To solve discrete optimization difficulty of the spectrum allocation problem,a membrane-inspired quantum shuffled frog leaping(MQSFL) algorithm is proposed.The proposed MQSFL algorithm applies the theory of membrane...To solve discrete optimization difficulty of the spectrum allocation problem,a membrane-inspired quantum shuffled frog leaping(MQSFL) algorithm is proposed.The proposed MQSFL algorithm applies the theory of membrane computing and quantum computing to the shuffled frog leaping algorithm,which is an effective discrete optimization algorithm.Then the proposed MQSFL algorithm is used to solve the spectrum allocation problem of cognitive radio systems.By hybridizing the quantum frog colony optimization and membrane computing,the quantum state and observation state of the quantum frogs can be well evolved within the membrane structure.The novel spectrum allocation algorithm can search the global optimal solution within a reasonable computation time.Simulation results for three utility functions of a cognitive radio system are provided to show that the MQSFL spectrum allocation method is superior to some previous spectrum allocation algorithms based on intelligence computing.展开更多
To solve the flight control problem for unmanned hypersonic vehicles,a novel intelligent optimized control method is proposed.A flight control system based on integral separated proportional-integral-derivative(PID)co...To solve the flight control problem for unmanned hypersonic vehicles,a novel intelligent optimized control method is proposed.A flight control system based on integral separated proportional-integral-derivative(PID)control is designed for hypersonic vehicle,and an improved shuffled frog leaping algorithm is presented to optimize the control parameters.A nonlinear model of hypersonic vehicle is established to examine the dynamic characteristics achieved by the flight control system.Simulation results demonstrate that the proposed optimized controller can effectively achieve better flight control performance than the traditional controller.展开更多
In the recent restructured power system scenario and complex market strategy, operation at absolute minimum cost is no longer the only criterion for dispatching electric power. The economic load dispatch (ELD) problem...In the recent restructured power system scenario and complex market strategy, operation at absolute minimum cost is no longer the only criterion for dispatching electric power. The economic load dispatch (ELD) problem which accounts for minimization of both generation cost and power loss is itself a multiple conflicting objective function problem. In this paper, a modified shuffled frog-leaping algorithm (MSFLA), which is an improved version of memetic algorithm, is proposed for solving the ELD problem. It is a relatively new evolutionary method where local search is applied during the evolutionary cycle. The idea of memetic algorithm comes from memes, which unlike genes can adapt themselves. The performance of MSFLA has been shown more efficient than traditional evolutionary algorithms for such type of ELD problem. The application and validity of the proposed algorithm are demonstrated for IEEE 30 bus test system as well as a practical power network of 203 bus 264 lines 23 machines system.展开更多
In airborne gamma ray spectrum processing,different analysis methods,technical requirements,analysis models,and calculation methods need to be established.To meet the engineering practice requirements of airborne gamm...In airborne gamma ray spectrum processing,different analysis methods,technical requirements,analysis models,and calculation methods need to be established.To meet the engineering practice requirements of airborne gamma-ray measurements and improve computational efficiency,an improved shuffled frog leaping algorithm-particle swarm optimization convolutional neural network(SFLA-PSO CNN)for large-sample quantitative analysis of airborne gamma-ray spectra is proposed herein.This method was used to train the weight of the neural network,optimize the structure of the network,delete redundant connections,and enable the neural network to acquire the capability of quantitative spectrum processing.In full-spectrum data processing,this method can perform the functions of energy spectrum peak searching and peak area calculations.After network training,the mean SNR and RMSE of the spectral lines were 31.27 and 2.75,respectively,satisfying the demand for noise reduction.To test the processing ability of the algorithm in large samples of airborne gamma spectra,this study considered the measured data from the Saihangaobi survey area as an example to conduct data spectral analysis.The results show that calculation of the single-peak area takes only 0.13~0.15 ms,and the average relative errors of the peak area in the U,Th,and K spectra are 3.11,9.50,and 6.18%,indicating the high processing efficiency and accuracy of this algorithm.The performance of the model can be further improved by optimizing related parameters,but it can already meet the requirements of practical engineering measurement.This study provides a new idea for the full-spectrum processing of airborne gamma rays.展开更多
This work presents a memetic Shuffled Frog Leaping Algorithm(SFLA)based tuning approach of an Integral Sliding Mode Controller(ISMC)for a quadrotor type of Unmanned Aerial Vehicles(UAV).Based on the Newton–Euler form...This work presents a memetic Shuffled Frog Leaping Algorithm(SFLA)based tuning approach of an Integral Sliding Mode Controller(ISMC)for a quadrotor type of Unmanned Aerial Vehicles(UAV).Based on the Newton–Euler formalism,a nonlinear dynamic model of the studied quadrotor is firstly established for control design purposes.Since the main parameters of the ISMC design are the gains of the sliding surfaces and signum functions of the switching control law,which are usually selected by repetitive and time-consuming trials-errors based procedures,a constrained optimization problem is formulated for the systematically tuning of these unknown variables.Under time-domain operating constraints,such an optimization-based tuning problem is effectively solved using the proposed SFLA metaheuristic with an empirical comparison to other evolutionary computation-and swarm intelligence-based algorithms such as the Crow Search Algorithm(CSA),Fractional Particle Swarm Optimization Memetic Algorithm(FPSOMA),Ant Bee Colony(ABC)and Harmony Search Algorithm(HSA).Numerical experiments are carried out for various sets of algorithms’parameters to achieve optimal gains of the sliding mode controllers for the altitude and attitude dynamics stabilization.Comparative studies revealed that the SFLA is a competitive and easily implemented algorithm with high performance in terms of robustness and non-premature convergence.Demonstrative results verified that the proposed metaheuristicsbased approach is a promising alternative for the systematic tuning of the effective design parameters in the integral sliding mode control framework.展开更多
The dynamic weapon target assignment(DWTA)problem is of great significance in modern air combat.However,DWTA is a highly complex constrained multi-objective combinatorial optimization problem.An improved elitist non-d...The dynamic weapon target assignment(DWTA)problem is of great significance in modern air combat.However,DWTA is a highly complex constrained multi-objective combinatorial optimization problem.An improved elitist non-dominated sorting genetic algorithm-II(NSGA-II)called the non-dominated shuffled frog leaping algorithm(NSFLA)is proposed to maximize damage to enemy targets and minimize the self-threat in air combat constraints.In NSFLA,the shuffled frog leaping algorithm(SFLA)is introduced to NSGA-II to replace the inside evolutionary scheme of the genetic algorithm(GA),displaying low optimization speed and heterogeneous space search defects.Two improvements have also been raised to promote the internal optimization performance of SFLA.Firstly,the local evolution scheme,a novel crossover mechanism,ensures that each individual participates in updating instead of only the worst ones,which can expand the diversity of the population.Secondly,a discrete adaptive mutation algorithm based on the function change rate is applied to balance the global and local search.Finally,the scheme is verified in various air combat scenarios.The results show that the proposed NSFLA has apparent advantages in solution quality and efficiency,especially in many aircraft and the dynamic air combat environment.展开更多
Many-objective optimization problems take challenges to multi-objective evolutionary algorithms.A number of nondominated solutions in population cause a difficult selection towards the Pareto front.To tackle this issu...Many-objective optimization problems take challenges to multi-objective evolutionary algorithms.A number of nondominated solutions in population cause a difficult selection towards the Pareto front.To tackle this issue,a series of indicatorbased multi-objective evolutionary algorithms(MOEAs)have been proposed to guide the evolution progress and shown promising performance.This paper proposes an indicator-based manyobjective evolutionary algorithm calledε-indicator-based shuffled frog leaping algorithm(ε-MaOSFLA),which adopts the shuffled frog leaping algorithm as an evolutionary strategy and a simple and effectiveε-indicator as a fitness assignment scheme to press the population towards the Pareto front.Compared with four stateof-the-art MOEAs on several standard test problems with up to 50 objectives,the experimental results show thatε-MaOSFLA outperforms the competitors.展开更多
Both unit and integration testing are incredibly crucial for almost any software application because each of them operates a distinct process to examine the product.Due to resource constraints,when software is subject...Both unit and integration testing are incredibly crucial for almost any software application because each of them operates a distinct process to examine the product.Due to resource constraints,when software is subjected to modifications,the drastic increase in the count of test cases forces the testers to opt for a test optimization strategy.One such strategy is test case prioritization(TCP).Existing works have propounded various methodologies that re-order the system-level test cases intending to boost either the fault detection capabilities or the coverage efficacy at the earliest.Nonetheless,singularity in objective functions and the lack of dissimilitude among the re-ordered test sequences have degraded the cogency of their approaches.Considering such gaps and scenarios when the meteoric and continuous updations in the software make the intensive unit and integration testing process more fragile,this study has introduced a memetics-inspired methodology for TCP.The proposed structure is first embedded with diverse parameters,and then traditional steps of the shuffled-frog-leaping approach(SFLA)are followed to prioritize the test cases at unit and integration levels.On 5 standard test functions,a comparative analysis is conducted between the established algorithms and the proposed approach,where the latter enhances the coverage rate and fault detection of re-ordered test sets.Investigation results related to the mean average percentage of fault detection(APFD)confirmed that the proposed approach exceeds the memetic,basic multi-walk,PSO,and optimized multi-walk by 21.7%,13.99%,12.24%,and 11.51%,respectively.展开更多
Due to the drawbacks in Support Vector Machine(SVM)parameter optimization,an Improved Shuffled Frog Leaping Algorithm(Im-SFLA)was proposed,and the learning ability in practical speech emotion recognition was impro...Due to the drawbacks in Support Vector Machine(SVM)parameter optimization,an Improved Shuffled Frog Leaping Algorithm(Im-SFLA)was proposed,and the learning ability in practical speech emotion recognition was improved.Firstly,we introduced Simulated Annealing(SA),Immune Vaccination(Iv),Gaussian mutation and chaotic disturbance into the basic SFLA,which bManced the search efficiency and population diversity effectively.Secondly,Im-SFLA Was applied to the optimization of SVM parameters,and an Im-SFLA-SVM method Was proposed.Thirdly,the acoustic features of practical speech emotion,such aS ridgetiness,were analyzed.The pitch frequency,short-term energy,formant frequency and chaotic characteristics were analyzed corresponding to different emotion categories,and we constructed a 144-dimensional emotion feature vector for recognition and reduced to 4-dimension by adopting Linear Discriminant Analysis(LDA) Finally,the Im-SFLA-SVM method Was tested on the practical speech emotion database,and the recognition results were compared with Shuffled Frog Leaping Algorithm optimization-SVM(SFLA-SVM)method,Particle Swarm Optimization algorithm optimization-SVM(PSo-SVM) method,basic SVM,Gaussian Mixture Model(GMM)method and Back Propagation(BP)neural network method.The experimentM resuits showed that the average recognition rate of Im-SFLA-SVM method was 77.8%,which had improved 1.7%,2.7%,3.4%,4.7%and 7.8%respectively,compared with the other methods.The recognition of fidgetiness was significantly improve,thus verifying that Im-SFLA was an effective SVM parameter selection method,and the Im-SFLA-SVM method may significantly improve the practical speech emotion recognition.展开更多
针对接收信号强度(received signal strength,RSS)的时变性降低WLAN室内定位精度的问题,提出了一种基于核直接判别分析(kernel direct discriminant analysis,KDDA)和混洗蛙跳最小二乘支持向量回归机(SFLA-LSSVR)的定位算法,该算法通过...针对接收信号强度(received signal strength,RSS)的时变性降低WLAN室内定位精度的问题,提出了一种基于核直接判别分析(kernel direct discriminant analysis,KDDA)和混洗蛙跳最小二乘支持向量回归机(SFLA-LSSVR)的定位算法,该算法通过核函数策略将采集的各接入点(access point,AP)的RSS信号映射到非线性领域,有效提取了非线性定位特征,重组定位信息,去除冗余定位特征和噪声;然后采用LSSVR算法构建指纹点定位特征数据与物理位置的映射关系模型,采用SFLA算法优化该关系模型的参数,并用该关系模型对测试点的位置进行回归预测.实验结果表明:提出算法在相同的采样次数下的定位精度明显优于WKNN,ANN,LSSVR算法,并且在相同的定位精度下,采样次数较大减少,是一种性能良好的WLAN室内定位算法.展开更多
基金supported by the National Natural Science Foundation of China (61102106,61102105)the Fundamental Research Funds for the Central Universities (HEUCF100801,HEUCFZ1129)
文摘To solve discrete optimization difficulty of the spectrum allocation problem,a membrane-inspired quantum shuffled frog leaping(MQSFL) algorithm is proposed.The proposed MQSFL algorithm applies the theory of membrane computing and quantum computing to the shuffled frog leaping algorithm,which is an effective discrete optimization algorithm.Then the proposed MQSFL algorithm is used to solve the spectrum allocation problem of cognitive radio systems.By hybridizing the quantum frog colony optimization and membrane computing,the quantum state and observation state of the quantum frogs can be well evolved within the membrane structure.The novel spectrum allocation algorithm can search the global optimal solution within a reasonable computation time.Simulation results for three utility functions of a cognitive radio system are provided to show that the MQSFL spectrum allocation method is superior to some previous spectrum allocation algorithms based on intelligence computing.
基金supported in part by the National Natural Science Foundation of China(No.61304223)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20123218120015)the Fundamental Research Funds for the Central Universities(No.NZ2015206)
文摘To solve the flight control problem for unmanned hypersonic vehicles,a novel intelligent optimized control method is proposed.A flight control system based on integral separated proportional-integral-derivative(PID)control is designed for hypersonic vehicle,and an improved shuffled frog leaping algorithm is presented to optimize the control parameters.A nonlinear model of hypersonic vehicle is established to examine the dynamic characteristics achieved by the flight control system.Simulation results demonstrate that the proposed optimized controller can effectively achieve better flight control performance than the traditional controller.
文摘In the recent restructured power system scenario and complex market strategy, operation at absolute minimum cost is no longer the only criterion for dispatching electric power. The economic load dispatch (ELD) problem which accounts for minimization of both generation cost and power loss is itself a multiple conflicting objective function problem. In this paper, a modified shuffled frog-leaping algorithm (MSFLA), which is an improved version of memetic algorithm, is proposed for solving the ELD problem. It is a relatively new evolutionary method where local search is applied during the evolutionary cycle. The idea of memetic algorithm comes from memes, which unlike genes can adapt themselves. The performance of MSFLA has been shown more efficient than traditional evolutionary algorithms for such type of ELD problem. The application and validity of the proposed algorithm are demonstrated for IEEE 30 bus test system as well as a practical power network of 203 bus 264 lines 23 machines system.
基金the National Natural Science Foundation of China(No.42127807)Natural Science Foundation of Sichuan Province(Nos.23NSFSCC0116 and 2022NSFSC12333)the Nuclear Energy Development Project(No.[2021]-88).
文摘In airborne gamma ray spectrum processing,different analysis methods,technical requirements,analysis models,and calculation methods need to be established.To meet the engineering practice requirements of airborne gamma-ray measurements and improve computational efficiency,an improved shuffled frog leaping algorithm-particle swarm optimization convolutional neural network(SFLA-PSO CNN)for large-sample quantitative analysis of airborne gamma-ray spectra is proposed herein.This method was used to train the weight of the neural network,optimize the structure of the network,delete redundant connections,and enable the neural network to acquire the capability of quantitative spectrum processing.In full-spectrum data processing,this method can perform the functions of energy spectrum peak searching and peak area calculations.After network training,the mean SNR and RMSE of the spectral lines were 31.27 and 2.75,respectively,satisfying the demand for noise reduction.To test the processing ability of the algorithm in large samples of airborne gamma spectra,this study considered the measured data from the Saihangaobi survey area as an example to conduct data spectral analysis.The results show that calculation of the single-peak area takes only 0.13~0.15 ms,and the average relative errors of the peak area in the U,Th,and K spectra are 3.11,9.50,and 6.18%,indicating the high processing efficiency and accuracy of this algorithm.The performance of the model can be further improved by optimizing related parameters,but it can already meet the requirements of practical engineering measurement.This study provides a new idea for the full-spectrum processing of airborne gamma rays.
文摘This work presents a memetic Shuffled Frog Leaping Algorithm(SFLA)based tuning approach of an Integral Sliding Mode Controller(ISMC)for a quadrotor type of Unmanned Aerial Vehicles(UAV).Based on the Newton–Euler formalism,a nonlinear dynamic model of the studied quadrotor is firstly established for control design purposes.Since the main parameters of the ISMC design are the gains of the sliding surfaces and signum functions of the switching control law,which are usually selected by repetitive and time-consuming trials-errors based procedures,a constrained optimization problem is formulated for the systematically tuning of these unknown variables.Under time-domain operating constraints,such an optimization-based tuning problem is effectively solved using the proposed SFLA metaheuristic with an empirical comparison to other evolutionary computation-and swarm intelligence-based algorithms such as the Crow Search Algorithm(CSA),Fractional Particle Swarm Optimization Memetic Algorithm(FPSOMA),Ant Bee Colony(ABC)and Harmony Search Algorithm(HSA).Numerical experiments are carried out for various sets of algorithms’parameters to achieve optimal gains of the sliding mode controllers for the altitude and attitude dynamics stabilization.Comparative studies revealed that the SFLA is a competitive and easily implemented algorithm with high performance in terms of robustness and non-premature convergence.Demonstrative results verified that the proposed metaheuristicsbased approach is a promising alternative for the systematic tuning of the effective design parameters in the integral sliding mode control framework.
基金supported by the National Natural Science Foundation of China(61673209,71971115)。
文摘The dynamic weapon target assignment(DWTA)problem is of great significance in modern air combat.However,DWTA is a highly complex constrained multi-objective combinatorial optimization problem.An improved elitist non-dominated sorting genetic algorithm-II(NSGA-II)called the non-dominated shuffled frog leaping algorithm(NSFLA)is proposed to maximize damage to enemy targets and minimize the self-threat in air combat constraints.In NSFLA,the shuffled frog leaping algorithm(SFLA)is introduced to NSGA-II to replace the inside evolutionary scheme of the genetic algorithm(GA),displaying low optimization speed and heterogeneous space search defects.Two improvements have also been raised to promote the internal optimization performance of SFLA.Firstly,the local evolution scheme,a novel crossover mechanism,ensures that each individual participates in updating instead of only the worst ones,which can expand the diversity of the population.Secondly,a discrete adaptive mutation algorithm based on the function change rate is applied to balance the global and local search.Finally,the scheme is verified in various air combat scenarios.The results show that the proposed NSFLA has apparent advantages in solution quality and efficiency,especially in many aircraft and the dynamic air combat environment.
基金supported by the Shenzhen Innovation Technology Program(JCYJ20160422112909302)
文摘Many-objective optimization problems take challenges to multi-objective evolutionary algorithms.A number of nondominated solutions in population cause a difficult selection towards the Pareto front.To tackle this issue,a series of indicatorbased multi-objective evolutionary algorithms(MOEAs)have been proposed to guide the evolution progress and shown promising performance.This paper proposes an indicator-based manyobjective evolutionary algorithm calledε-indicator-based shuffled frog leaping algorithm(ε-MaOSFLA),which adopts the shuffled frog leaping algorithm as an evolutionary strategy and a simple and effectiveε-indicator as a fitness assignment scheme to press the population towards the Pareto front.Compared with four stateof-the-art MOEAs on several standard test problems with up to 50 objectives,the experimental results show thatε-MaOSFLA outperforms the competitors.
文摘Both unit and integration testing are incredibly crucial for almost any software application because each of them operates a distinct process to examine the product.Due to resource constraints,when software is subjected to modifications,the drastic increase in the count of test cases forces the testers to opt for a test optimization strategy.One such strategy is test case prioritization(TCP).Existing works have propounded various methodologies that re-order the system-level test cases intending to boost either the fault detection capabilities or the coverage efficacy at the earliest.Nonetheless,singularity in objective functions and the lack of dissimilitude among the re-ordered test sequences have degraded the cogency of their approaches.Considering such gaps and scenarios when the meteoric and continuous updations in the software make the intensive unit and integration testing process more fragile,this study has introduced a memetics-inspired methodology for TCP.The proposed structure is first embedded with diverse parameters,and then traditional steps of the shuffled-frog-leaping approach(SFLA)are followed to prioritize the test cases at unit and integration levels.On 5 standard test functions,a comparative analysis is conducted between the established algorithms and the proposed approach,where the latter enhances the coverage rate and fault detection of re-ordered test sets.Investigation results related to the mean average percentage of fault detection(APFD)confirmed that the proposed approach exceeds the memetic,basic multi-walk,PSO,and optimized multi-walk by 21.7%,13.99%,12.24%,and 11.51%,respectively.
基金supported by the National Nature Science Foundation(61231002,61273266,51075068)the Doctoral Fund of Ministry of Education of China(20110092130004)+1 种基金the Postdoctoral Fund of Ministry of Education of China(2012M520973)the Open Research Foundation of Key Laboratory(B) of Underwater Acoustic Signal Processing of Ministry of Education of Southeast University under Grant(UASP1202)
文摘Due to the drawbacks in Support Vector Machine(SVM)parameter optimization,an Improved Shuffled Frog Leaping Algorithm(Im-SFLA)was proposed,and the learning ability in practical speech emotion recognition was improved.Firstly,we introduced Simulated Annealing(SA),Immune Vaccination(Iv),Gaussian mutation and chaotic disturbance into the basic SFLA,which bManced the search efficiency and population diversity effectively.Secondly,Im-SFLA Was applied to the optimization of SVM parameters,and an Im-SFLA-SVM method Was proposed.Thirdly,the acoustic features of practical speech emotion,such aS ridgetiness,were analyzed.The pitch frequency,short-term energy,formant frequency and chaotic characteristics were analyzed corresponding to different emotion categories,and we constructed a 144-dimensional emotion feature vector for recognition and reduced to 4-dimension by adopting Linear Discriminant Analysis(LDA) Finally,the Im-SFLA-SVM method Was tested on the practical speech emotion database,and the recognition results were compared with Shuffled Frog Leaping Algorithm optimization-SVM(SFLA-SVM)method,Particle Swarm Optimization algorithm optimization-SVM(PSo-SVM) method,basic SVM,Gaussian Mixture Model(GMM)method and Back Propagation(BP)neural network method.The experimentM resuits showed that the average recognition rate of Im-SFLA-SVM method was 77.8%,which had improved 1.7%,2.7%,3.4%,4.7%and 7.8%respectively,compared with the other methods.The recognition of fidgetiness was significantly improve,thus verifying that Im-SFLA was an effective SVM parameter selection method,and the Im-SFLA-SVM method may significantly improve the practical speech emotion recognition.
文摘针对接收信号强度(received signal strength,RSS)的时变性降低WLAN室内定位精度的问题,提出了一种基于核直接判别分析(kernel direct discriminant analysis,KDDA)和混洗蛙跳最小二乘支持向量回归机(SFLA-LSSVR)的定位算法,该算法通过核函数策略将采集的各接入点(access point,AP)的RSS信号映射到非线性领域,有效提取了非线性定位特征,重组定位信息,去除冗余定位特征和噪声;然后采用LSSVR算法构建指纹点定位特征数据与物理位置的映射关系模型,采用SFLA算法优化该关系模型的参数,并用该关系模型对测试点的位置进行回归预测.实验结果表明:提出算法在相同的采样次数下的定位精度明显优于WKNN,ANN,LSSVR算法,并且在相同的定位精度下,采样次数较大减少,是一种性能良好的WLAN室内定位算法.