quadratic nonlinear crystals with different phase mismatches.
基金supported by the National Nature Science Foundation of China(Grant Number:61962010).
文摘Deepfake-generated fake faces,commonly utilized in identity-related activities such as political propaganda,celebrity impersonations,evidence forgery,and familiar fraud,pose new societal threats.Although current deepfake generators strive for high realism in visual effects,they do not replicate biometric signals indicative of cardiac activity.Addressing this gap,many researchers have developed detection methods focusing on biometric characteristics.These methods utilize classification networks to analyze both temporal and spectral domain features of the remote photoplethysmography(rPPG)signal,resulting in high detection accuracy.However,in the spectral analysis,existing approaches often only consider the power spectral density and neglect the amplitude spectrum—both crucial for assessing cardiac activity.We introduce a novel method that extracts rPPG signals from multiple regions of interest through remote photoplethysmography and processes them using Fast Fourier Transform(FFT).The resultant time-frequency domain signal samples are organized into matrices to create Matrix Visualization Heatmaps(MVHM),which are then utilized to train an image classification network.Additionally,we explored various combinations of time-frequency domain representations of rPPG signals and the impact of attention mechanisms.Our experimental results show that our algorithm achieves a remarkable detection accuracy of 99.22%in identifying fake videos,significantly outperforming mainstream algorithms and demonstrating the effectiveness of Fourier Transform and attention mechanisms in detecting fake faces.
文摘Enhancing the security of the wireless communication is necessary to guarantee the reliable of the data transmission, due to the broadcast nature of wireless channels. In this paper, we provide a novel technology referred to as doubly multiple parameters weighted fractional Fourier transform(DMWFRFT), which can strengthen the physical layer security of wireless communication. This paper introduces the concept of DM-WFRFT based on multiple parameters WFRFT(MP-WFRFT), and then presents its four properties. Based on these properties, the parameters decryption probability is analyzed in terms of the number of parameters. The number of parameters for DM-WFRFT is more than that of the MP-WFRFT,which indicates that the proposed scheme can further strengthen the the physical layer security. Lastly, some numerical simulations are carried out to illustrate that the efficiency of proposed DM-WFRFT is related to preventing eavesdropping, and the effect of parameters variety on the system performance is associated with the bit error ratio(BER).
基金supported by the grants of National Natural Science Foundation of China(42374219,42127804)the Qilu Young Researcher Project of Shandong University.
文摘Radioheliographs can obtain solar images at high temporal and spatial resolution,with a high dynamic range.These are among the most important instruments for studying solar radio bursts,understanding solar eruption events,and conducting space weather forecasting.This study aims to explore the effective use of radioheliographs for solar observations,specifically for imaging coronal mass ejections(CME),to track their evolution and provide space weather warnings.We have developed an imaging simulation program based on the principle of aperture synthesis imaging,covering the entire data processing flow from antenna configuration to dirty map generation.For grid processing,we propose an improved non-uniform fast Fourier transform(NUFFT)method to provide superior image quality.Using simulated imaging of radio coronal mass ejections,we provide practical recommendations for the performance of radioheliographs.This study provides important support for the validation and calibration of radioheliograph data processing,and is expected to profoundly enhance our understanding of solar activities.
基金supported by the National Natural Science Foundation of China(61801503).
文摘Code acquisition is the kernel operation for signal synchronization in the spread-spectrum receiver.To reduce the computational complexity and latency of code acquisition,this paper proposes an efficient scheme employing sparse Fourier transform(SFT)and the relevant hardware architecture for field programmable gate array(FPGA)and application-specific integrated circuit(ASIC)implementation.Efforts are made at both the algorithmic level and the implementation level to enable merged searching of code phase and Doppler frequency without incurring massive hardware expenditure.Compared with the existing code acquisition approaches,it is shown from theoretical analysis and experimental results that the proposed design can shorten processing latency and reduce hardware complexity without degrading the acquisition probability.
文摘This study presents a comparative analysis of two image enhancement techniques, Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT), in the context of improving the clarity of high-quality 3D seismic data obtained from the Tano Basin in West Africa, Ghana. The research focuses on a comparative analysis of image clarity in seismic attribute analysis to facilitate the identification of reservoir features within the subsurface structures. The findings of the study indicate that CWT has a significant advantage over FFT in terms of image quality and identifying subsurface structures. The results demonstrate the superior performance of CWT in providing a better representation, making it more effective for seismic attribute analysis. The study highlights the importance of choosing the appropriate image enhancement technique based on the specific application needs and the broader context of the study. While CWT provides high-quality images and superior performance in identifying subsurface structures, the selection between these methods should be made judiciously, taking into account the objectives of the study and the characteristics of the signals being analyzed. The research provides valuable insights into the decision-making process for selecting image enhancement techniques in seismic data analysis, helping researchers and practitioners make informed choices that cater to the unique requirements of their studies. Ultimately, this study contributes to the advancement of the field of subsurface imaging and geological feature identification.
文摘Many domains, including communication, signal processing, and image processing, use the Fourier Transform as a mathematical tool for signal analysis. Although it can analyze signals with steady and transitory properties, it has limits. The Wavelet Packet Decomposition (WPD) is a novel technique that we suggest in this study as a way to improve the Fourier Transform and get beyond these drawbacks. In this experiment, we specifically considered the utilization of Daubechies level 4 for the wavelet transformation. The choice of Daubechies level 4 was motivated by several reasons. Daubechies wavelets are known for their compact support, orthogonality, and good time-frequency localization. By choosing Daubechies level 4, we aimed to strike a balance between preserving important transient information and avoiding excessive noise or oversmoothing in the transformed signal. Then we compared the outcomes of our suggested approach to the conventional Fourier Transform using a non-stationary signal. The findings demonstrated that the suggested method offered a more accurate representation of non-stationary and transient signals in the frequency domain. Our method precisely showed a 12% reduction in MSE and a 3% rise in PSNR for the standard Fourier transform, as well as a 35% decrease in MSE and an 8% increase in PSNR for voice signals when compared to the traditional wavelet packet decomposition method.
基金Project supported by the Specialized Research Fund for Doctoral Program of High Education of Chinathe National Natural Science Foundation of China (Grant Nos. 10874174 and 10947017/A05)
文摘We newly construct two mutually-conjugate tripartite entangled state representations, based on which we propose the formulation of three-mode entangled fractional Fourier transformation (EFFT) and derive the transformation kernel. The EFFT's additivity property is proved and the eigenmode of EFFT is derived. As an application, we calculate the EFFT of the three-mode squeezed vacuum state.
基金National Natural Science Foundation of China under Grant No.10775097
文摘Based on our previous paper (Commun.Theor.Phys.39 (2003) 417) we derive the convolution theoremof fractional Fourier transformation in the context of quantum mechanics,which seems a convenient and neat way.Generalization of this method to the complex fractional Fourier transformation case is also possible.
文摘Starting from the optical fractional Fourier transform (FFT) and using the technique of integration withinan ordered product of operators we establish a formalism of FFT for quantum mechanical wave functions. In doing so, theessence of FFT can be seen more clearly, and the FFT of some wave functions can be derived more directly and concisely.We also point out that different FFT integral kernels correspond to different quantum mechanical representations. Theyare generalized FFT. The relationship between the FFT and the rotated Wigner operator is studied by virtue of theWeyl ordered form of the Wigner operator.
基金Project supported by the Natural Science Foundation of Huangshi Institute of Technology,China (Grant No. 10yjz03R)the National Natural Science Foundation of China (Grant No. 10874174)
文摘Using the Weyl quantization scheme and based on the Fourier slice transformation (FST) of the Wigner operator, we construct a new expansion formula of the density operator p, with the expansion coefficient being the FST of p's classical Weyl correspondence, and the latter the Fourier transformation of p's quantum tomogram. The coordinate momentum intermediate representation is used as the Radon transformation of the Wigner operator.
基金the National Natural Science F oundation of China (198710 65 ) and Hua Cheng Mathematics Science Foundation
文摘With the aid of Plancherel-Godement Theorem, we prove that every positive distributionT onSO (3, 1) which is bi-invariant underSO(3) corresponds to a measure μ on ω=∝σC|s(2-s)>=0∝, and μ can be decomposed intoμ=μ 1+μ 2, whereμ 1 is a bounded measure on 0<=s<=2 andμ 2 is slowly increasing measure on (sχC|Re(s)=1)}
文摘In this paper a novel technique, Authentication and Secret Message Transmission using Discrete Fourier Transformation (ASMTDFT) has been proposed to authenticate an image and also some secret message or image can be transmitted over the network. Instead of direct embedding a message or image within the source image, choosing a window of size 2 x 2 of the source image in sliding window manner and then con-vert it from spatial domain to frequency domain using Discrete Fourier Transform (DFT). The bits of the authenticating message or image are then embedded at LSB within the real part of the transformed image. Inverse DFT is performed for the transformation from frequency domain to spatial domain as final step of encoding. Decoding is done through the reverse procedure. The experimental results have been discussed and compared with the existing steganography algorithm S-Tools. Histogram analysis and Chi-Square test of source image with embedded image shows the better results in comparison with the S-Tools.
文摘With the help of su(2) algebra technique, a new equivalent form of the fractional Fourier transformation is given. Two examples are illustrated for their physical application in quantum optics.
文摘The image security problem is an important area in information security, and image encryption plays a vital role in this day. To protect the image encryption from the attack of quantum algorithm appeared recently, an image encryption method based on quantum Fourier transformation is proposed here. First, the image encryption and Fourier transformation are discussed here, then a encryption function is proposed. Second, a quantum Fourier transformation is introduced to quantum encryption, and the full step of quantum encryption is given as well. Third, the security of the proposed quantum encryption if analyzed, and some propositions are also presented. Lastly, some conclusions are indicated and some possible directions are also listed.
文摘This paper serves two purposes. One is to modify Strichartz's results with respect to the asymptotic averages of the Fourier transform of μ on , self-similar measure defined by Hutchinson. Another purpose is to consider a singular integral operator on μ and show that this op- erator is of type (p,p)(1<p<∞).