It seems to be progressively recognized that the stress of the India-Asia convergent front can be transferred rapidly through the southern and central Tibetan lithosphere to the northern Tibet, hence leading to the cr...It seems to be progressively recognized that the stress of the India-Asia convergent front can be transferred rapidly through the southern and central Tibetan lithosphere to the northern Tibet, hence leading to the crustal thickening deformation there during or immediately after the onset of the India-Asia collision(ca.55 Ma).This study focuses on the late Cenozoic deformation and tectonic uplift of the northern Tibet and Tian Shan area.Detailed compilations of a variety of proxy data from sediments and bedrocks suggest that the northern Tibet and Tian Shan area underwent one stage of approximately synchronous widespread contractile deformation since 25–20 Ma, which seemed to decrease at circa 18 Ma as revealed by low-temperature thermochronological data.The latest Oligocene-early Miocene was also significant basin-forming episodes when many intermontane subbasins began to receive syntectonic sedimentation in the northeastern Tibet.Subsequently, the other phase of compressional deformation began to encroach more widely into the northern Tibet and Tian Shan area in episodic steps or continuously from 16–12 Ma to present.展开更多
Deformation patterns, shortening amounts and rates in the late Quaternary across the Kalpin thrust system have received tittle attention in the past. This paper attempts to discuss them, mainly in the eastern part of ...Deformation patterns, shortening amounts and rates in the late Quaternary across the Kalpin thrust system have received tittle attention in the past. This paper attempts to discuss them, mainly in the eastern part of the thrust system by doing field investigation along the faults and folds, measuring geomorphic deformation, excavating trenches in several important sites where young alluvial fans were obviously displaced and dating young deposits of alluvial terraces. There are two types of deformation in the surface and near surface for the Kalpin thrust system in the late Quaternary. They are movement of thrust faults on lower angles and bending of young folds. Both kinds of deformation are shown by shortening and uplifting of young geomorphic surfaces. The surface ages of 3 stages are calculated by dating 20 examples using the TL method in the study area and comparing the results of our predecessors on the deposition and incision times of alluvial terraces in the Tianshan mountain which are 100ka B. P., 33 - 18ka B.P. and 6.6 - 8.2ka B.P. respectively for the large-scale deformed alluvial surfaces: T3, T2 and T1 in the Kalpin region. Then, 19 sets of shortening amounts and rates are obtained in 13 sites along 4 rows of anticlines in front of the Kalpin thrust system and Piqiang fold. The shortening amounts and rates show that there are two sections where deformation is stronger than others. The two sections consist of two arcs that are towards the south. The shortening rates near the top of arcs are 1.32mm/a in the west and 1.39mm/a in the east across the thrust system, respectively. In addition, deformation is stronger in the front rows than the rear ones for bifurcate folds.展开更多
Geological studies indicate that Qinghai\|Tibet plateau crust has shortened at least 2500km and the thickness was increased to 60~70km in the past 45Ma. Different researchers advocate different views to explain the s...Geological studies indicate that Qinghai\|Tibet plateau crust has shortened at least 2500km and the thickness was increased to 60~70km in the past 45Ma. Different researchers advocate different views to explain the shortening according to their studies.( Tapponnier,1977;Chang et al,1986;England et al,1986;Murphy,1997;Y.Pan,1999),however it is still unresolved on how much shortening in upper crustal especially in Qiangtang terrain.Qiangtang terrain is located in the center of Qinghai\|Tibet plateau, the tectonic deformation has been resulted from intracontinental convergence and collision of India plate with Eurasian plate.The deformation style of Qiangtang terrain shows east\|west\|trending folds and thrusts which formed in the shallow tectonic level during collisional\|intracontinental period. The folds type is characterized by nonpenetrative\|foliation parallel fold, the hinges have the same trend with the thrusts. These traits are favourable for restoring the balanced cross\|section and measuring the shortening. The balanced reconstruction is based on line balancing on three different stratigraphic sections (A,B and C)across the Northern Qiangtang basin in the area between 85°E and 87°E.The sections are all north\|south\|trending in accordance with the moving direction of thrusts.展开更多
The Daliangshan tectonic zone is a rhombic area to the east of the Anninghe and Zemuhe fault zones in the middle segment of the Xianshuihe-Xiaojiang fault system along the southeast margin of the Qinghai-Xizang (Tibe...The Daliangshan tectonic zone is a rhombic area to the east of the Anninghe and Zemuhe fault zones in the middle segment of the Xianshuihe-Xiaojiang fault system along the southeast margin of the Qinghai-Xizang (Tibet) Plateau. Since the Cenozoic era, the neotectonic deformation in the Daliangshan tectonic zone has presented not only sinistral slip and reverse faulting along the Daliangshan fault zone, but also proximate SN-trending crust shortening. It is estimated that the average crust shortening in the Daliangshan tectonic zone is 10.9 ± 1.6 km, with a shortening rate of 17.8 ± 2.2% using the method of balanced cross-sections. The crust shortening from folding occurred mainly in the Miocene and the Pliocene periods, lasting no more than 8.6 Ma. Based on this, a crust shortening velocity of 1.3 ± 0.2 mm/a can be estimated. Compared with the left offset along the Daliangshan fault zone, it is recognized that crust shortening by folding plays an important part in transferring crustal deformation southeastward along the Xianshulhe-Xiaojiang fault system.展开更多
The Qaidam Basin, located in the northern margin of the Qinghai-Tibet Plateau, is a large Mesozoic-Cenozoic basin, and bears huge thick Cenozoic strata. The geologic events of the Indian- Eurasian plate-plate collisio...The Qaidam Basin, located in the northern margin of the Qinghai-Tibet Plateau, is a large Mesozoic-Cenozoic basin, and bears huge thick Cenozoic strata. The geologic events of the Indian- Eurasian plate-plate collision since -55 Ma have been well recorded. Based on the latest progress in high-resolution stratigraphy, a technique of balanced section was applied to six pieces of northeast- southwest geologic seismic profiles in the central and eastern of the Qaidam Basin to reconstruct the crustal shortening deformation history during the Cenozoic collision. The results show that the Qaidam Basin began to shorten deformation nearly synchronous to the early collision, manifesting as a weak compression, the deformation increased significantly during the Middle and Late Eocene, and then weakened slightly and began to accelerate rapidly since the Late Miocene, especially since the Quaternary, reflecting this powerful compressional deformation and rapid uplift of the northern Tibetan Plateau around the Qaidam Basin.展开更多
The Qaidam Basin,located in the northern margin of the Qinghai-Tibet Plateau,is a large Mesozoic -Cenozoic basin,and bears huge thick Cenozoic strata.The geologic events of the Indian-Eurasian plate-plate collision si...The Qaidam Basin,located in the northern margin of the Qinghai-Tibet Plateau,is a large Mesozoic -Cenozoic basin,and bears huge thick Cenozoic strata.The geologic events of the Indian-Eurasian plate-plate collision since~55 Ma have been well recorded.Based on the latest progress in high-resolution stratigraphy,a technique of balanced section was applied to six pieces of northeast-southwest geologic seismic profiles in the central and eastern of the Qaidam Basin to reconstruct the crustal shortening deformation history during the Cenozoic collision. The results show that the Qaidam Basin began展开更多
目的:探讨应用Ilizarov技术在旋转中心穹顶状截骨治疗青少年股骨远端外翻畸形的疗效。方法:采用回顾性研究分析2016年1月至2020年10月收治并获得完整随访的11例股骨远端外翻畸形患者的临床资料,其中男7例,女4例;右侧6例,左侧5例;年龄10...目的:探讨应用Ilizarov技术在旋转中心穹顶状截骨治疗青少年股骨远端外翻畸形的疗效。方法:采用回顾性研究分析2016年1月至2020年10月收治并获得完整随访的11例股骨远端外翻畸形患者的临床资料,其中男7例,女4例;右侧6例,左侧5例;年龄10~14岁。在股骨远端畸形处找出成角旋转中心(center of roration of angulation,CORA),以CORA为中点,行穹顶状截骨,根据Ilizarov外固定穿针原则安装环形外固定架,截断股骨远端,即时矫正股骨远端目测下外翻畸形,外固定架固定维持。术后根据双下肢负重全长正侧位X线片提示的下肢力线及长度结果,矫正残余畸形及短缩。结果:11例均得到随访,时间13~25个月,带架时间12~17周。末次随访拍摄双下肢负重全长正侧位X线片测量11例双下肢长度均等长,畸形均矫正。采用美国特种外科医院(Hospital Special Surgery,HSS)评分评价膝关节功能,均为优。结论:应用Ilizarov技术在旋转中心穹顶状截骨治疗青少年股骨远端外翻畸形,术中即时矫正目测下股骨外翻畸形,术后根据双下肢负重正侧位片提示的下肢力线及短缩程度,动态调整矫正残余畸形及短缩,损伤小,恢复快。展开更多
Relief surveying and chronology study were carried out on the deformed river terraces across the Artushi anticline belt in the northwestern Tarim Basin. The crust shortening rate of this anticline belt since late Plei...Relief surveying and chronology study were carried out on the deformed river terraces across the Artushi anticline belt in the northwestern Tarim Basin. The crust shortening rate of this anticline belt since late Pleistocene was calculated to be up to 5-6 mm/a. The total crust shortening rate from the northwestern Tarim Basin to southwestern Tianshan since late Pleistocene was estimated to be over 10 mm/a.展开更多
The paper of Shen et al., entitled "Surveying of the deformed terraces and crust shortening rate in the northwest Tarim Basin", was published in Chinese Science Bulletin (Vol. 46, No. 12). Shen et al. found ...The paper of Shen et al., entitled "Surveying of the deformed terraces and crust shortening rate in the northwest Tarim Basin", was published in Chinese Science Bulletin (Vol. 46, No. 12). Shen et al. found the deformation of Late Pleistocene to Holocene terraces of the Boguzi River across the Artushi Anticline in the northwest Tarim Basin close to the Pamir, and made level survey and differential GPS measurement, which is of great importance to geodynamics for research on the coupling of Tianshan Mountains uplifting and Tarim Basin depression. But their understanding to the deformation mechanics of terraces and the calculation methods of crustal shortening are open to discussion. Therefore, we discuss it with Shen Jun et al.展开更多
酒泉盆地南缘冲断带具有多层次的逆冲结构,包括浅层的远距离冲断系统、中层的近距离冲断系统和深层的原地冲断系统。远距离冲断系统由奥陶系和志留系构成,局部地区表现为飞来峰;近距离冲断系统由古生界和中生界构成,大部分隐伏在远距离...酒泉盆地南缘冲断带具有多层次的逆冲结构,包括浅层的远距离冲断系统、中层的近距离冲断系统和深层的原地冲断系统。远距离冲断系统由奥陶系和志留系构成,局部地区表现为飞来峰;近距离冲断系统由古生界和中生界构成,大部分隐伏在远距离冲断系统之下,局部地带以构造窗的形式出露地表,其变形样式主要为叠瓦状的冲断变形;原地冲断系统隐伏在近距离冲断系统和第四系之下,其南部的变形主要表现为双冲构造或堆垛构造,往NE方向变形逐渐简单,主要表现为断层传播褶皱和断层弯曲褶皱,前锋地带表现为三角带的突起构造。酒泉盆地南缘冲断带的变形是一个具有大缩短量的薄皮冲断系统,旱峡剖面的构造缩短量为52.7 km,缩短率为55.1%。酒泉盆地南缘冲断带的变形时期大致开始于9.0 M a,并以“前展式”向北扩张,变形时间向北变新,前锋断层开始活动时间约为8.3 M a。展开更多
基金granted by the National Natural Science Foundation of China (Grant No.41472187)the China Geological Survey project (Grant No.12120114022901, 12120115027001)
文摘It seems to be progressively recognized that the stress of the India-Asia convergent front can be transferred rapidly through the southern and central Tibetan lithosphere to the northern Tibet, hence leading to the crustal thickening deformation there during or immediately after the onset of the India-Asia collision(ca.55 Ma).This study focuses on the late Cenozoic deformation and tectonic uplift of the northern Tibet and Tian Shan area.Detailed compilations of a variety of proxy data from sediments and bedrocks suggest that the northern Tibet and Tian Shan area underwent one stage of approximately synchronous widespread contractile deformation since 25–20 Ma, which seemed to decrease at circa 18 Ma as revealed by low-temperature thermochronological data.The latest Oligocene-early Miocene was also significant basin-forming episodes when many intermontane subbasins began to receive syntectonic sedimentation in the northeastern Tibet.Subsequently, the other phase of compressional deformation began to encroach more widely into the northern Tibet and Tian Shan area in episodic steps or continuously from 16–12 Ma to present.
基金The research was sponsored by"Special Project of Emergency Response to the MS 6 .8 Bachu-Jiashi , Xinjiang Earthquake"of China Earthquake Administration
文摘Deformation patterns, shortening amounts and rates in the late Quaternary across the Kalpin thrust system have received tittle attention in the past. This paper attempts to discuss them, mainly in the eastern part of the thrust system by doing field investigation along the faults and folds, measuring geomorphic deformation, excavating trenches in several important sites where young alluvial fans were obviously displaced and dating young deposits of alluvial terraces. There are two types of deformation in the surface and near surface for the Kalpin thrust system in the late Quaternary. They are movement of thrust faults on lower angles and bending of young folds. Both kinds of deformation are shown by shortening and uplifting of young geomorphic surfaces. The surface ages of 3 stages are calculated by dating 20 examples using the TL method in the study area and comparing the results of our predecessors on the deposition and incision times of alluvial terraces in the Tianshan mountain which are 100ka B. P., 33 - 18ka B.P. and 6.6 - 8.2ka B.P. respectively for the large-scale deformed alluvial surfaces: T3, T2 and T1 in the Kalpin region. Then, 19 sets of shortening amounts and rates are obtained in 13 sites along 4 rows of anticlines in front of the Kalpin thrust system and Piqiang fold. The shortening amounts and rates show that there are two sections where deformation is stronger than others. The two sections consist of two arcs that are towards the south. The shortening rates near the top of arcs are 1.32mm/a in the west and 1.39mm/a in the east across the thrust system, respectively. In addition, deformation is stronger in the front rows than the rear ones for bifurcate folds.
文摘Geological studies indicate that Qinghai\|Tibet plateau crust has shortened at least 2500km and the thickness was increased to 60~70km in the past 45Ma. Different researchers advocate different views to explain the shortening according to their studies.( Tapponnier,1977;Chang et al,1986;England et al,1986;Murphy,1997;Y.Pan,1999),however it is still unresolved on how much shortening in upper crustal especially in Qiangtang terrain.Qiangtang terrain is located in the center of Qinghai\|Tibet plateau, the tectonic deformation has been resulted from intracontinental convergence and collision of India plate with Eurasian plate.The deformation style of Qiangtang terrain shows east\|west\|trending folds and thrusts which formed in the shallow tectonic level during collisional\|intracontinental period. The folds type is characterized by nonpenetrative\|foliation parallel fold, the hinges have the same trend with the thrusts. These traits are favourable for restoring the balanced cross\|section and measuring the shortening. The balanced reconstruction is based on line balancing on three different stratigraphic sections (A,B and C)across the Northern Qiangtang basin in the area between 85°E and 87°E.The sections are all north\|south\|trending in accordance with the moving direction of thrusts.
基金the National Natural Science Foundation of China(40472109)"973"State Key Basic Research Project of China(2004CB418410)Joint Eanthquake Science Foundation of China(105066)
文摘The Daliangshan tectonic zone is a rhombic area to the east of the Anninghe and Zemuhe fault zones in the middle segment of the Xianshuihe-Xiaojiang fault system along the southeast margin of the Qinghai-Xizang (Tibet) Plateau. Since the Cenozoic era, the neotectonic deformation in the Daliangshan tectonic zone has presented not only sinistral slip and reverse faulting along the Daliangshan fault zone, but also proximate SN-trending crust shortening. It is estimated that the average crust shortening in the Daliangshan tectonic zone is 10.9 ± 1.6 km, with a shortening rate of 17.8 ± 2.2% using the method of balanced cross-sections. The crust shortening from folding occurred mainly in the Miocene and the Pliocene periods, lasting no more than 8.6 Ma. Based on this, a crust shortening velocity of 1.3 ± 0.2 mm/a can be estimated. Compared with the left offset along the Daliangshan fault zone, it is recognized that crust shortening by folding plays an important part in transferring crustal deformation southeastward along the Xianshulhe-Xiaojiang fault system.
基金co-supported by the President Fund and Innovation Program of Chinese Academy of Sciences(no.:kzcx2-yw-104)the Chinese National Science Foundation grants(no.:40334038)the Science and Technology Key Project of Ministry of Education of China(no.:306016).
文摘The Qaidam Basin, located in the northern margin of the Qinghai-Tibet Plateau, is a large Mesozoic-Cenozoic basin, and bears huge thick Cenozoic strata. The geologic events of the Indian- Eurasian plate-plate collision since -55 Ma have been well recorded. Based on the latest progress in high-resolution stratigraphy, a technique of balanced section was applied to six pieces of northeast- southwest geologic seismic profiles in the central and eastern of the Qaidam Basin to reconstruct the crustal shortening deformation history during the Cenozoic collision. The results show that the Qaidam Basin began to shorten deformation nearly synchronous to the early collision, manifesting as a weak compression, the deformation increased significantly during the Middle and Late Eocene, and then weakened slightly and began to accelerate rapidly since the Late Miocene, especially since the Quaternary, reflecting this powerful compressional deformation and rapid uplift of the northern Tibetan Plateau around the Qaidam Basin.
文摘The Qaidam Basin,located in the northern margin of the Qinghai-Tibet Plateau,is a large Mesozoic -Cenozoic basin,and bears huge thick Cenozoic strata.The geologic events of the Indian-Eurasian plate-plate collision since~55 Ma have been well recorded.Based on the latest progress in high-resolution stratigraphy,a technique of balanced section was applied to six pieces of northeast-southwest geologic seismic profiles in the central and eastern of the Qaidam Basin to reconstruct the crustal shortening deformation history during the Cenozoic collision. The results show that the Qaidam Basin began
文摘目的:探讨应用Ilizarov技术在旋转中心穹顶状截骨治疗青少年股骨远端外翻畸形的疗效。方法:采用回顾性研究分析2016年1月至2020年10月收治并获得完整随访的11例股骨远端外翻畸形患者的临床资料,其中男7例,女4例;右侧6例,左侧5例;年龄10~14岁。在股骨远端畸形处找出成角旋转中心(center of roration of angulation,CORA),以CORA为中点,行穹顶状截骨,根据Ilizarov外固定穿针原则安装环形外固定架,截断股骨远端,即时矫正股骨远端目测下外翻畸形,外固定架固定维持。术后根据双下肢负重全长正侧位X线片提示的下肢力线及长度结果,矫正残余畸形及短缩。结果:11例均得到随访,时间13~25个月,带架时间12~17周。末次随访拍摄双下肢负重全长正侧位X线片测量11例双下肢长度均等长,畸形均矫正。采用美国特种外科医院(Hospital Special Surgery,HSS)评分评价膝关节功能,均为优。结论:应用Ilizarov技术在旋转中心穹顶状截骨治疗青少年股骨远端外翻畸形,术中即时矫正目测下股骨外翻畸形,术后根据双下肢负重正侧位片提示的下肢力线及短缩程度,动态调整矫正残余畸形及短缩,损伤小,恢复快。
基金This work was supported by the National Natural Science Foundation of China (Grant No. 49834005) the Commission of Science and Technology of China (Grant No. 96-913-07-01) and the Key Project of the Earthquake Joint Foundation (Grant No. 9507438).
文摘Relief surveying and chronology study were carried out on the deformed river terraces across the Artushi anticline belt in the northwestern Tarim Basin. The crust shortening rate of this anticline belt since late Pleistocene was calculated to be up to 5-6 mm/a. The total crust shortening rate from the northwestern Tarim Basin to southwestern Tianshan since late Pleistocene was estimated to be over 10 mm/a.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 49832040).
文摘The paper of Shen et al., entitled "Surveying of the deformed terraces and crust shortening rate in the northwest Tarim Basin", was published in Chinese Science Bulletin (Vol. 46, No. 12). Shen et al. found the deformation of Late Pleistocene to Holocene terraces of the Boguzi River across the Artushi Anticline in the northwest Tarim Basin close to the Pamir, and made level survey and differential GPS measurement, which is of great importance to geodynamics for research on the coupling of Tianshan Mountains uplifting and Tarim Basin depression. But their understanding to the deformation mechanics of terraces and the calculation methods of crustal shortening are open to discussion. Therefore, we discuss it with Shen Jun et al.
文摘酒泉盆地南缘冲断带具有多层次的逆冲结构,包括浅层的远距离冲断系统、中层的近距离冲断系统和深层的原地冲断系统。远距离冲断系统由奥陶系和志留系构成,局部地区表现为飞来峰;近距离冲断系统由古生界和中生界构成,大部分隐伏在远距离冲断系统之下,局部地带以构造窗的形式出露地表,其变形样式主要为叠瓦状的冲断变形;原地冲断系统隐伏在近距离冲断系统和第四系之下,其南部的变形主要表现为双冲构造或堆垛构造,往NE方向变形逐渐简单,主要表现为断层传播褶皱和断层弯曲褶皱,前锋地带表现为三角带的突起构造。酒泉盆地南缘冲断带的变形是一个具有大缩短量的薄皮冲断系统,旱峡剖面的构造缩短量为52.7 km,缩短率为55.1%。酒泉盆地南缘冲断带的变形时期大致开始于9.0 M a,并以“前展式”向北扩张,变形时间向北变新,前锋断层开始活动时间约为8.3 M a。