Generally speaking, main flow path of gas turbine is assumed to be perfect for standard 3D computation. But in real engine, the turbine annulus geometry is not completely smooth for the presence of the shroud and asso...Generally speaking, main flow path of gas turbine is assumed to be perfect for standard 3D computation. But in real engine, the turbine annulus geometry is not completely smooth for the presence of the shroud and associated cavity near the end wall. Besides, shroud leakage flow is one of the dominant sources of secondary flow in tur- bomachinery, which not only causes a deterioration of useful work but also a penalty on turbine efficiency. It has been found that neglect shroud leakage flow makes the computed velocity profiles and loss distribution signifi- cantly different to those measured. Even so, the influence of shroud leakage flow is seldom taken into considera- tion during the routine of turbine design due to insufficient understanding of its impact on end wall flows and tur- bine performance. In order to evaluate the impact of tip shroud geometry on turbine performance, a 3D computa- tional investigation for 1.5-stage turbine with shrouded blades was performed in this paper. The following ge- ometry parameters were varied respectively:展开更多
基金Financial support from the Innovation Foundation of BUAA for PhD Graduates(YWF-13-A01-014)
文摘Generally speaking, main flow path of gas turbine is assumed to be perfect for standard 3D computation. But in real engine, the turbine annulus geometry is not completely smooth for the presence of the shroud and associated cavity near the end wall. Besides, shroud leakage flow is one of the dominant sources of secondary flow in tur- bomachinery, which not only causes a deterioration of useful work but also a penalty on turbine efficiency. It has been found that neglect shroud leakage flow makes the computed velocity profiles and loss distribution signifi- cantly different to those measured. Even so, the influence of shroud leakage flow is seldom taken into considera- tion during the routine of turbine design due to insufficient understanding of its impact on end wall flows and tur- bine performance. In order to evaluate the impact of tip shroud geometry on turbine performance, a 3D computa- tional investigation for 1.5-stage turbine with shrouded blades was performed in this paper. The following ge- ometry parameters were varied respectively: