布匹瑕疵检测是纺织业质量管理的重要环节.在嵌入式设备上实现准确、快速的布匹瑕疵检测能有效降低成本,因而价值巨大.考虑到实际生产中花色布匹瑕疵具有背景复杂、数量差异大、极端长宽比和小瑕疵占比高等结构特性,提出一种基于轻量级...布匹瑕疵检测是纺织业质量管理的重要环节.在嵌入式设备上实现准确、快速的布匹瑕疵检测能有效降低成本,因而价值巨大.考虑到实际生产中花色布匹瑕疵具有背景复杂、数量差异大、极端长宽比和小瑕疵占比高等结构特性,提出一种基于轻量级模型的花色布匹瑕疵检测方法并将其部署在嵌入式设备Raspberry Pi 4B上.首先在一阶段目标检测网络YOLO的基础上用轻量级特征提取网络ShuffleNetV2提取花色布匹瑕疵的特征,以减少网络结构复杂度及参数量,提升检测速度;其次是检测头的解耦合,将分类与定位任务分离,以提升模型收敛速度;此外引入CIoU作为瑕疵位置回归损失函数,提高瑕疵定位准确性.实验结果表明,本文算法在Raspberry Pi 4B上可达8.6 FPS的检测速度,可满足纺织工业应用需求.展开更多
目的:为解决人脸口罩识别中边缘和移动端设备存储与计算资源受限的问题,提出一种基于YOLOv5轻量化网络的人脸口罩识别方法。方法:选取由主干网络(Backbone)、颈部模块(Neck)和头部模块(Head)组成的YOLOv5模型作为基础框架。首先,使用Shu...目的:为解决人脸口罩识别中边缘和移动端设备存储与计算资源受限的问题,提出一种基于YOLOv5轻量化网络的人脸口罩识别方法。方法:选取由主干网络(Backbone)、颈部模块(Neck)和头部模块(Head)组成的YOLOv5模型作为基础框架。首先,使用ShuffleNetv2轻量化网络对Backbone部分进行修改替换;其次,在Neck部分引入Ghost模块和C3_S模块;最后,为提升检测精度,融入卷积块注意力模块(convolutional block attention module,CBAM),形成Shuffle_Yolo_GS_CBAM模型。选用AIZOO数据集训练和验证模型,通过平均精度均值(mean average precision,mAP)、每秒传输帧数(frames per second,FPS)、每秒10亿次的浮点运算数(giga floating-point operations per second,GFLOPS)和参数量评估模型对人脸口罩的识别效果。结果:该模型识别人脸口罩的mAP为89.5%,FPS为158.7帧/s,参数量和GFLOPS分别为2.38 M和4.5 GFLOPS。与YOLOv5s相比,虽然检测精度略有下降,但检测速度提升了39.7%,模型参数量减少了67.3%,模型运算量减少了73.8%。结论:提出的方法在提高检测速度、减少参数量和计算量、保障检测精度方面表现良好,适合部署在边缘和移动端设备上进行人脸口罩识别。展开更多
文摘布匹瑕疵检测是纺织业质量管理的重要环节.在嵌入式设备上实现准确、快速的布匹瑕疵检测能有效降低成本,因而价值巨大.考虑到实际生产中花色布匹瑕疵具有背景复杂、数量差异大、极端长宽比和小瑕疵占比高等结构特性,提出一种基于轻量级模型的花色布匹瑕疵检测方法并将其部署在嵌入式设备Raspberry Pi 4B上.首先在一阶段目标检测网络YOLO的基础上用轻量级特征提取网络ShuffleNetV2提取花色布匹瑕疵的特征,以减少网络结构复杂度及参数量,提升检测速度;其次是检测头的解耦合,将分类与定位任务分离,以提升模型收敛速度;此外引入CIoU作为瑕疵位置回归损失函数,提高瑕疵定位准确性.实验结果表明,本文算法在Raspberry Pi 4B上可达8.6 FPS的检测速度,可满足纺织工业应用需求.
文摘目的:为解决人脸口罩识别中边缘和移动端设备存储与计算资源受限的问题,提出一种基于YOLOv5轻量化网络的人脸口罩识别方法。方法:选取由主干网络(Backbone)、颈部模块(Neck)和头部模块(Head)组成的YOLOv5模型作为基础框架。首先,使用ShuffleNetv2轻量化网络对Backbone部分进行修改替换;其次,在Neck部分引入Ghost模块和C3_S模块;最后,为提升检测精度,融入卷积块注意力模块(convolutional block attention module,CBAM),形成Shuffle_Yolo_GS_CBAM模型。选用AIZOO数据集训练和验证模型,通过平均精度均值(mean average precision,mAP)、每秒传输帧数(frames per second,FPS)、每秒10亿次的浮点运算数(giga floating-point operations per second,GFLOPS)和参数量评估模型对人脸口罩的识别效果。结果:该模型识别人脸口罩的mAP为89.5%,FPS为158.7帧/s,参数量和GFLOPS分别为2.38 M和4.5 GFLOPS。与YOLOv5s相比,虽然检测精度略有下降,但检测速度提升了39.7%,模型参数量减少了67.3%,模型运算量减少了73.8%。结论:提出的方法在提高检测速度、减少参数量和计算量、保障检测精度方面表现良好,适合部署在边缘和移动端设备上进行人脸口罩识别。