期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于改进的ShuffleNetV2模型的农作物病害识别
1
作者 姚艳 毋涛 《计算机与数字工程》 2024年第7期2038-2044,2049,共8页
针对传统数字图像处理技术的底层特征提取复杂,卷积神经网络的识别方法参数多、计算量大、网络结构复杂、实用性不高等问题,论文以构建一个能用于移动端应用的农作物病害识别模型为目标,以苹果黑星病、苹果锈病、苹果健康三种叶部图像... 针对传统数字图像处理技术的底层特征提取复杂,卷积神经网络的识别方法参数多、计算量大、网络结构复杂、实用性不高等问题,论文以构建一个能用于移动端应用的农作物病害识别模型为目标,以苹果黑星病、苹果锈病、苹果健康三种叶部图像为研究对象,从提升精度、降低计算量两个维度出发,提出一种基于改进的ShuffleNetV2卷积神经网络的病害识别模型:1)嵌入SK注意力机制;2)扩大DepthWise卷积核;3)裁剪无用卷积;4)改用PReLU激活函数。实验结果表明,改进后的模型在APPLE_Mix数据集上的准确率为98.75%,较原ShuffleNetV2准确率提升2.05%,Flops计算量降低18.9%,参数量增加6.9%,内存增加0.03 MB(均在可接受范围之内),能较好地平衡模型复杂度与识别精度。 展开更多
关键词 shufflenetv2模型 农作物病害识别 注意力机制 深度可分离卷积
下载PDF
基于改进ShuffleNetV2模型的声目标识别方法研究 被引量:1
2
作者 简泽明 赵旭辉 +2 位作者 胡君豪 丁善婷 刘梦然 《传感器与微系统》 CSCD 北大核心 2023年第8期43-45,49,共4页
轻量级神经网络模型参数量大幅减少,且速度得到了很大的提升,然而,检测的准确率却不高。因此,对轻量级ShuffleNetV2模型进行改进,加入3×3的Depthwise卷积核,同时降低1×1的卷积核和引入注意力机制SE模块。在ImageNet数据集中进... 轻量级神经网络模型参数量大幅减少,且速度得到了很大的提升,然而,检测的准确率却不高。因此,对轻量级ShuffleNetV2模型进行改进,加入3×3的Depthwise卷积核,同时降低1×1的卷积核和引入注意力机制SE模块。在ImageNet数据集中进行ShuffleNetV2模型预训练。然后,将改进的ShuffleNetV2模型与其他4种网络模型进行了实验对比。结果表明:改进ShuffleNetV2模型的综合性能最佳;与SE-ShuffleNetV2模型相比,在参数量和计算量一样时,其准确率提高了7.25%。改进的ShuffleNetV2模型为移动端的声目标精确识别进一步奠定了基础。 展开更多
关键词 声目标识别 shufflenetv2模型 结构优化 迁移学习 识别准确率
下载PDF
基于改进ShuffleNetV2的轻量级花色布匹瑕疵检测 被引量:1
3
作者 胡斌汉 李曙 《计算机系统应用》 2023年第4期161-169,共9页
布匹瑕疵检测是纺织业质量管理的重要环节.在嵌入式设备上实现准确、快速的布匹瑕疵检测能有效降低成本,因而价值巨大.考虑到实际生产中花色布匹瑕疵具有背景复杂、数量差异大、极端长宽比和小瑕疵占比高等结构特性,提出一种基于轻量级... 布匹瑕疵检测是纺织业质量管理的重要环节.在嵌入式设备上实现准确、快速的布匹瑕疵检测能有效降低成本,因而价值巨大.考虑到实际生产中花色布匹瑕疵具有背景复杂、数量差异大、极端长宽比和小瑕疵占比高等结构特性,提出一种基于轻量级模型的花色布匹瑕疵检测方法并将其部署在嵌入式设备Raspberry Pi 4B上.首先在一阶段目标检测网络YOLO的基础上用轻量级特征提取网络ShuffleNetV2提取花色布匹瑕疵的特征,以减少网络结构复杂度及参数量,提升检测速度;其次是检测头的解耦合,将分类与定位任务分离,以提升模型收敛速度;此外引入CIoU作为瑕疵位置回归损失函数,提高瑕疵定位准确性.实验结果表明,本文算法在Raspberry Pi 4B上可达8.6 FPS的检测速度,可满足纺织工业应用需求. 展开更多
关键词 布匹瑕疵检测 轻量级模型 Raspberry Pi 4B YOLO shufflenetv2
下载PDF
基于YOLOv5轻量化网络的人脸口罩识别方法研究
4
作者 闻亮 王江 +1 位作者 梁国标 李贞妮 《医疗卫生装备》 CAS 2024年第9期7-13,共7页
目的:为解决人脸口罩识别中边缘和移动端设备存储与计算资源受限的问题,提出一种基于YOLOv5轻量化网络的人脸口罩识别方法。方法:选取由主干网络(Backbone)、颈部模块(Neck)和头部模块(Head)组成的YOLOv5模型作为基础框架。首先,使用Shu... 目的:为解决人脸口罩识别中边缘和移动端设备存储与计算资源受限的问题,提出一种基于YOLOv5轻量化网络的人脸口罩识别方法。方法:选取由主干网络(Backbone)、颈部模块(Neck)和头部模块(Head)组成的YOLOv5模型作为基础框架。首先,使用ShuffleNetv2轻量化网络对Backbone部分进行修改替换;其次,在Neck部分引入Ghost模块和C3_S模块;最后,为提升检测精度,融入卷积块注意力模块(convolutional block attention module,CBAM),形成Shuffle_Yolo_GS_CBAM模型。选用AIZOO数据集训练和验证模型,通过平均精度均值(mean average precision,mAP)、每秒传输帧数(frames per second,FPS)、每秒10亿次的浮点运算数(giga floating-point operations per second,GFLOPS)和参数量评估模型对人脸口罩的识别效果。结果:该模型识别人脸口罩的mAP为89.5%,FPS为158.7帧/s,参数量和GFLOPS分别为2.38 M和4.5 GFLOPS。与YOLOv5s相比,虽然检测精度略有下降,但检测速度提升了39.7%,模型参数量减少了67.3%,模型运算量减少了73.8%。结论:提出的方法在提高检测速度、减少参数量和计算量、保障检测精度方面表现良好,适合部署在边缘和移动端设备上进行人脸口罩识别。 展开更多
关键词 人脸口罩识别 YOLOv5s模型 shufflenetv2 轻量化网络 注意力机制
下载PDF
改进YOLOv4的野生菌视觉检测方法 被引量:1
5
作者 张泽冰 张冬妍 +2 位作者 娄蕴祎 崔明迪 王克奇 《计算机工程与应用》 CSCD 北大核心 2023年第20期228-236,共9页
人工搜寻野生香菇效率低下,且存在一定危险性;而对于复杂情况下小目标检测的算法研究多集中于精度提升,检测效率与模型参数量不满足实际需求。基于此,提出一种基于改进YOLOv4的机器视觉检测方法,在保证精度前提下,提升检测效率,满足嵌... 人工搜寻野生香菇效率低下,且存在一定危险性;而对于复杂情况下小目标检测的算法研究多集中于精度提升,检测效率与模型参数量不满足实际需求。基于此,提出一种基于改进YOLOv4的机器视觉检测方法,在保证精度前提下,提升检测效率,满足嵌入式设备的需求。以YOLOv4为框架,采用高效的ShuffleNetv2特征提取网络、轻量级的自适应空间特征融合(ASFF)结构减少网络参数和计算量,针对检测分支,将深度可分离卷积(DWConv)和金字塔卷积(PyConv)替代普通卷积以进行轻量化改进。在此基础上优化模型精度:网络输出端引入SA注意力模块以少量计算代价弥补轻量化改进造成的精度损失;最后Weight DIoU NMS算法优化预测框选取。利用1 112张野生蘑菇图片,按照8∶2的比例划分训练集与测试集。实验结果表明:改进YOLOv4模型检测结果 AP为88.76%,F1为0.858,FPS为67.93,模型权重尺寸为52.28 MB,相比于YOLOv4的AP为91.5%,F1为0.890,FPS为37.15,精度变化幅度小,速度提升82.9%,模型权重尺寸仅为原来的21.4%。网络模型在保证检测精度的同时,检测速度明显提升,可为野生菌嵌入式采摘设备提供理论支持。 展开更多
关键词 目标检测 野生香菇 YOLOv4 shufflenetv2 模型轻量化 检测精度优化
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部