In this article, unique spectral features of short-wave infrared band of 1 μm–3 μm, and various applications related to the photodetectors and focal plane arrays in this band, are introduced briefly. In addition, t...In this article, unique spectral features of short-wave infrared band of 1 μm–3 μm, and various applications related to the photodetectors and focal plane arrays in this band, are introduced briefly. In addition, the different material systems for the devices in this band are outlined. Based on the background, the development of lattice-matched and wavelengthextended InGaAs photodetectors and focal plane arrays, including our continuous efforts in this field, are reviewed. These devices are concentrated on the applications in spectral sensing and imaging, exclusive of optical fiber communication.展开更多
The Qulong deposit in Tibet is one of the largest porphyry copper-molybdenum deposits in China. We used short-wave infrared(SWIR) spectroscopy to examine the spectral characteristics of the extensively developed chlor...The Qulong deposit in Tibet is one of the largest porphyry copper-molybdenum deposits in China. We used short-wave infrared(SWIR) spectroscopy to examine the spectral characteristics of the extensively developed chlorite in this deposit. X-ray diffraction and electron microprobe analyses were used for phase identification and to obtain the chemical composition, ion substitution relationships, and formation environment of the chlorite. SWIR spectral parameters were applied to detect the hydrothermal centers. The results indicate that the wavelength of the absorption feature for Qulong chlorite Fe-OH(Pos2250) range from 2240 to 2268.4 nm;the chlorite substitution relationships are dominated by Mg-Fe substitution at the octahedral sites together with Al;-Si substitution at the tetrahedral sites;the chlorite formation temperatures range within the medium-low temperature hydrothermal alteration range from 164 to 281°C, with an average value of 264℃;the wavelength of the chlorite peak position for Fe-OH(2250 nm) absorption and its chemical composition are positively correlated with Al^(Ⅵ), Fe + Al^(Ⅵ), Fe/(Fe + Mg), Fe, and Fe + Al^(Ⅳ)but negatively correlated with Mg and Mg/(Fe + Mg);and the wavelength associated with the chlorite Fe-OH(2250 nm) absorption feature is positively correlated with the temperature at which the chlorite formed. These correlations indicate that more Fe and Al^(Ⅵ) ions and fewer Mg ions at the octahedral sites of chlorite lead to a longer the wavelength of the chlorite Fe-OH(2250 nm) absorption feature and a higher chlorite formation temperature. The wavelength of the Qulong chlorite Fe-OH(2250 nm) absorption feature(>2252 nm) can thus serve as an exploration indicator to guide the detection of hydrothermal centers in porphyry copper deposits. The results of the study indicate that the mineralogical and SWIR spectral characteristics of chlorite are significant indicators for locating hydrothermal centers within porphyry deposits.展开更多
The trans-media transmission of quantum pulse is one of means of free-space transmission which can be applied in continuous-variable quantum key distribution(CVQKD)system.In traditional implementations for atmospheric...The trans-media transmission of quantum pulse is one of means of free-space transmission which can be applied in continuous-variable quantum key distribution(CVQKD)system.In traditional implementations for atmospheric channels,the 1500-to-1600-nm pulse is regarded as an ideal quantum pulse carrier.However,the underwater transmission of this pulses tends to suffer from severe attenuation,which inevitably deteriorates the security of the whole CVQKD system.In this paper,we propose an alternative scheme for implementations of CVQKD over satellite-to-submarine channels.We estimate the parameters of the trans-media channels,involving atmosphere,sea surface and seawater and find that the shortwave infrared performs well in the above channels.The 450-nm pulse is used for generations of quantum signal carriers to accomplish quantum communications through atmosphere,sea surface and seawater channels.Numerical simulations show that the proposed scheme can achieve the transmission distance of 600 km.In addition,we demonstrate that non-Gaussian operations can further lengthen its maximal transmission distance,which contributes to the establishment of practical global quantum networks.展开更多
Optical gain characteristics of Ge1-xSnμx are simulated systematically.With an injection carrier concentration of 5×10^18/cm^3 at room temperature,the maximal optical gain of Ge0.922Sn0.078 alloy(with n-type do...Optical gain characteristics of Ge1-xSnμx are simulated systematically.With an injection carrier concentration of 5×10^18/cm^3 at room temperature,the maximal optical gain of Ge0.922Sn0.078 alloy(with n-type doping concentration being 5×10^18/cm^3) reaches 500 cm^-1.Moreover,considering the free-carrier absorption effect,we find that there is an optimal injection carrier density to achieve a maximal net optical gain.A double heterostructure Ge0.554Si0.289Sn0.157/Ge0.922Sn0.078/Ge0.554Si0.289Sn0.157 short-wave infrared laser diode is designed to achieve a high injection efficiency and low threshold current density.The simulation values of the device threshold current density Jth are 6.47 kA/cm^2(temperature:200 K,and λ=2050 nm),10.75 kA/cm^2(temperature:200 K,and λ=2000 nm),and23.12 kA/cm^2(temperature:300 K,and λ=2100 nm),respectively.The results indicate the possibility to obtain a Si-based short-wave infrared Ge1-xSnx laser.展开更多
Compared with the conventional first near-infrared(NIR-I,700900 nm)window,the short-wave infrared region(SWIR,900—1700nm)possesses the merits of the increasing tissue penetration depths and the suppression of scatter...Compared with the conventional first near-infrared(NIR-I,700900 nm)window,the short-wave infrared region(SWIR,900—1700nm)possesses the merits of the increasing tissue penetration depths and the suppression of scattering background,leading to great potential for in vivo imaging.Based on the limitations of the common spectral domain,and the superiority of the time-dimension,time-resolved imaging eliminates the auto-fuorescence in the biological tissue,thus supporting higher signal-to-noise ratio and sensitivities.The imaging technique is not affected by the difference in tissue composition or thickness and has the practical value of quan-titative in vivo detection.Almost all the relevant time-resolved imaging was carried out around lanthanide-doped upconversion nanomaterials,owing to the advantages of ultralong luminescence lifetime,excellent photostability,controllable morphology,easy surface modification and various strategies of regulating lifetime.Therefore,this review presents the research progress of SWIR time-resolved imaging technology based on nanomaterials doped with lanthanide ions as luminescence centers in recent years.展开更多
High performance short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices on GaSb substrate have been demonstrated.At 300 K,the device exhibits a 50%cut-off wavelength of~2.1μm as predicted ...High performance short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices on GaSb substrate have been demonstrated.At 300 K,the device exhibits a 50%cut-off wavelength of~2.1μm as predicted from the band structure calculation;the device responsivity peaks at 0.85 A/W,corresponding to a quantum efficiency(QE)of 56%for 2.0μm-thick absorption region.The dark current density of 1.03×10^(-3)A/cm^(2)is obtained under 50 mV applied bias.The device exhibits a saturated dark current shot noise limited specific detectivity(D*)of 3.29×1010cm·Hz^(1/2)/W(at a peak responsivity of 2.0μm)under-50 mV applied bias.展开更多
The trivalent ytterbium(Yb^(3+))ion has been extensively used as an emitter in short-wave infrared(SWIR)lasers,a sensitizer to activate other lanthanide ions for up-conversion luminescence,and a spectral converter in ...The trivalent ytterbium(Yb^(3+))ion has been extensively used as an emitter in short-wave infrared(SWIR)lasers,a sensitizer to activate other lanthanide ions for up-conversion luminescence,and a spectral converter in Ln^(3+)-Yb^(3+)doubly doped quantum cutting phosphors.Here we report a new function of the Yb^(3+)ion—as an efficient emitting center for SWIR persistent luminescence.We have developed the first real SWIR persistent phosphor,MgGeO3:Yb^(3+),which exhibits very-long persistent luminescence at around 1000 nm for longer than 100 h.The MgGeO3:Yb^(3+)phosphor is spectrally transparent to visible/near-infrared light(~400–900 nm)and is a promising ultraviolet-to-SWIR spectral convertor.The MgGeO3:Yb^(3+)phosphor also exhibits a photostimulated persistent luminescence capability,where the SWIR persistent emission in an ultraviolet-light pre-irradiated sample can be rejuvenated by low-energy light(white or red light)stimulation.The MgGeO3:Yb^(3+)phosphor is expected to have promising applications in biomedical imaging,night-vision surveillance and photovoltaics.展开更多
We demonstrate an ultra-compact short-wave infrared[SWIR]multispectral detector chip by monolithically integrating the narrowband Fabry–Perot microcavities array with the In Ga As detector focal plane array.A 16-chan...We demonstrate an ultra-compact short-wave infrared[SWIR]multispectral detector chip by monolithically integrating the narrowband Fabry–Perot microcavities array with the In Ga As detector focal plane array.A 16-channel SWIR multispectral detector has been fabricated for demonstration.Sixteen different narrowband response spectra are acquired on a 64×64 pixels detector chip by four times combinatorial etching processes.The peak of the response spectra varies from1450 to 1666 nm with full width at half-maximum of 24 nm on average.The size of the SWIR multispectral detection system is remarkably reduced to a 2 mm^(2) detector chip.展开更多
Lightweight infrared stealth and absorption-dominant electromagnetic interference(EMI)shielding materials are highly desirable in areas of aerospace,weapons,military and wearable electronics.Herein,lightweight and hig...Lightweight infrared stealth and absorption-dominant electromagnetic interference(EMI)shielding materials are highly desirable in areas of aerospace,weapons,military and wearable electronics.Herein,lightweight and high-efficiency dual-functional segregated nanocomposite foams with microcellular structures are developed for integrated infrared stealth and absorption-dominant EMI shielding via the efficient and scalable supercritical CO_(2)(SC-CO_(2))foaming combined with hydrogen bonding assembly and compression molding strategy.The obtained lightweight segregated nanocomposite foams exhibit superior infrared stealth performances benefitting from the synergistic effect of highly effective thermal insulation and low infrared emissivity,and outstanding absorption-dominant EMI shielding performances attributed to the synchronous construction of microcellular structures and segregated structures.Particularly,the segregated nanocomposite foams present a large radiation temperature reduction of 70.2℃ at the object temperature of 100℃,and a significantly improved EM wave absorptivity/reflectivity(A/R)ratio of 2.15 at an ultralow Ti_(3)C_(2)T_(x) content of 1.7 vol%.Moreover,the segregated nanocomposite foams exhibit outstanding working reliability and stability upon dynamic compression cycles.The results demonstrate that the lightweight and high-efficiency dual-functional segregated nanocomposite foams have excellent potentials for infrared stealth and absorption-dominant EMI shielding applications in aerospace,weapons,military and wearable electronics.展开更多
Sea surface temperature(SST)is one of the important parameters of global ocean and climate research,which can be retrieved by satellite infrared and passive microwave remote sensing instruments.While satellite infrare...Sea surface temperature(SST)is one of the important parameters of global ocean and climate research,which can be retrieved by satellite infrared and passive microwave remote sensing instruments.While satellite infrared SST offers high spatial resolution,it is limited by cloud cover.On the other hand,passive microwave SST provides all-weather observation but suffers from poor spatial resolution and susceptibility to environmental factors such as rainfall,coastal effects,and high wind speeds.To achieve high-precision,comprehensive,and high-resolution SST data,it is essential to fuse infrared and microwave SST measurements.In this study,data from the Fengyun-3D(FY-3D)medium resolution spectral imager II(MERSI-II)SST and microwave imager(MWRI)SST were fused.Firstly,the accuracy of both MERSIII SST and MWRI SST was verified,and the latter was bilinearly interpolated to match the 5km resolution grid of MERSI SST.After pretreatment and quality control of MERSI SST and MWRI SST,a Piece-Wise Regression method was employed to correct biases in MWRI SST.Subsequently,SST data were selected based on spatial resolution and accuracy within a 3-day window of the analysis date.Finally,an optimal interpolation method was applied to fuse the FY-3D MERSI-II SST and MWRI SST.The results demonstrated a significant improvement in spatial coverage compared to MERSI-II SST and MWRI SST.Furthermore,the fusion SST retained true spatial distribution details and exhibited an accuracy of–0.12±0.74℃compared to OSTIA SST.This study has improved the accuracy of FY satellite fusion SST products in China.展开更多
A novel image fusion network framework with an autonomous encoder and decoder is suggested to increase thevisual impression of fused images by improving the quality of infrared and visible light picture fusion. The ne...A novel image fusion network framework with an autonomous encoder and decoder is suggested to increase thevisual impression of fused images by improving the quality of infrared and visible light picture fusion. The networkcomprises an encoder module, fusion layer, decoder module, and edge improvementmodule. The encoder moduleutilizes an enhanced Inception module for shallow feature extraction, then combines Res2Net and Transformerto achieve deep-level co-extraction of local and global features from the original picture. An edge enhancementmodule (EEM) is created to extract significant edge features. A modal maximum difference fusion strategy isintroduced to enhance the adaptive representation of information in various regions of the source image, therebyenhancing the contrast of the fused image. The encoder and the EEM module extract features, which are thencombined in the fusion layer to create a fused picture using the decoder. Three datasets were chosen to test thealgorithmproposed in this paper. The results of the experiments demonstrate that the network effectively preservesbackground and detail information in both infrared and visible images, yielding superior outcomes in subjectiveand objective evaluations.展开更多
Pre-polymerized vinyl trimethoxy silane(PVTMS)@MWCNT nano-aerogel system was constructed via radical polymerization,sol-gel transition and supercritical CO_(2)drying.The fabricated organic-inorganic hybrid PVTMS@MWCNT...Pre-polymerized vinyl trimethoxy silane(PVTMS)@MWCNT nano-aerogel system was constructed via radical polymerization,sol-gel transition and supercritical CO_(2)drying.The fabricated organic-inorganic hybrid PVTMS@MWCNT aerogel structure shows nano-pore size(30-40 nm),high specific surface area(559 m^(2)g^(−1)),high void fraction(91.7%)and enhanced mechanical property:(1)the nano-pore size is beneficial for efficiently blocking thermal conduction and thermal convection via Knudsen effect(beneficial for infrared(IR)stealth);(2)the heterogeneous interface was beneficial for IR reflection(beneficial for IR stealth)and MWCNT polarization loss(beneficial for electromagnetic wave(EMW)attenuation);(3)the high void fraction was beneficial for enhancing thermal insulation(beneficial for IR stealth)and EMW impedance match(beneficial for EMW attenuation).Guided by the above theoretical design strategy,PVTMS@MWCNT nano-aerogel shows superior EMW absorption property(cover all Ku-band)and thermal IR stealth property(ΔT reached 60.7℃).Followed by a facial combination of the above nano-aerogel with graphene film of high electrical conductivity,an extremely high electromagnetic interference shielding material(66.5 dB,2.06 mm thickness)with superior absorption performance of an average absorption-to-reflection(A/R)coefficient ratio of 25.4 and a low reflection bandwidth of 4.1 GHz(A/R ratio more than 10)was experimentally obtained in this work.展开更多
To address the issues of incomplete information,blurred details,loss of details,and insufficient contrast in infrared and visible image fusion,an image fusion algorithm based on a convolutional autoencoder is proposed...To address the issues of incomplete information,blurred details,loss of details,and insufficient contrast in infrared and visible image fusion,an image fusion algorithm based on a convolutional autoencoder is proposed.The region attention module is meant to extract the background feature map based on the distinct properties of the background feature map and the detail feature map.A multi-scale convolution attention module is suggested to enhance the communication of feature information.At the same time,the feature transformation module is introduced to learn more robust feature representations,aiming to preserve the integrity of image information.This study uses three available datasets from TNO,FLIR,and NIR to perform thorough quantitative and qualitative trials with five additional algorithms.The methods are assessed based on four indicators:information entropy(EN),standard deviation(SD),spatial frequency(SF),and average gradient(AG).Object detection experiments were done on the M3FD dataset to further verify the algorithm’s performance in comparison with five other algorithms.The algorithm’s accuracy was evaluated using the mean average precision at a threshold of 0.5(mAP@0.5)index.Comprehensive experimental findings show that CAEFusion performs well in subjective visual and objective evaluation criteria and has promising potential in downstream object detection tasks.展开更多
The deformation in sedimentary rock induced by train loads has potential threat to the safe operation of tunnels. This study investigated the influence of stratification structure on the infrared radiation and tempora...The deformation in sedimentary rock induced by train loads has potential threat to the safe operation of tunnels. This study investigated the influence of stratification structure on the infrared radiation and temporal damage mechanism of hard siltstone. The uniaxial compression tests, coupled with acoustic emission(AE) and infrared radiation temperature(IRT) were conducted on siltstones with different stratification effects. The results revealed that the stratigraphic structure significantly affects the stress-strain response and strength degradation characteristics. The mechanical parameters exhibit anisotropy characteristics, and the stratification effect exhibits a negative correlation with the cracking stress and peak stress. The failure modes caused by the stratification effect show remarkable anisotropic features, including splitting failure(Ⅰ: 0°-22.50°, Ⅱ: 90°), composite failure(45°), and shearing failure(67.50°). The AE temporal sequences demonstrate a stepwise response characteristic to the loading stress level. The AE intensity indicates that the stress sensitivity of shearing failure and composite failure is generally greater than that of splitting failure. The IRT field has spatiotemporal migration and progressive dissimilation with stress loading and its dissimilation degree increases under higher stress levels. The stronger the stratification effect, the greater the dissimilation degree of the IRT field. The abnormal characteristic points of average infrared radiation temperature(AIRT) variance at local stress drop and peak stress can be used as early and late precursors to identify fracture instability. Theoretical analysis shows that the competitive relationship between compaction strengthening and fracturing damage intensifies the dissimilation of the infrared thermal field for an increasing stress level. The present study provides a theoretical reference for disaster warnings in hard sedimentary rock mass.展开更多
The infrared microspectroscopy beamline(BL06B) is a phase Ⅱ beamline project at the Shanghai Synchrotron Radiation Facility(SSRF). The construction and optical alignment of BL06B were completed by the end of 2020. By...The infrared microspectroscopy beamline(BL06B) is a phase Ⅱ beamline project at the Shanghai Synchrotron Radiation Facility(SSRF). The construction and optical alignment of BL06B were completed by the end of 2020. By 2021, it became accessible to users. The synchrotron radiation infrared(SRIR) source included edge radiation(ER) and bending magnet radiation(BMR). The extracted angles in the horizontal and vertical directions were 40 and 20 mrad, respectively. The photon flux, spectral resolution, and focused spot size were measured at the BL06B endstation, and the experimental results were consistent with theoretical calculations. SRIR light has a small divergence angle, high brightness, and a wide wavelength range. As a source of IR microscopy, it can easily focus on a diffraction-limited spatial resolution with a high signal-to-noise ratio(SNR). The BL06B endstation can be applied in a wide range of research fields, including materials, chemistry, biology, geophysics, and pharmacology.展开更多
“Diurnal variation of CH4 at the surface from spring to winter.The time units are in local time(+8 h UTC).The error bar is 1σfor all the observed hourly mean data within that season at that local time.”in the capti...“Diurnal variation of CH4 at the surface from spring to winter.The time units are in local time(+8 h UTC).The error bar is 1σfor all the observed hourly mean data within that season at that local time.”in the caption of Fig.8 on Page 604 should be“Diurnal variation of CH4 at the surface from spring to winter.The time units are in UTC.The error bar is 1σfor all the observed hourly mean data within that season at that local time.”展开更多
Multifunctional,flexible,and robust thin films capable of operating in demanding harsh temperature environments are crucial for various cutting-edge applications.This study presents a multifunctional Janus film integr...Multifunctional,flexible,and robust thin films capable of operating in demanding harsh temperature environments are crucial for various cutting-edge applications.This study presents a multifunctional Janus film integrating highly-crystalline Ti_(3)C_(2)T_(x) MXene and mechanically-robust carbon nanotube(CNT)film through strong hydrogen bonding.The hybrid film not only exhibits high electrical conductivity(4250 S cm^(-1)),but also demonstrates robust mechanical strength and durability in both extremely low and high temperature environments,showing exceptional resistance to thermal shock.This hybrid Janus film of 15μm thickness reveals remarkable multifunctionality,including efficient electromagnetic shielding effectiveness of 72 dB in X band frequency range,excellent infrared(IR)shielding capability with an average emissivity of 0.09(a minimal value of 0.02),superior thermal camouflage performance over a wide temperature range(−1 to 300℃)achieving a notable reduction in the radiated temperature by 243℃ against a background temperature of 300℃,and outstanding IR detection capability characterized by a 44%increase in resistance when exposed to 250 W IR radiation.This multifunctional MXene/CNT Janus film offers a feasible solution for electromagnetic shielding and IR shielding/detection under challenging conditions.展开更多
Relativistic femtosecond mid-infrared pulses can be generated efficiently by laser interaction with near-criticaldensity plasmas.It is found theoretically and numerically that the radiation pressure of a circularly po...Relativistic femtosecond mid-infrared pulses can be generated efficiently by laser interaction with near-criticaldensity plasmas.It is found theoretically and numerically that the radiation pressure of a circularly polarized laser pulse first compresses the plasma electrons to form a dense flying mirror with a relativistic high speed.The pulse reflected by the mirror is red-shifted to the mid-infrared range.Full three-dimensional simulations demonstrate that the central wavelength of the mid-infrared pulse is tunable from 3µm to 14µm,and the laser energy conversion efficiency can reach as high as 13%.With a 0.5–10 PW incident laser pulse,the generated mid-infrared pulse reaches a peak power of 10–180 TW,which is interesting for various applications in ultrafast and high-field sciences.展开更多
Accurate classification of rice variety is essential to ensure the brand value of high-quality rice products.Considering the impact of sample state on modeling optimization algorithms,rice samples after grinding and s...Accurate classification of rice variety is essential to ensure the brand value of high-quality rice products.Considering the impact of sample state on modeling optimization algorithms,rice samples after grinding and sealing were selected.To enhance the accuracy of rice variety classification,we introduced a spectral characteristic wavelength selection method based on adaptive sliding window permutation entropy(ASW-PE).展开更多
The near-infrared imaging channel constitutes a crucial component of the multichannel high-resolution imaging system of the New Vacuum Solar Telescope(NVST). We have successfully achieved high-resolution, narrowband i...The near-infrared imaging channel constitutes a crucial component of the multichannel high-resolution imaging system of the New Vacuum Solar Telescope(NVST). We have successfully achieved high-resolution, narrowband imaging of the chromosphere using He I 10830 A triplet within this channel, which significantly enhances the imaging observation capabilities of NVST. This paper provides a concise overview of the optical system associated with the near-infrared imaging channel, detailing data processing procedures and presenting several observed images. Leveraging a high-resolution image reconstruction algorithm, we were able to generate a narrowband image near the diffraction limit at 10830 A with a temporal resolution of less than 10 s.展开更多
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFB0402400)the National Natural Science Foundation of China(Grant Nos.61675225,61605232,and 61775228)the Shanghai Rising-Star Program,China(Grant No.17QA1404900)
文摘In this article, unique spectral features of short-wave infrared band of 1 μm–3 μm, and various applications related to the photodetectors and focal plane arrays in this band, are introduced briefly. In addition, the different material systems for the devices in this band are outlined. Based on the background, the development of lattice-matched and wavelengthextended InGaAs photodetectors and focal plane arrays, including our continuous efforts in this field, are reviewed. These devices are concentrated on the applications in spectral sensing and imaging, exclusive of optical fiber communication.
基金funded by Science and Technology Project of Tibet Autonomous Region(Grant Nos.XZ201801-GB-01XZ202102YD0024C)+2 种基金The Second Round of Comprehensive Investigation and Research on the Qinghai-Tibet Plateau(Grant No.2019QZKK0806)National Natural Science Foundation of China(Grant No.42002097)Demonstration Research on Alteration Mapping using Short-wave Infrared and Thermal Infrared Hyperspectral Technologies(Grant No.KK2102)。
文摘The Qulong deposit in Tibet is one of the largest porphyry copper-molybdenum deposits in China. We used short-wave infrared(SWIR) spectroscopy to examine the spectral characteristics of the extensively developed chlorite in this deposit. X-ray diffraction and electron microprobe analyses were used for phase identification and to obtain the chemical composition, ion substitution relationships, and formation environment of the chlorite. SWIR spectral parameters were applied to detect the hydrothermal centers. The results indicate that the wavelength of the absorption feature for Qulong chlorite Fe-OH(Pos2250) range from 2240 to 2268.4 nm;the chlorite substitution relationships are dominated by Mg-Fe substitution at the octahedral sites together with Al;-Si substitution at the tetrahedral sites;the chlorite formation temperatures range within the medium-low temperature hydrothermal alteration range from 164 to 281°C, with an average value of 264℃;the wavelength of the chlorite peak position for Fe-OH(2250 nm) absorption and its chemical composition are positively correlated with Al^(Ⅵ), Fe + Al^(Ⅵ), Fe/(Fe + Mg), Fe, and Fe + Al^(Ⅳ)but negatively correlated with Mg and Mg/(Fe + Mg);and the wavelength associated with the chlorite Fe-OH(2250 nm) absorption feature is positively correlated with the temperature at which the chlorite formed. These correlations indicate that more Fe and Al^(Ⅵ) ions and fewer Mg ions at the octahedral sites of chlorite lead to a longer the wavelength of the chlorite Fe-OH(2250 nm) absorption feature and a higher chlorite formation temperature. The wavelength of the Qulong chlorite Fe-OH(2250 nm) absorption feature(>2252 nm) can thus serve as an exploration indicator to guide the detection of hydrothermal centers in porphyry copper deposits. The results of the study indicate that the mineralogical and SWIR spectral characteristics of chlorite are significant indicators for locating hydrothermal centers within porphyry deposits.
基金supported by the National Natural Science Foundation of China(Grant Nos.62101180 and 61871407)the Key R&D Program of Hunan Province(Grant No.2022GK2016)+1 种基金the State Key Laboratory of High Performance Computing,National University of Defense Technology(Grant No.202101-25)the Fundamental Research Funds for the Central Universities(Grant No.531118010371)。
文摘The trans-media transmission of quantum pulse is one of means of free-space transmission which can be applied in continuous-variable quantum key distribution(CVQKD)system.In traditional implementations for atmospheric channels,the 1500-to-1600-nm pulse is regarded as an ideal quantum pulse carrier.However,the underwater transmission of this pulses tends to suffer from severe attenuation,which inevitably deteriorates the security of the whole CVQKD system.In this paper,we propose an alternative scheme for implementations of CVQKD over satellite-to-submarine channels.We estimate the parameters of the trans-media channels,involving atmosphere,sea surface and seawater and find that the shortwave infrared performs well in the above channels.The 450-nm pulse is used for generations of quantum signal carriers to accomplish quantum communications through atmosphere,sea surface and seawater channels.Numerical simulations show that the proposed scheme can achieve the transmission distance of 600 km.In addition,we demonstrate that non-Gaussian operations can further lengthen its maximal transmission distance,which contributes to the establishment of practical global quantum networks.
基金supported by the Major State Basic Research Development Program of China(Grant No.2013CB632103)the National High-Technology Research and Development Program of China(Grant No.2012AA012202)the National Natural Science Foundation of China(Grant Nos.61177038 and 61176013)
文摘Optical gain characteristics of Ge1-xSnμx are simulated systematically.With an injection carrier concentration of 5×10^18/cm^3 at room temperature,the maximal optical gain of Ge0.922Sn0.078 alloy(with n-type doping concentration being 5×10^18/cm^3) reaches 500 cm^-1.Moreover,considering the free-carrier absorption effect,we find that there is an optimal injection carrier density to achieve a maximal net optical gain.A double heterostructure Ge0.554Si0.289Sn0.157/Ge0.922Sn0.078/Ge0.554Si0.289Sn0.157 short-wave infrared laser diode is designed to achieve a high injection efficiency and low threshold current density.The simulation values of the device threshold current density Jth are 6.47 kA/cm^2(temperature:200 K,and λ=2050 nm),10.75 kA/cm^2(temperature:200 K,and λ=2000 nm),and23.12 kA/cm^2(temperature:300 K,and λ=2100 nm),respectively.The results indicate the possibility to obtain a Si-based short-wave infrared Ge1-xSnx laser.
基金the National Natural Science Foundation of China(No.81971704)the National Key ResearchandDevelopment Program of China(No.2017YFA0205304)the Translational Medicine Research Fund of National Facility for Translational Medicine(Shanghai)(No.TMSK-2021-117)。
文摘Compared with the conventional first near-infrared(NIR-I,700900 nm)window,the short-wave infrared region(SWIR,900—1700nm)possesses the merits of the increasing tissue penetration depths and the suppression of scattering background,leading to great potential for in vivo imaging.Based on the limitations of the common spectral domain,and the superiority of the time-dimension,time-resolved imaging eliminates the auto-fuorescence in the biological tissue,thus supporting higher signal-to-noise ratio and sensitivities.The imaging technique is not affected by the difference in tissue composition or thickness and has the practical value of quan-titative in vivo detection.Almost all the relevant time-resolved imaging was carried out around lanthanide-doped upconversion nanomaterials,owing to the advantages of ultralong luminescence lifetime,excellent photostability,controllable morphology,easy surface modification and various strategies of regulating lifetime.Therefore,this review presents the research progress of SWIR time-resolved imaging technology based on nanomaterials doped with lanthanide ions as luminescence centers in recent years.
基金the National Key Technologies R&D Program of China(Grant Nos.2019YFA0705203 and 2018YFA0209104)Major Program of the National Natural Science Foundation of China(Grant No.61790581)Aeronautical Science Foundation of China(Grant No.20182436004).
文摘High performance short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices on GaSb substrate have been demonstrated.At 300 K,the device exhibits a 50%cut-off wavelength of~2.1μm as predicted from the band structure calculation;the device responsivity peaks at 0.85 A/W,corresponding to a quantum efficiency(QE)of 56%for 2.0μm-thick absorption region.The dark current density of 1.03×10^(-3)A/cm^(2)is obtained under 50 mV applied bias.The device exhibits a saturated dark current shot noise limited specific detectivity(D*)of 3.29×1010cm·Hz^(1/2)/W(at a peak responsivity of 2.0μm)under-50 mV applied bias.
基金support from the National Science Foundation(CAREER DMR-0955908,DMR-1403929)support from the National Natural Science Foundation of China(no.81171463)support from the China Scholarship Council.
文摘The trivalent ytterbium(Yb^(3+))ion has been extensively used as an emitter in short-wave infrared(SWIR)lasers,a sensitizer to activate other lanthanide ions for up-conversion luminescence,and a spectral converter in Ln^(3+)-Yb^(3+)doubly doped quantum cutting phosphors.Here we report a new function of the Yb^(3+)ion—as an efficient emitting center for SWIR persistent luminescence.We have developed the first real SWIR persistent phosphor,MgGeO3:Yb^(3+),which exhibits very-long persistent luminescence at around 1000 nm for longer than 100 h.The MgGeO3:Yb^(3+)phosphor is spectrally transparent to visible/near-infrared light(~400–900 nm)and is a promising ultraviolet-to-SWIR spectral convertor.The MgGeO3:Yb^(3+)phosphor also exhibits a photostimulated persistent luminescence capability,where the SWIR persistent emission in an ultraviolet-light pre-irradiated sample can be rejuvenated by low-energy light(white or red light)stimulation.The MgGeO3:Yb^(3+)phosphor is expected to have promising applications in biomedical imaging,night-vision surveillance and photovoltaics.
基金supported by the National Natural Science Foundation of China(NSFC)(No.11874376)Shanghai Science and Technology Foundations(Nos.19DZ2293400 and 19ZR1465900)+1 种基金Shanghai Municipal Science and Technology Major Project(No.2019SHZDZX01)Chinese Academy of Sciences President’s International Fellowship Initiative(No.2021PT0007)。
文摘We demonstrate an ultra-compact short-wave infrared[SWIR]multispectral detector chip by monolithically integrating the narrowband Fabry–Perot microcavities array with the In Ga As detector focal plane array.A 16-channel SWIR multispectral detector has been fabricated for demonstration.Sixteen different narrowband response spectra are acquired on a 64×64 pixels detector chip by four times combinatorial etching processes.The peak of the response spectra varies from1450 to 1666 nm with full width at half-maximum of 24 nm on average.The size of the SWIR multispectral detection system is remarkably reduced to a 2 mm^(2) detector chip.
基金the National Natural Science Foundation of China (52273083, 51903145)Key Research and Development Project of Shaanxi Province (2023-YBGY-476)+1 种基金Natural Science Foundation of Chongqing,China (CSTB2023NSCQ-MSX0691)National College Students Innovation and Entrepreneurship Training Program (202310699172)
文摘Lightweight infrared stealth and absorption-dominant electromagnetic interference(EMI)shielding materials are highly desirable in areas of aerospace,weapons,military and wearable electronics.Herein,lightweight and high-efficiency dual-functional segregated nanocomposite foams with microcellular structures are developed for integrated infrared stealth and absorption-dominant EMI shielding via the efficient and scalable supercritical CO_(2)(SC-CO_(2))foaming combined with hydrogen bonding assembly and compression molding strategy.The obtained lightweight segregated nanocomposite foams exhibit superior infrared stealth performances benefitting from the synergistic effect of highly effective thermal insulation and low infrared emissivity,and outstanding absorption-dominant EMI shielding performances attributed to the synchronous construction of microcellular structures and segregated structures.Particularly,the segregated nanocomposite foams present a large radiation temperature reduction of 70.2℃ at the object temperature of 100℃,and a significantly improved EM wave absorptivity/reflectivity(A/R)ratio of 2.15 at an ultralow Ti_(3)C_(2)T_(x) content of 1.7 vol%.Moreover,the segregated nanocomposite foams exhibit outstanding working reliability and stability upon dynamic compression cycles.The results demonstrate that the lightweight and high-efficiency dual-functional segregated nanocomposite foams have excellent potentials for infrared stealth and absorption-dominant EMI shielding applications in aerospace,weapons,military and wearable electronics.
文摘Sea surface temperature(SST)is one of the important parameters of global ocean and climate research,which can be retrieved by satellite infrared and passive microwave remote sensing instruments.While satellite infrared SST offers high spatial resolution,it is limited by cloud cover.On the other hand,passive microwave SST provides all-weather observation but suffers from poor spatial resolution and susceptibility to environmental factors such as rainfall,coastal effects,and high wind speeds.To achieve high-precision,comprehensive,and high-resolution SST data,it is essential to fuse infrared and microwave SST measurements.In this study,data from the Fengyun-3D(FY-3D)medium resolution spectral imager II(MERSI-II)SST and microwave imager(MWRI)SST were fused.Firstly,the accuracy of both MERSIII SST and MWRI SST was verified,and the latter was bilinearly interpolated to match the 5km resolution grid of MERSI SST.After pretreatment and quality control of MERSI SST and MWRI SST,a Piece-Wise Regression method was employed to correct biases in MWRI SST.Subsequently,SST data were selected based on spatial resolution and accuracy within a 3-day window of the analysis date.Finally,an optimal interpolation method was applied to fuse the FY-3D MERSI-II SST and MWRI SST.The results demonstrated a significant improvement in spatial coverage compared to MERSI-II SST and MWRI SST.Furthermore,the fusion SST retained true spatial distribution details and exhibited an accuracy of–0.12±0.74℃compared to OSTIA SST.This study has improved the accuracy of FY satellite fusion SST products in China.
文摘A novel image fusion network framework with an autonomous encoder and decoder is suggested to increase thevisual impression of fused images by improving the quality of infrared and visible light picture fusion. The networkcomprises an encoder module, fusion layer, decoder module, and edge improvementmodule. The encoder moduleutilizes an enhanced Inception module for shallow feature extraction, then combines Res2Net and Transformerto achieve deep-level co-extraction of local and global features from the original picture. An edge enhancementmodule (EEM) is created to extract significant edge features. A modal maximum difference fusion strategy isintroduced to enhance the adaptive representation of information in various regions of the source image, therebyenhancing the contrast of the fused image. The encoder and the EEM module extract features, which are thencombined in the fusion layer to create a fused picture using the decoder. Three datasets were chosen to test thealgorithmproposed in this paper. The results of the experiments demonstrate that the network effectively preservesbackground and detail information in both infrared and visible images, yielding superior outcomes in subjectiveand objective evaluations.
基金the National Natural Science Foundation(No.52073187)NSAF Foundation(No.U2230202)for their financial support of this project+3 种基金National Natural Science Foundation(No.51721091)Programme of Introducing Talents of Discipline to Universities(No.B13040)State Key Laboratory of Polymer Materials Engineering(No.sklpme2022-2-03)support of China Scholarship Council
文摘Pre-polymerized vinyl trimethoxy silane(PVTMS)@MWCNT nano-aerogel system was constructed via radical polymerization,sol-gel transition and supercritical CO_(2)drying.The fabricated organic-inorganic hybrid PVTMS@MWCNT aerogel structure shows nano-pore size(30-40 nm),high specific surface area(559 m^(2)g^(−1)),high void fraction(91.7%)and enhanced mechanical property:(1)the nano-pore size is beneficial for efficiently blocking thermal conduction and thermal convection via Knudsen effect(beneficial for infrared(IR)stealth);(2)the heterogeneous interface was beneficial for IR reflection(beneficial for IR stealth)and MWCNT polarization loss(beneficial for electromagnetic wave(EMW)attenuation);(3)the high void fraction was beneficial for enhancing thermal insulation(beneficial for IR stealth)and EMW impedance match(beneficial for EMW attenuation).Guided by the above theoretical design strategy,PVTMS@MWCNT nano-aerogel shows superior EMW absorption property(cover all Ku-band)and thermal IR stealth property(ΔT reached 60.7℃).Followed by a facial combination of the above nano-aerogel with graphene film of high electrical conductivity,an extremely high electromagnetic interference shielding material(66.5 dB,2.06 mm thickness)with superior absorption performance of an average absorption-to-reflection(A/R)coefficient ratio of 25.4 and a low reflection bandwidth of 4.1 GHz(A/R ratio more than 10)was experimentally obtained in this work.
文摘To address the issues of incomplete information,blurred details,loss of details,and insufficient contrast in infrared and visible image fusion,an image fusion algorithm based on a convolutional autoencoder is proposed.The region attention module is meant to extract the background feature map based on the distinct properties of the background feature map and the detail feature map.A multi-scale convolution attention module is suggested to enhance the communication of feature information.At the same time,the feature transformation module is introduced to learn more robust feature representations,aiming to preserve the integrity of image information.This study uses three available datasets from TNO,FLIR,and NIR to perform thorough quantitative and qualitative trials with five additional algorithms.The methods are assessed based on four indicators:information entropy(EN),standard deviation(SD),spatial frequency(SF),and average gradient(AG).Object detection experiments were done on the M3FD dataset to further verify the algorithm’s performance in comparison with five other algorithms.The algorithm’s accuracy was evaluated using the mean average precision at a threshold of 0.5(mAP@0.5)index.Comprehensive experimental findings show that CAEFusion performs well in subjective visual and objective evaluation criteria and has promising potential in downstream object detection tasks.
基金National Natural Science Foundation of China(No.52178393)2023 High-level Talent Research Project from Yancheng Institute of Technology(No.xjr2023019)+1 种基金Open Fund Project of Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering(Grant No.YT202302)Science and Technology Innovation Team of Shaanxi Innovation Capability Support Plan(No.2020TD005).
文摘The deformation in sedimentary rock induced by train loads has potential threat to the safe operation of tunnels. This study investigated the influence of stratification structure on the infrared radiation and temporal damage mechanism of hard siltstone. The uniaxial compression tests, coupled with acoustic emission(AE) and infrared radiation temperature(IRT) were conducted on siltstones with different stratification effects. The results revealed that the stratigraphic structure significantly affects the stress-strain response and strength degradation characteristics. The mechanical parameters exhibit anisotropy characteristics, and the stratification effect exhibits a negative correlation with the cracking stress and peak stress. The failure modes caused by the stratification effect show remarkable anisotropic features, including splitting failure(Ⅰ: 0°-22.50°, Ⅱ: 90°), composite failure(45°), and shearing failure(67.50°). The AE temporal sequences demonstrate a stepwise response characteristic to the loading stress level. The AE intensity indicates that the stress sensitivity of shearing failure and composite failure is generally greater than that of splitting failure. The IRT field has spatiotemporal migration and progressive dissimilation with stress loading and its dissimilation degree increases under higher stress levels. The stronger the stratification effect, the greater the dissimilation degree of the IRT field. The abnormal characteristic points of average infrared radiation temperature(AIRT) variance at local stress drop and peak stress can be used as early and late precursors to identify fracture instability. Theoretical analysis shows that the competitive relationship between compaction strengthening and fracturing damage intensifies the dissimilation of the infrared thermal field for an increasing stress level. The present study provides a theoretical reference for disaster warnings in hard sedimentary rock mass.
基金This work was supported by the National Natural Science Foundation of China(Nos.12204499 and 62075225)Joint Key Projects of National Natural Science Foundation of China(No.U2032206)+1 种基金CAS Project for Young Scientists in Basic Research(No.YSBR-042)Open Project of State Key Laboratory of Surface Physics at Fudan University(No.KF2022_05).
文摘The infrared microspectroscopy beamline(BL06B) is a phase Ⅱ beamline project at the Shanghai Synchrotron Radiation Facility(SSRF). The construction and optical alignment of BL06B were completed by the end of 2020. By 2021, it became accessible to users. The synchrotron radiation infrared(SRIR) source included edge radiation(ER) and bending magnet radiation(BMR). The extracted angles in the horizontal and vertical directions were 40 and 20 mrad, respectively. The photon flux, spectral resolution, and focused spot size were measured at the BL06B endstation, and the experimental results were consistent with theoretical calculations. SRIR light has a small divergence angle, high brightness, and a wide wavelength range. As a source of IR microscopy, it can easily focus on a diffraction-limited spatial resolution with a high signal-to-noise ratio(SNR). The BL06B endstation can be applied in a wide range of research fields, including materials, chemistry, biology, geophysics, and pharmacology.
文摘“Diurnal variation of CH4 at the surface from spring to winter.The time units are in local time(+8 h UTC).The error bar is 1σfor all the observed hourly mean data within that season at that local time.”in the caption of Fig.8 on Page 604 should be“Diurnal variation of CH4 at the surface from spring to winter.The time units are in UTC.The error bar is 1σfor all the observed hourly mean data within that season at that local time.”
基金supported by grants from the Basic Science Research Program(2021M3H4A1A03047327 and 2022R1A2C3006227)through the National Research Foundation of Korea,funded by the Ministry of Science,ICT,and Future Planningthe Fundamental R&D Program for Core Technology of Materials and the Industrial Strategic Technology Development Program(20020855),funded by the Ministry of Trade,Industry,and Energy,Republic of Korea+2 种基金the National Research Council of Science&Technology(NST),funded by the Korean Government(MSIT)(CRC22031-000)partially supported by POSCO and Hyundai Mobis,a start-up fund(S-2022-0096-000)the Postdoctoral Research Program of Sungkyunkwan University(2022).
文摘Multifunctional,flexible,and robust thin films capable of operating in demanding harsh temperature environments are crucial for various cutting-edge applications.This study presents a multifunctional Janus film integrating highly-crystalline Ti_(3)C_(2)T_(x) MXene and mechanically-robust carbon nanotube(CNT)film through strong hydrogen bonding.The hybrid film not only exhibits high electrical conductivity(4250 S cm^(-1)),but also demonstrates robust mechanical strength and durability in both extremely low and high temperature environments,showing exceptional resistance to thermal shock.This hybrid Janus film of 15μm thickness reveals remarkable multifunctionality,including efficient electromagnetic shielding effectiveness of 72 dB in X band frequency range,excellent infrared(IR)shielding capability with an average emissivity of 0.09(a minimal value of 0.02),superior thermal camouflage performance over a wide temperature range(−1 to 300℃)achieving a notable reduction in the radiated temperature by 243℃ against a background temperature of 300℃,and outstanding IR detection capability characterized by a 44%increase in resistance when exposed to 250 W IR radiation.This multifunctional MXene/CNT Janus film offers a feasible solution for electromagnetic shielding and IR shielding/detection under challenging conditions.
基金supported by the National Natural Science Foundation of China(Grant Nos.12375244,12135009,and 12275356)the Hunan Provincial Innovation Foun-dation for Postgraduate(Grant Nos.CX20210062 and CX20230006).
文摘Relativistic femtosecond mid-infrared pulses can be generated efficiently by laser interaction with near-criticaldensity plasmas.It is found theoretically and numerically that the radiation pressure of a circularly polarized laser pulse first compresses the plasma electrons to form a dense flying mirror with a relativistic high speed.The pulse reflected by the mirror is red-shifted to the mid-infrared range.Full three-dimensional simulations demonstrate that the central wavelength of the mid-infrared pulse is tunable from 3µm to 14µm,and the laser energy conversion efficiency can reach as high as 13%.With a 0.5–10 PW incident laser pulse,the generated mid-infrared pulse reaches a peak power of 10–180 TW,which is interesting for various applications in ultrafast and high-field sciences.
基金supported by the National Natural Science Foundation of China(Grant No.61975028)the Natural Science Foundation of Heilongjiang Province,China(Grant No.LH2022E004)the Postdoctoral Foundation of Heilongjiang Province,China(Grant No.LBH-Z22057).
文摘Accurate classification of rice variety is essential to ensure the brand value of high-quality rice products.Considering the impact of sample state on modeling optimization algorithms,rice samples after grinding and sealing were selected.To enhance the accuracy of rice variety classification,we introduced a spectral characteristic wavelength selection method based on adaptive sliding window permutation entropy(ASW-PE).
基金supported by Yunnan Revitalization Talent Support Program(202305AS350029 and 202305AT350005)Yunnan Key Laboratory of Solar Physics and Space Science(202205AG070009)。
文摘The near-infrared imaging channel constitutes a crucial component of the multichannel high-resolution imaging system of the New Vacuum Solar Telescope(NVST). We have successfully achieved high-resolution, narrowband imaging of the chromosphere using He I 10830 A triplet within this channel, which significantly enhances the imaging observation capabilities of NVST. This paper provides a concise overview of the optical system associated with the near-infrared imaging channel, detailing data processing procedures and presenting several observed images. Leveraging a high-resolution image reconstruction algorithm, we were able to generate a narrowband image near the diffraction limit at 10830 A with a temporal resolution of less than 10 s.