期刊文献+
共找到418篇文章
< 1 2 21 >
每页显示 20 50 100
Characteristics of Radar Echo Parameters and Microphysical Structure Simulation of a Short-Time Heavy Precipitation Supercell 被引量:1
1
作者 ZHAO Gui-xiang WANG Yi-jie LIAN Zhi-luan 《Journal of Tropical Meteorology》 SCIE 2022年第4期388-404,共17页
By using the conventional observations, radar data, NCEP/NCAR FNL 1°×1° reanalysis data and numerical simulation data and with the construction and calculation of radar echo parameters, this paper prese... By using the conventional observations, radar data, NCEP/NCAR FNL 1°×1° reanalysis data and numerical simulation data and with the construction and calculation of radar echo parameters, this paper presents the structural characteristics and physical processes of a short-time heavy precipitation supercell that occurred in the squall line process in Shanxi Province on 24 June 2020. The results show that this squall line event occurred in front of a surface cold front,combined with infiltration of low-level cold air and continuous increase of near-surface humidity in the afternoon. The surface mesoscale convergence line and mesoscale dew point front contributed to the development and systemization of the squall line by a large degree. The short-time extremely heavy precipitation in Pingshun County was caused by the development of a supercell from thunderstorm cells on the front side of the squall line. The characteristics of sharp increase in vertical integral liquid water content, persistent increase in reflectivity factor and continuous rise in the echo top height appeared about 23 min earlier than the severe precipitation, which has qualitative indicating significance for the nowcasting of short-time heavy precipitation. A quantitative analysis of the radar echo parameters suggests that the“sudden drop”of FV40was a precursor signal of cells’ coalescence and rapid development to the mature stage. The areal change of the echo core at the 6 km height was highly subject to the merging and developing of cells, the rapid change of hydrometeor particles in clouds and the precipitation intensity. Changes in the cross-sectional area of convective cells at different heights can indirectly reflect the changes of liquid particles and ice particles in clouds, which is indicatively meaningful for predicting the coalescing and developing-to-maturing of cells and heavy precipitation 30-45 min earlier.A comprehensive echo parameter prediction model constructed by the random forest principle can predict the magnitude of short-time heavy precipitation 40-50 min in advance. Numerical simulation reveals that large amounts of water vapor existed in the near-surface atmosphere, and that the cells rapidly obtained moisture from the ambient atmosphere and developed rapidly through maternal feeding. The cold cloud zone was narrow, upright and had a high stretch height. The upward motion in clouds was strong and deep, and very rich in liquid water content. The graupel particles had a large vertical distribution range, the coexistence area of graupel and snow was large, the height of raindrops was close to the surface with a wide horizontal scale, and the precipitation efficiency was high. These may be the important elements responsible for the occurrence of the short-time heavy precipitation that exceeded historical extreme values. On the basis of the above analyses, a comprehensive parameter(CP) prediction model is worked out, which can estimate the developing trend of supercells and the intensity of short-time heavy precipitation about 1 h in advance. 展开更多
关键词 SUPERCELL short-time heavy rainfall radar echo parameters microphysical structure
下载PDF
Characteristics Analysis on Short-Time Heavy Rainfall during the Flood Season in Shanxi Province, China 被引量:1
2
作者 Xiaoting Tian Dongliang Li +2 位作者 Jinhong Zhou Yaqing Zhou Zexiu Zhang 《Journal of Geoscience and Environment Protection》 2019年第3期190-203,共14页
In order to provide a reference for the correct forecasting of short-term heavy rainfall and better disaster prevention and mitigation services in Shanxi Province, China, it is very important to carry out systematic r... In order to provide a reference for the correct forecasting of short-term heavy rainfall and better disaster prevention and mitigation services in Shanxi Province, China, it is very important to carry out systematic research on short-term heavy precipitation events in Shanxi Province. Based on hourly precipitation data during the flood season (May to September) from 109 meteorological stations in Shanxi, China in 1980-2015, the temporal and spatial variation characteristics of short-time heavy rainfall during the flood season are analyzed by using wavelet analysis and Mann-Kendall test. The results show that the short-time heavy rainfall in the flood season in Shanxi Province is mainly at the grade of 20 - 30 mm/h, with an average of 97 stations having short-time heavy rainfall each year, accounting for 89% of the total stations. The short-time heavy rainfall mainly concentrated in July and August, and the maximal rain intensity in history appeared at 23 - 24 on June 17, 1991 in Yongji, Shanxi is 91.7 mm/h. During the flood season, the short-time heavy rainfalls always occur at 16 - 18 pm, and have slightly different concentrated time in different months. The main peaks of June, July and August are at 16, 17 and 18 respectively, postponed for one hour. Short-time heavy rainfall overall has the distribution that the south is more than the north and the east less than the west in Shanxi area. In the last 36 years, short-time heavy rainfall has a slight increasing trend in Shanxi, but not significant. There is a clear 4-year period of oscillation and inter-decadal variation. It has a good correlation between the total precipitation and times of short-time heavy rainfall during the flood season. 展开更多
关键词 FLOOD SEASON short-time heavy RAINFALL Temporal and Spatial Distribution SHANXI PROVINCE
下载PDF
Analysis on A Heavy Rain to Rainstorm Weather Process in Liaoning Province 被引量:2
3
作者 李东 许宁 韩蓓蓓 《Meteorological and Environmental Research》 CAS 2010年第9期25-28,共4页
By using the synoptic chart,the physical quantity field,the satellite cloud image and the meteorological elements in the single station,a typical heavy rain to rainstorm weather process which occurred in Liaoning duri... By using the synoptic chart,the physical quantity field,the satellite cloud image and the meteorological elements in the single station,a typical heavy rain to rainstorm weather process which occurred in Liaoning during August 18-20 in 2009 was comprehensively analyzed.The results showed that this process was a weather process which was affected by the upper trough and the subtropical high.Baikal Lake split cold air and Hetao cold air shifted eastward and formed the vortex.The subtropical high extended westward,lifted northward,and the warm wet airflow in the edge cut in.The low-altitude jet stream accelerated the transportation of water vapor,and several active meso-scale convective cloud clusters which appeared in 588 line periphery in the right side of high-altitude jet stream outlet gradually merged with the westerlies system.It caused that the strong mixed precipitation process occurred. 展开更多
关键词 heavy rain to rainstorm Physical quantity field Satellite cloud image Meteorological elements China
下载PDF
Analysis on the Reason of Local Heavy Rainstorm Forecast Error in the Subtropical High Control 被引量:2
4
作者 LV Xiao-hua DAI Jin +1 位作者 WU Jin-hua LI Wen-ming 《Meteorological and Environmental Research》 CAS 2011年第2期13-17,共5页
[Objective] The research aimed to study the reason of local heavy rainstorm forecast error in the subtropical high control. [Method] Started from summarizing the reason of forecast error, by using the conventional gro... [Objective] The research aimed to study the reason of local heavy rainstorm forecast error in the subtropical high control. [Method] Started from summarizing the reason of forecast error, by using the conventional ground observation data, the upper air sounding data, T639, T213 and European Center (ECMWF) numerical prediction product data, GFS precipitation forecast product of U.S. National Center for Environmental Prediction, the weather situation, physical quantity field in a heavy rainstorm process which happened in the north of Shaoyang at night on August 5, 2010 were fully analyzed. Based on the numerical analysis forecast product data, the reason of heavy rainstorm forecast error in the subtropical high was comprehensively analyzed by using the comparison and analysis method of forecast and actual situation. [Result] The forecasters didn’t deeply and carefully analyze the weather situation. On the surface, 500 hPa was controlled by the subtropical high, but there was the weak shear line in 700 and 850 hPa. Moreover, they neglected the influences of weak cold air and easterlies wave. The subtropical high quickly weakened, and the system adjustment was too quick. The wind field variations in 850, 700 and 500 hPa which were forecasted by ECMWF had the big error with the actual situation. It was by east about 2 longitudes than the actual situation. In summer forecast, they only considered the intensity and position variations of 500 hPa subtropical high, and neglected the situation variations in the middle, low levels and on the ground. It was the most key element which caused the rainstorm forecast error in the subtropical high. The forecast error of numerical forecast products on the height field situation variation was big. The precipitation forecasts of Japan FSAS, U.S. National Center for Environmental Prediction GFS, T639 and T213 were all small. The humidity field forecast value of T639 was small. In the rainstorm forecast, the local rainstorm forecast index and method weren’t used in the forecast practice. In the precipitation forecast process, they only paid attention to the score prediction of station and didn’t value the non-site prediction. Some important physical quantity factors weren’t carefully studied. [Conclusion] The research provided the reference basis for the forecast and early warning of local heavy rainstorm. 展开更多
关键词 heavy rainstorm Subtropical high Forecast error Reason analysis China
下载PDF
Study on Mesoscale Circulation Characteristics of Heavy Rainstorm in Wangmo County in Qianxinan on June 6,2011 被引量:2
5
作者 CUI Ting1,2,WU Gu-hui3,ZHAO Yu-jin2,YANG Ling2,ZHANG Qiang-yi2 1.College of Atmospheric Sciences,Lanzhou University,Lanzhou 730000,China 2.Qianxinan Meteorological Bureau,Xingyi 562400,China 3.Guizhou Meteorological Observatory,Guiyang 550002,China 《Meteorological and Environmental Research》 CAS 2011年第11期13-16,22,共5页
[Objective] The aim was to analyze the causes of '6.06' heavy rainstorm in Wangmo County in Qianxinan.[Method] By dint of NCEP/NCAR 1°×1° reanalysis data,FY-2E TBB data,seven ground elements and... [Objective] The aim was to analyze the causes of '6.06' heavy rainstorm in Wangmo County in Qianxinan.[Method] By dint of NCEP/NCAR 1°×1° reanalysis data,FY-2E TBB data,seven ground elements and two elements from automatic station data,the main influential system and all kinds of physical quantity field features of heavy rainstorm in upper reaches of Wangmo County in Qianxinan from the evening on 5 June to 08:00 on 6 June in 2011 were studied.[Result] The rainstorm was the result of cold air,which was provided by 850 hPa cold shear line and ground radiation line,and warm and wet airstream on the northwest edge of subtropical high.MCS was the main reason for such heavy rainstorm.Southwest warm and wet airstream in middle lower part provided sufficient water vapor for the rainstorm.The 850 hPa water vapor flux divergence center moved from north to south along ground convergence line to Qianxinan.Rainfall location and water vapor flux as well as convergence center were corresponding.The rainfall intensity also was consistent with the amount of water vapor flux and water vapor convergence.[Conclusion] The study provided reference for the report of heavy rainstorm. 展开更多
关键词 Wangmo County heavy rainstorm Shear line Subtropical high pressure Ground convergence line China
下载PDF
ROLE OF A WARM AND WET TRANSPORT CONVEYOR OF ASIAN SUMMER MONSOON IN A BEIJING HEAVY RAINSTORM ON JULY 21,2012 被引量:2
6
作者 LIU Yan-ju DING Yi-hui +1 位作者 ZHANG Ying-xian SONG Ya-fang 《Journal of Tropical Meteorology》 SCIE 2017年第3期302-313,共12页
A heavy rainstorm named Beijing "7.21"heavy rainstorm hit Beijing on 21 to 22 July 2012, which is recorded as the most severe rainstorm since 1951. The daily precipitation amount in many stations in Beijing ... A heavy rainstorm named Beijing "7.21"heavy rainstorm hit Beijing on 21 to 22 July 2012, which is recorded as the most severe rainstorm since 1951. The daily precipitation amount in many stations in Beijing has broken the history record. Based on the NCAR/NCEP reanalysis data and precipitation observation,the large-scale conditions which caused the "7.21"heavy rainstorm are investigated, with the emphasis on the relationship between it and an equatorial convergence zone, Asian summer monsoon as well as the tropical cyclone over the ocean from the Philippines to the South China Sea(SCS). The results indicated that a great deal of southerly warm and wet moisture carried by northward migrating Asian summer monsoon provided plenty of moisture supplying for the "7.21"heavy rainstorm. When the warm and wet moisture met with the strong cold temperature advection induced by cold troughs or vortexes, an obviously unstable stratification formed, thus leading to the occurrence of heavy precipitation. Without this kind of intense moisture transport, the rainstorm only relying on the role of the cold air from mid-and higher-latitudes could not reach the record-breaking intensity. Further research suggested that the northward movement of an Asian monsoonal warm and wet moisture transport conveyor(MWWTC) was closely related with the active phase of a 30-60 day intra-seasonal oscillation of the Asian summer monsoon. During this time, the monsoon surge triggered and maintained the northward movement of the MWWTC. In addition, compared with another heavy rainstorm named"63.8"heavy rainstorm, which occurred over the Huaihe River Basin in the mid-August 1963 and seriously affected North China, a similar MWWTC was also observed. It was just the intense interaction of the MWWTC with strong cold air from the north that caused this severe rainstorm. 展开更多
关键词 Beijing "7.1" heavy rainstorm Asian summer monsoon warm and wet transport conveyor
下载PDF
Analysis of the Regional Heavy Rainstorm Caused by A Cooling Shear Line 被引量:1
7
作者 张洪英 王英 《Meteorological and Environmental Research》 CAS 2010年第2期13-15,23,共4页
By using the conventional data,the rainfall data in the automatic weather station and so on,a regional heavy rainstorm which happened in the northwest and north central region of Shandong Province during May 9-10,2009... By using the conventional data,the rainfall data in the automatic weather station and so on,a regional heavy rainstorm which happened in the northwest and north central region of Shandong Province during May 9-10,2009 was analyzed.The results showed that the cooling shear line in low altitude was the main system which caused the heavy rainstorm.The rainstorm mainly happened on the left front of jet stream in low altitude,the right of cooling shear line in low altitude and the northeast quadrant of vortex.The southwest jet stream in the west of subtropical high established a water vapor passage from the South China Sea to the center of North China.It not only provided warm and wet air and energy for the development of heavy rainstorm,but also was the necessary condition which shear line in low altitude stagnated for a long time.Ground frontal cyclone was the trigger mechanism of rainstorm.The northeast wet and cold air joined with the southwest warm and wet air in Shandong after the front,which prompted the development of convection and the release of instable energy to form the rainstorm. 展开更多
关键词 Shear line Southwest vortex Cold air heavy rainstorm China
下载PDF
Diagnosis and Analysis on the Heavy Rainstorm Weather Induced by " Higos" Weakened Circulation 被引量:1
8
作者 林两位 黄建忠 +1 位作者 王莉萍 洪晓湘 《Meteorological and Environmental Research》 CAS 2010年第10期1-4,7,共5页
The large-range heavy precipitation occurred in the central-southern coast of Fujian on October 6,2008.By using the conventional meteorological data and NCEP 1°×1° 6 h one time analysis data,we analyzed... The large-range heavy precipitation occurred in the central-southern coast of Fujian on October 6,2008.By using the conventional meteorological data and NCEP 1°×1° 6 h one time analysis data,we analyzed,diagnosed and discussed the reasons of this heavy rainstorm occurrence and maintenance.The results showed that this heavy rainstorm weather process was mainly formed by the low-pressure system which was remained after ' Higos' weakened.The low-pressure system was excited by the weak cold air in the low layer which was brought by 500 hPa westerly trough.The common effect of southwest jet stream in the low altitude in the southeast of low pressure and the northerly airflow in the northwest made that the low-pressure circulation strengthened and maintained.The calculation gained the physical quantity field configuration which was favorable for the appearance of heavy precipitation.The analysis on the relative helicity of windstorm showed that the distribution and the time evolution of helicity had the good corresponding relationship with the distribution and the time evolution of heavy precipitation.The intensity variation of helicity had the certain instruction significance on the rainstorm evolution. 展开更多
关键词 heavy rainstorm Physical quantity field Diagnosis and analysis HELICITY China
下载PDF
Genetic Analysis of a Heavy Rainstorm on June 29,2006 in Henan Province 被引量:1
9
作者 CHEN Jing 《Meteorological and Environmental Research》 CAS 2012年第12期37-41,共5页
Based on conventional radiosonde data, surface encrypted observation data and so forth, the diagnostic analysis of a heavy rainstorm in the central and east of Henan Province on June 29, 2006 was carried out from the ... Based on conventional radiosonde data, surface encrypted observation data and so forth, the diagnostic analysis of a heavy rainstorm in the central and east of Henan Province on June 29, 2006 was carried out from the aspects of its large-scale background, environmental field and physical characteristics. The results showed that under the effect of a favorable large-scale environmental field, the rainstorm was caused by a mesoscale system. The high-east and low-west circulation pattern, the eastward movement of high-level low trough, low-level shear lines and strengthening of low-level jet streams directly resulted in the occurrence of the heavy rainstorm. 展开更多
关键词 heavy rainstorm High-east and low-west circulation pattern Low-level shear line Jet streams at high and low altitude China
下载PDF
Analysis on "96. 8" Heavy Rainstorm Process in Handan 被引量:1
10
作者 ZHANG Yan-li YANG Xue-chuan +2 位作者 WANG Ga SONG Xiao-hui TIAN Xiu-xia 《Meteorological and Environmental Research》 2012年第8期18-23,共6页
[ ObjEtive] The research aimed to analyze "96.8" heavy rainstorm process causing flood disaster in Handan. [ Method] Based on ac- tual situation data, satellite cloud data and NCEP reanalysis data in the first dekad... [ ObjEtive] The research aimed to analyze "96.8" heavy rainstorm process causing flood disaster in Handan. [ Method] Based on ac- tual situation data, satellite cloud data and NCEP reanalysis data in the first dekad of August in 1996, "96.8" heavy rainstorm process causing flood disaster in Handan was analyzed to understand occurrence reason of the flood disaster. [ Result] Two meso-scale convective cloud clusters which developed and went north in turn caused "96.8" heavy rainstorm in Handan. Typhoon and inverted trough were main weather systems induced flood disaster in Handan. In going north process of the low-level jet, due to blocking of the subtropical high, water vapor and energy accumulated in Handan, providing material basis for formation of the heavy rainstorm. Development and eastward movement of the short-wave trough at middle lati- tude and continuous invasion of the reflux weak cold air at the low layer were direct reason for triggering generation and development of the convec- tive cloud cluster, and further causing continuous rainstorm. Wet layer over the rainstorm zone was deep and thick. Meridional distribution of the wet zone was wider than latitudinal distribution. South China Sea and Bay of Bengal were water vapor sources for the rainstorm zone. In the whole rain- storm period, it was convergence at low layer and divergence at high layer in the rainstorm zone. It was positive vorticity at low layer and negative vorticity at high layer. Precipitation intensity changed as convergence and divergence. Rainstorm zone had strong ascending motion. As strengthe- ning and uplifting of the ascending motion strong center, strong precipitation also strengthened. Rainstorm center was near the biggest vertical ve- locity center. Strong precipitation changed as vertical ascending motion. [ Conclmion] The research provided scientific basis for disaster prevention and reduction and decision-making service. 展开更多
关键词 heavy rainstorm No. 9608 strong typhoon Process analysis Handan China
下载PDF
THE SYNTHETIC ANALYSIS OF THE VERY HEAVY RAINSTORMS IN GUANGDONG
11
作者 练江帆 梁必骐 《Journal of Tropical Meteorology》 SCIE 1999年第2期179-188,共10页
Twelve very heavy rainstorms that caused severe floods in Pearl River drainage basin from 1949to 1994 are analyzed here. It is found that the rainstorms can be divided into three kinds. and they have differentcharacte... Twelve very heavy rainstorms that caused severe floods in Pearl River drainage basin from 1949to 1994 are analyzed here. It is found that the rainstorms can be divided into three kinds. and they have differentcharacteristics in circulation and physical quantities. Rainstorms that caused floods in the Xijiang River andBeijiang River usually happen during the first flood season of the year (Apr.-Jun.). They last long. cover largeareas and cause severe disasters. There are Stable circulation backgrounds and complete tyontal precipitationsystems, and large stratification instability fields. Rainstorms often cause floods in coastal rivers and small tributaries during the second floods season (Jul.-Sept.). They happen suddenly, last a short time but have strong raillfail intensity. They are always caused by tropical cyclones but show significant instability only in rainstorm fields.The characteristics of rainstorms causing floods in the Dongjiang River or other main tributaries are similar to thetwo above. That is, they may be connected with fronts or tropical cyclones, and its stability degree is between thepreceding two kinds. 展开更多
关键词 GUANGDONG very heavy rainstorms FLOOD CHARACTERISTICS
下载PDF
Mechanism Analysis of " 7·21" Extremely Heavy Rainstorm Process in 2012 in Beijing
12
作者 Mao Weiping Yan Yan +1 位作者 Wang Tingfang Zhang Youshu 《Meteorological and Environmental Research》 CAS 2015年第1期4-8,共5页
Extremely heavy rainstorm occurred in Beijing on July 21,2012, which was the most serious since 1961. Based on analyzing the precipitation characteristics, formation mechanism of the rainstorm process was analyzed. Re... Extremely heavy rainstorm occurred in Beijing on July 21,2012, which was the most serious since 1961. Based on analyzing the precipitation characteristics, formation mechanism of the rainstorm process was analyzed. Results showed that when the precipitation process occurred, it was stable east-high and west-low situation at 500 hPa, and there was a steady stream of water vapor transportation at middle and low layers and strong vertical ascending motion at 700 hPa. The distribution of physical quantity field (relative humidity, vorticity and divergence) showed that they were all benefited to the formation of rainstorm. Then, falling zone of rainstorm and the movement of rain belt, generation, development and weakening of precipitation were analyzed. Finally, according to circulation situation and the distribution of physical quantity at each layer, vertical distribu- tion of physical quantity and distribution of water vapor and jet stream, "7 · 21" rainstorm model was summarized. 展开更多
关键词 Extremely heavy rainstorm Mechanism analysis rainstorm model China
下载PDF
Analysis on Formation Reason of a Local Heavy Rainstorm in Linyi Area
13
作者 LIU Ying-jie ZHANG Kui-song +1 位作者 WANG Qing-hua ZHEN Shu-hong 《Meteorological and Environmental Research》 CAS 2011年第9期35-39,共5页
[Objective] The research aimed to study formation reason of a local heavy rainstorm process in Linyi from night on August 3 to early morning on 4th, 2010. [Method] Based on MICAPS weather chart, actual situation data ... [Objective] The research aimed to study formation reason of a local heavy rainstorm process in Linyi from night on August 3 to early morning on 4th, 2010. [Method] Based on MICAPS weather chart, actual situation data of NECP analysis field, data of automatic encryption station and Doppler radar product, a local heavy rainstorm and extra heavy rainstorm process in Linyi from night on August 3 to early morning on 4th, 2010 was detailedly analyzed from weather background, meso- and micro-scale characteristics, physical mechanisms of occurrences and developments of meso and micro-scale systems. The formation reason of heavy rainstorm process was discussed. Moreover, we tried to find some occurrence rules of short-time strong precipitation. [Result] The local heavy rainstorm process had large short-time rainfall and obvious local characteristics. The main influence systems were subtropical high, westerly trough, meso- and small-scale ground low pressures. It was affected by many systems which had different scales and heights. The up-cold-down-warm unstable stratification accumulated a large number of unstable energy, which was basic condition of strong precipitation occurrence. It was convergence shear line at the bottom layer of airspace. The vertical shear and turbosphere of deep southwest-northwest-easterly airflow were at airspace. The common effect of up and down systems triggered generation of updraft, and made unstable energy release. For the release of unstable energy, after northwest airflow was cut off, the updraft made southwest airflow develop upward. It linked with easterly wave to form new vertical shear, which was a reason of long duration of strong precipitation. The southwest airflow at the edge of subtropical high was water vapor source of precipitation process, which provided sufficient water vapor supply for generation of heavy rainstorm. The system which was developing and strengthening would make the moving speed of system slow down. Then, the rainfall increased. It was a reason of long duration of strong precipitation. [Conclusion] The research accumulated certain experience for forecast work in future. 展开更多
关键词 Local heavy rainstorm Formation reason analysis Linyi China
下载PDF
Analysis of a Heavy Rainstorm in Jincheng in August of 2010
14
作者 CHENG Hai-xia ZHANG Hong-xia +1 位作者 ZHANG Yan WANG Jian-ming 《Meteorological and Environmental Research》 CAS 2011年第9期28-31,34,共5页
[Objective] A heavy rainstorm in Jincheng in August in 2010 was expounded. [Method] By dint of the conventional meteorological data, and automatic weather station data, and Doppler radar data, one severe torrential ra... [Objective] A heavy rainstorm in Jincheng in August in 2010 was expounded. [Method] By dint of the conventional meteorological data, and automatic weather station data, and Doppler radar data, one severe torrential rainstorm was analyzed from the aspect of circulation background, physical quantity field, satellite cloud image, and radar echo, etc. [Result] The rainstorm was in the circulation field of low-west-east-obstruction, and was formed under the middle and low layer shear line and low air torrent situation. The low layer shear and convergence of wind favorable to the lift of unsteady air around Jincheng. The intrusion of cold air in the low layer of convective layer and above the ground trigered such convective weather. The torrent of the low air in the southwest sent abundant water vapor to the rainstorm area. The high temperature and the moisture accumulated much unsteady energy for the generation of rainstorm. The main precipitation system of this process was the singular of convective echo which was stimulated by the ground mesoscale shear line. Under the guidance of southwest airstream of the low and middle air, the convective echo singular formed train effect by moving towards Jincheng and formed large rainstorm. Doppler radar data suggested that the characteristics of the generation, development and movement of this mesoscale rainstorm system. The strong precipitation center was in the large value area of the gradient in the back of the TBB center. [Conclusion] The study provided references for the forecast and pre-warning of temporary rainstorm of such kind. 展开更多
关键词 heavy rainstorm Weather process Mesoscale shear Convective echo cell Train effect China
下载PDF
Comparative Analysis of Two Local Heavy Rainstorms in Northwestern Shandong
15
作者 ZHU Yi-qing CAO Xing-feng +2 位作者 LIU Ying-jie SUN Chang-zheng HU Shun-qi 《Meteorological and Environmental Research》 CAS 2011年第9期24-27,共4页
[Objective] The aim was to comparatively analyze two local heavy rainstroms in northwestern Shandong Province, China. [Method] Based on the observation data from automatic weather station, sounding data and NCEP reana... [Objective] The aim was to comparatively analyze two local heavy rainstroms in northwestern Shandong Province, China. [Method] Based on the observation data from automatic weather station, sounding data and NCEP reanalysis data, two local heavy rainstorms at night on July 18 and August 9 in 2010 in northwestern Shandong was comparatively analyzed from the aspects of circulation situation, influence system and physical field, and the internal structure and possible formation mechanism of local heavy rain in Shandong were discussed further. [Result] The two rainstorms occurred in the forepart of southwest air in front of 500 hPa trough, and there was stronger atmospheric baroclinicity in the front zone near 850 hPa. The two rainstorms were affected by southwest warm and humid airflow at low level and shear line at 850 hPa; rainstorm often appeared in intensive area behind θse high-energy tongue, and rainstorm area corresponded with the area with high vertical speed well. From the differences, during the first rainstorm, there was obvious southwest low level jet and shear line at 700 hPa, and the area with high precipitation was located in the south of warm shear line at 700 hPa; during the latter rainstorm, there was no obvious southwest low level jet and shear line, and the area with high precipitation was located in the region between two high pressures. [Conclusion] The study could provide valuable thinking for the forecast of this kind of rainstorm in the future. 展开更多
关键词 Local heavy rainstorms Weather process Comparative analysis Northwestern Shandong China
下载PDF
Analysis on a Regional Heavy Rainstorm Process in North Henan
16
作者 WANG Ai-ling,CHEN Shu-hong Anyang Meteorological Bureau in Henan Province,Anyang 455000,China 《Meteorological and Environmental Research》 CAS 2011年第10期12-16,共5页
[Objective] The research aimed to analyze a regional heavy rainstorm process in North Henan.[Method] Based on routine weather chart,rainfall station in county and town,satellite cloud chart,etc.,by using synoptic diag... [Objective] The research aimed to analyze a regional heavy rainstorm process in North Henan.[Method] Based on routine weather chart,rainfall station in county and town,satellite cloud chart,etc.,by using synoptic diagnostic method,formation reason of the regional heavy rainstorm weather in North Henan during 18-19 August,2010 was analyzed initially from large-scale circulation background,influence system,physical quantity field and terrain influence.[Result] The strong precipitation had obvious meso-scale characteristics.The main influence systems were ground meso-scale convergence line,shear line at the middle and low layers,low-level southwest jet.The low-level southwest jet transported sufficient water vapor for generation of the heavy rainstorm.The ground converge line increased convergence ascending movement and water vapor convergence.Atmospheric divergence convergence center at the low layer was just in North Henan.Strong rise zone of the vertical velocity was also in North Henan.It provided sufficient dynamic condition for rainstorm generation.Generation,development and movement of the ground meso-scale convergence line had good indications for occurrence times and falling zones of the rainstorm and short-time strong precipitation.The big-value zones of K index and θse at the low layer both presented Ω distribution at the vertical direction,which had indicative significance for strong precipitation forecast.The strong precipitation center corresponded with fork horn terrain,and orographic rain characteristics were obvious.[Conclusion] The research provided reference basis for forecast of this kind of rainstorm. 展开更多
关键词 North Henan Regional heavy rainstorm Meso-scale characteristics Orographic rain Formation reason China
下载PDF
Analysis of Heavy Rainstorm in Dongting Lake on July 4, 2014
17
作者 杨伟 曹向林 +1 位作者 袁泉 喻宇 《Agricultural Science & Technology》 CAS 2015年第5期1023-1026,共4页
This paper analyzes the heavy rainstorm in northeast Dongting Lake on June 4, 2014. Results indicate the weather situation, radar echo and the satellite imagery of the strong precipitation. Besides, the warm and wet w... This paper analyzes the heavy rainstorm in northeast Dongting Lake on June 4, 2014. Results indicate the weather situation, radar echo and the satellite imagery of the strong precipitation. Besides, the warm and wet water vapor in Dongting Lake also contributes to this heavy rainstorm. As the astronomical precipitation cycle in this precipitation is outstanding, it is essential to pay attention to and use the astronomical precipitation forecast method. 展开更多
关键词 Dongting Lake heavy rainstorm Astronomical precipitation cycle
下载PDF
Design and Realization of Similar Report System of Moderate Rain,Heavy Rain and Rainstorm in Guyuan City
18
作者 WU Zhi-qi LI Jian-ping QI Guo-mei 《Meteorological and Environmental Research》 2012年第7期55-57,共3页
[Objective] The aim was to design and promote similar report system of moderate rain, heavy rain and rainstorm in Guyuan City. [Method] As C#. Net2005 development platform and based on MSSQLSEVER2005 database system, ... [Objective] The aim was to design and promote similar report system of moderate rain, heavy rain and rainstorm in Guyuan City. [Method] As C#. Net2005 development platform and based on MSSQLSEVER2005 database system, the upper air circulation during moderate rain, heavy rain and rainstorm from May to September since 1960, taking 500 hPa, 700 hPa and ground situation as complement, the similar height of 500 and 700 hPa were calculated. [Result]The system is set to be personal and template. The system only needs to be set for once. If the in- stallation is changed, the system doesn't need to change parameters. The system would automatically read the parameters and make it easy for the businessman to use. Meanwhile, it solves the problem of storing abundant data. Considering the promotion and application, the system is designed to be universal and portable, [ Conclusion] The system makes uP the Oossibilitv of mis-reoortina the moderate rain. heaw rain and rainstorm. 展开更多
关键词 Guyuan City Moderate rain heavy rain rainstorm Similar reports System design China
下载PDF
Cause Analysis of Continuous Heavy Rainstorm during June 22-23, 2019
19
作者 Chao YIN 《Meteorological and Environmental Research》 CAS 2020年第4期18-20,共3页
Based on conventional observation data and MICAPS data,disaster characteristics,circulation situation and dynamic mechanism of heavy rainstorm process during June 22-23,2019 were analyzed.The analysis showed that dyna... Based on conventional observation data and MICAPS data,disaster characteristics,circulation situation and dynamic mechanism of heavy rainstorm process during June 22-23,2019 were analyzed.The analysis showed that dynamic mechanism of the heavy rainstorm was 200 hPa of high-pressure divergence area,high-altitude shallow trough,850 hPa of low-level shear line and ground cold front.The radar echo showed that the"train effect"of strong banded echo caused a continuous heavy rainstorm. 展开更多
关键词 Continuous heavy rainstorm High-level divergence Low-level shear Cold front
下载PDF
Analysis on Similarity Characteristics of 4 Heavy Rainstorms of Regional Station near FAST
20
作者 Qixue PAN Yaling XIE +1 位作者 Yidong MO Yang CHEN 《Meteorological and Environmental Research》 CAS 2021年第1期1-5,共5页
Based on routine data of MICAPS system and data of regional automatic station,characteristics of similar environmental field for 4 heavy rainstorms of regional station in Luodian County near FAST in summer were analyz... Based on routine data of MICAPS system and data of regional automatic station,characteristics of similar environmental field for 4 heavy rainstorms of regional station in Luodian County near FAST in summer were analyzed.It was found that 4 heavy rainstorms of regional station had internal similarity:it maintained high-altitude situation of"high in west and low in east"from Lake Baikal to North China;the Western Pacific subtropical high was zonal;ridge line of subtropical high was near 15°N;θse at 850 hPa reached certain index value,showing that air mass had extremely strong warm and humid characteristics.Under common influence of high-altitude trough,low-value system at low layer and weak cold air,heavy rainstorm occurred. 展开更多
关键词 FAST Regional automatic station heavy rainstorm
下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部