In this paper,the effect of the Si content on microstructure evolution,mechanical properties,and fracture behavior of the Al-xSi/AZ91D bimetallic composites prepared by compound casting was investigated systematically...In this paper,the effect of the Si content on microstructure evolution,mechanical properties,and fracture behavior of the Al-xSi/AZ91D bimetallic composites prepared by compound casting was investigated systematically.The obtained results showed that all the Al-xSi/AZ91D bimetallic composites had a metallurgical reaction layer(MRL),whose thickness increased with increasing Si content for the hypoeutectic Al-Si/AZ91D composites,while the hypereutectic Al-Si/AZ91D composites were opposite.The MRL included eutectic layer(E layer),intermetallic compound layer(IMC layer)and transition region layer(T layer).In the IMC layer,the hypereutectic Al-Si/AZ91D composites contained some Si solid solution and flocculent Mg_(2)Si+Al-Mg IMCs phases not presented in the hypoeutectic Al-Si/AZ91D composites.Besides,increasing Si content,the thickness proportion of the T layer increased,forming an inconsistent preferred orientation of the MRL.The shear strengths of the Al-xSi/AZ91D bimetallic composites enhanced with increasing Si content,and the Al-15Si/AZ91D composite obtained a maximum shear strength of 58.6 MPa,which was 73.4% higher than the Al-6Si/AZ91D composite.The fractures of the Al-xSi/AZ91D bimetallic composites transformed from the T layer into the E layer with the increase of the Si content.The improvement of the shear strength of the Al-xSi/AZ91D bimetallic composites was attributed to the synergistic action of the Mg_(2)Si particle reinforcement,the reduction of oxidizing inclusions and the ratio of Al-Mg IMCs as well as the orientation change of the MRL.展开更多
Aluminum-matrix boron carbide (B4Cp/Al) is a kind of neutron absorbing material widely used in nuclear spent fuel storage. In order to improve the tensile property of B4Cp/Al composites, a new type of nano-Al2O3 parti...Aluminum-matrix boron carbide (B4Cp/Al) is a kind of neutron absorbing material widely used in nuclear spent fuel storage. In order to improve the tensile property of B4Cp/Al composites, a new type of nano-Al2O3 particle (Al2O3np) reinforced B4Cp/Al + Al2O3np composites were prepared by powder metallurgy method. The Monte Carlo particle transport program (MCNP) was used to determine the influence of Al2O3np on the thermal neutron absorptivity of composites. The universal material testing machine and scanning electron microscope (SEM) were used to study the mechanical properties, microstructure and fracture morphology of B4Cp/Al composites. The results indicated that the neutron absorption properties of B4Cp/Al composites were not affected by the addition of nano-Al2O3 particles in the range of 1 wt%-15 wt%. The addition of Al2O3np can obviously reduce the grain size of B4Cp/Al matrix metals thus improve the tensile strength of the composites. The addition threshold of Al2O3np is about 2.5 wt%. Both B4Cp and Al2O3np change the fracture characteristics of the composites from toughness to brittleness, and the latter is more important.展开更多
The Al/Si/SiC composites with medium volume fraction for electronic packaging were fabricated by gas pressure infiltration.On the premise of keeping the machinability of the composites,the silicon carbide particles,wh...The Al/Si/SiC composites with medium volume fraction for electronic packaging were fabricated by gas pressure infiltration.On the premise of keeping the machinability of the composites,the silicon carbide particles,which have the similar size with silicon particles(average 13 μm),were added to replace silicon particles of same volume fraction,and microstructure and properties of the composites were investigated.The results show that reinforcing particles are distributed uniformly and no apparent pores are observed in the composites.It is also observed that higher thermal conductivity(TC) and flexural strength will be obtained with the addition of SiC particles.Meanwhile,coefficient of thermal expansion(CTE) changes smaller than TC.Models for predicting thermal properties were also discussed.Equivalent effective conductivity(EEC) was proposed to make H-J model suitable for hybrid particles and multimodal particle size distribution.展开更多
Si/Al composites with different Si contents for electronic packaging were prepared by spark plasma sintering (SPS) technique. Properties of the composites were investigated, including density, thermal conductivity, ...Si/Al composites with different Si contents for electronic packaging were prepared by spark plasma sintering (SPS) technique. Properties of the composites were investigated, including density, thermal conductivity, coefficient of thermal expansion and flexural strength. The effects of the Si content on microstructure and thermal and mechanical properties of the composites were studied. The results show that the Si/Al composites consist of Si and Al components and Al uniformly distributes among Si grains. The relative density of the Si/Al composites gradually increases with the decrease of Si content and reaches 98.0% when the Si content is 50%. The thermal conductivity, the coefficient of thermal expansion and the flexural strength of the composite all decrease with the increase of the Si content, and an optimal matching of them is obtained when the Si content is 60%(volume fraction).展开更多
In-situ 2 vol.%TiB2 particle reinforced Al−xSi−0.3Mg(x=7,9,12,15 wt.%)composites were prepared by the salt−metal reaction,and the microstructures and mechanical properties were investigated.The results show that the T...In-situ 2 vol.%TiB2 particle reinforced Al−xSi−0.3Mg(x=7,9,12,15 wt.%)composites were prepared by the salt−metal reaction,and the microstructures and mechanical properties were investigated.The results show that the TiB2 particles with a diameter of 20−80 nm and the eutectic Si with a length of 1−10μm are the main strengthening phases in the TiB2/Al−xSi−0.3Mg composites.The TiB2 particles promote grain refinement and modify the eutectic Si from needle-like to short-rod shape.However,the strengthening effect of TiB2 particles is weakened as the Si content exceeds the eutectic composition,which can be attributed to the formation of large and irregular primary Si.The axial tensile test results and fractography observations indicate that these composites show more brittle fracture characteristics than the corresponding alloy matrixes.展开更多
Al-Si metal matrix composites (MMCs) reinforced with 20 vol.% alumina-silicate shot fibers (Al2O3-SiO2(sf)) were fabricated by an infiltration squeeze method. Pure Pr metal was added into these composites. The effect ...Al-Si metal matrix composites (MMCs) reinforced with 20 vol.% alumina-silicate shot fibers (Al2O3-SiO2(sf)) were fabricated by an infiltration squeeze method. Pure Pr metal was added into these composites. The effect of Pr addition on the microstructure evolution of Al-Si MMCs was investigated by SEM,TEM,and EDS. Pr addition is favorable to make uniform microstructures with the modified eutectic Si crystal. PrAlSi phase with high contents of Pr and Si is observed on the interface between the fiber and the m...展开更多
The effect of high-speed direct-chill(DC) casting on the microstructure and mechanical properties of Al–Mg_2Si in situ composites and AA6061 alloy was investigated. The microstructural evolution of the Al–Mg_2Si com...The effect of high-speed direct-chill(DC) casting on the microstructure and mechanical properties of Al–Mg_2Si in situ composites and AA6061 alloy was investigated. The microstructural evolution of the Al–Mg_2Si composites and AA6061 alloy was examined by optical microscopy, field-emission scanning electron microscopy(FE-SEM) and transmission electron microscopy(TEM). The results revealed that an increase of the casting speed substantially refined the primary Mg_2Si particles(from 28 to 12 μm), the spacing of eutectic Mg_2Si(from 3 to 0.5 μm), and the grains of AA6061 alloy(from 102 to 22 μm). The morphology of the eutectic Mg_2Si transformed from lamellar to rod-like and fibrous with increasing casting speed. The tensile tests showed that the yield strength, tensile strength, and elongation improved at higher casting speeds because of refinement of the Mg_2Si phase and the grains in the Al–Mg_2Si composites and the AA6061 alloy. High-speed DC casting is demonstrated to be an effective method to improve the mechanical properties of Al–Mg_2Si composites and AA6061 alloy billets.展开更多
A Si-Al-lr oxidation resistant coating was prepared for SiC coated carbon/carbon composites by slurry dipping. The phase composition, microstructure and oxidation resistance of the as-prepared Si-Al-lr coating were st...A Si-Al-lr oxidation resistant coating was prepared for SiC coated carbon/carbon composites by slurry dipping. The phase composition, microstructure and oxidation resistance of the as-prepared Si-Al-lr coating were studied by XRD (X-ray diffraction), SEM (scanning electron microscopy), and isothermal oxidation test at 1773 K in air, respectively. The surface of the as-prepared Si-Al-lr coating was dense and the thickness was approximately 100 um. Its anti-oxidation property was superior to that of the inner SiC coating. The weight loss of SiC/Si- Al-lr coated carbon/carbon composites was less than 5 wt. pct after oxidation at 1773 K in air for 79 h. The local oxidation defects in the coating may result in the failure of the SiC/Si-Al-Ir coating.展开更多
The Al2O3-SiO2(sf)(volume fraction,20%)/Al-12.6Si metal matrix composites(MMCs)with or without rare earth Pr addition were fabricated by infiltration squeeze method.Effect of Pr addition on microstructures and fractog...The Al2O3-SiO2(sf)(volume fraction,20%)/Al-12.6Si metal matrix composites(MMCs)with or without rare earth Pr addition were fabricated by infiltration squeeze method.Effect of Pr addition on microstructures and fractographs of Al-Si MMCs was investigated by SEM and TEM.Tensile properties at room temperature and 200℃were tested.It is shown that the addition of Pr is favorable to produce uniform microstructures and modify the eutectic Si crystal effectively.Compounds/intermetallics with high content of Pr are formed at the interface between short fiber and matrix.Yield strength(σ 0.2 ),ultimate tensile strength(σ b)and fracture elongation of Al-Si MMCs are improved by adding suitable amount of Pr.Compared with those values of Al-Si based MMC at 200 ℃,σ 0.2 andσ bof MMC with 0.29%Pr are increased by 33%and 55%,respectively.The tensile fracture surface of Al-Si MMCs with Pr addition presents ductile fracture features.展开更多
The Al-Si alloy matrix composite reinforced by γ-Al2O3 particles was produced by adding NH4AlO(OH)HCO3(AACH) into molten Al-Si alloy at 850 ℃. During stirring γ-Al2O3 particles are formed by the decomposing reactio...The Al-Si alloy matrix composite reinforced by γ-Al2O3 particles was produced by adding NH4AlO(OH)HCO3(AACH) into molten Al-Si alloy at 850 ℃. During stirring γ-Al2O3 particles are formed by the decomposing reaction of AACH. It is found that the γ-Al2O3 particles distribute more uniformly in the matrix by adding AACH than by adding γ-Al2O3 directly. The wear tests show that the volume loss of the unreinforced Al-Si alloy matrix is about 3 times larger than that of the γ-Al2O3 reinforced composites and that of the composites fabricated by adding γ-Al2O3 is larger than that by adding AACH.展开更多
Effects of the volume fraction and the size of crystallized alumina silicate short fibers as well as heat treatment processes on micro-yield strength(MYS) of Al2O3-SiO2(sf)/Al-Si metal matrix composite(MMC) that was f...Effects of the volume fraction and the size of crystallized alumina silicate short fibers as well as heat treatment processes on micro-yield strength(MYS) of Al2O3-SiO2(sf)/Al-Si metal matrix composite(MMC) that was fabricated by squeezing cast, were investigated by using continuous loading method on an Instron 5569 tester with a special extensometer with an accuracy of 10?7. The results show that MYS of MMC decreases with the increase of volume fraction and length of the alumina silicate short fibers in the metal matrix composite, respectively. MYS of quenched Al2O3-SiO2(sf)/Al-Si MMC is the lowest, MYS of the MMC through peak-aging treatment is higher than that through other heat treatment methods. And before the peak-aging, MYS of MMC aging treated gradually increases with the increase of the aging time. Aging treatment after solution treatment is a preferred way that enhances micro and macro-yield strength of Al2O3-SiO2(sf)/Al-Si MMC.展开更多
High reinforcement content Al/Si composites were fabricated by pressure infiltration technology. The composites are free of porosity and silicon particles distribute uniformly in the composites. The properties and fra...High reinforcement content Al/Si composites were fabricated by pressure infiltration technology. The composites are free of porosity and silicon particles distribute uniformly in the composites. The properties and fracture behavior of the composites were studied. The composites fracture is aroused by silicon brittle fracture and extends to the composites inward through the metallurgical structure and fracture analysis. The thermal expansion behavior of the composites was investigated by a high-precision thermomechanical analyzer,and compared with the predictions of theoretical model. The mean linear coefficient of thermal expansion(CET) of Al/Si composites ranges from 8×10-6 to 10×10-6/ ℃ and decreases with increasing silicon volume fraction.展开更多
Al-18Si alloy reinforced with 15%,20% and 25%(volume fraction) SiC whiskers were prepared by squeeze casting technique and the solidification behavior and microstructure of as-prepared composites at different cooling ...Al-18Si alloy reinforced with 15%,20% and 25%(volume fraction) SiC whiskers were prepared by squeeze casting technique and the solidification behavior and microstructure of as-prepared composites at different cooling rates were studied by DSC,optical microscope,SEM and TEM.The results show that silicon phase is nucleated on SiC whiskers.With the increase of cooling rate,the degree of undercooling increases in the composites as well as in the alloys.The increase of cooling rate leads to a reduction in the size of eutectic Al-Si and also changes its morphology from short stick to equiaxed.However,the change of primary Si is complex.The primary Si size is refined,and then coarsened with increasing cooling rate.The primary Si morphology of composites changes from agglomerate to stick.展开更多
The composition, microstructures and properties of SiC /Al-2O-3/Al-Si composites formed by reactive penetration of the molten aluminum into the preforms of SiO-2 and SiC were investigated. The composition of the compo...The composition, microstructures and properties of SiC /Al-2O-3/Al-Si composites formed by reactive penetration of the molten aluminum into the preforms of SiO-2 and SiC were investigated. The composition of the composites was measured by X-ray diffraction (XRD). The microstructures of the composites were also measured by scanning electron microscopy (SEM) and optical microscopy. In addition, the factors affecting the properties of the composites were discussed.The experiments show that the mechanical properties of the composites depend on their relative densities and the sizes of the fillers“SiC grains".The denser the SiC/Al-2O-3/Al-Si composites,the higher their bending strength.As the filler “SiC grains" become fine,the bending strength of the composites increases.展开更多
The effects of Al 2O 3 fiber on wear characteristics of eutectic Al-Si alloy composites were studied using a pin-on-disk tester under dry sliding condition. The results show that the Al 2O 3 fiber can make matrix grai...The effects of Al 2O 3 fiber on wear characteristics of eutectic Al-Si alloy composites were studied using a pin-on-disk tester under dry sliding condition. The results show that the Al 2O 3 fiber can make matrix grain be fine, specially the eutectic Si be finer and prevent the plastic flow of matrix and prohibit the crack propagation in the wear layer, thereby it can remarkably improve the mechanical property and the wear resistance of the MMCs. Since Al 2O 3 fiber plays a role of certain framework in protecting the matrix against crash, it can eliminate the severe wear of MMCs with higher φ f of fiber from the beginning of test. At mild stage, when φ f is in the range of 8%~10%, the wear rates are the lowest. With increasing φ f of Al 2O 3 fiber, the wear mechanism of MMCs can be transformed from adhesive delamination to brittle breakaway.展开更多
Sip/1199,Sip/4032 and Sip/4019 environment-friendly composites for electronic packaging applications with high volume fraction of Si particles were fabricated by squeeze-casting technology. Effects of microstructure,p...Sip/1199,Sip/4032 and Sip/4019 environment-friendly composites for electronic packaging applications with high volume fraction of Si particles were fabricated by squeeze-casting technology. Effects of microstructure,particle volume fraction,particle size,matrix alloy and heat treatment on the electrical properties of composites were discussed,and the electrical conductivity was calculated by theoretical models. It is shown that the Si/Al interfaces are clean and do not have interface reaction products. For the same matrix alloy,the electrical conductivity of composites decreases with increasing the reinforcement volume fraction. As for the same particle content,the electrical conductivity of composites decreases with increasing the alloying element content of matrix. Particle size has little effects on the electrical conductivity. Electrical conductivity of composites increases slightly after annealing treatment. The electrical conductivity of composites calculated by P.G model is consistent with the experimental results.展开更多
In order to improve the thermal properties of MMCs for electronic packaging,the concept of fabrication MMCs with particular interpenetrating phases(IPCs) was proposed. Based on the diffusion theory of reinforcement el...In order to improve the thermal properties of MMCs for electronic packaging,the concept of fabrication MMCs with particular interpenetrating phases(IPCs) was proposed. Based on the diffusion theory of reinforcement element in matrix alloys of some particular PMMCs,a novel fabrication method to produce IPCs was proposed. The Si/Al composites(65%Si,volume fraction) with interpenetrating phases were fabricated successfully by squeeze casting and hot press sintering technology. Microstructure observations indicate that the reinforcements Si are of three-dimensional continuous network and the composites are compact without obvious defects. The average linear thermal expansion coefficient(CTE) between 20 ℃ and 100 ℃ of the Si/Al IPCs is 8.27×10-6/K,and the thermal conductivity(TC) is 124.03 W/(m·K),and the composites can meet the demands of electronic packaging. ROM model and Turner model can be used to predict the CTEs of IPCs,and the experimental CTEs are between their theoretical and calculated values.展开更多
SiCp/Al2O3-Al composites were synthesized by means of direct metal oxidation method. The composition and microstructures of the composites were investigated using X-ray diffraction (XRD), scanning electron microsco...SiCp/Al2O3-Al composites were synthesized by means of direct metal oxidation method. The composition and microstructures of the composites were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and metallurgical microscope. The effects of technical parameters on the properties of the product were analyzed. The results indicate that the composite possesses a dense microstructure, composed of three interpenetrated phases. Of them, SiO2 layer prohibits the powdering of the composites; Mg promotes the wetting and infiltration of the system and Si restricts the interfacial reaction while improving the wetting ability between reinforcement and matrix.展开更多
基金the supports provided by the National Natural Science Foundation of China(Nos.52075198 and 52271102)the China Postdoctoral Science Foundation(No.2021M691112)+1 种基金the State Key Lab of Advanced Metals and Materials(No.2021-ZD07)the Analytical and Testing Center,HUST。
文摘In this paper,the effect of the Si content on microstructure evolution,mechanical properties,and fracture behavior of the Al-xSi/AZ91D bimetallic composites prepared by compound casting was investigated systematically.The obtained results showed that all the Al-xSi/AZ91D bimetallic composites had a metallurgical reaction layer(MRL),whose thickness increased with increasing Si content for the hypoeutectic Al-Si/AZ91D composites,while the hypereutectic Al-Si/AZ91D composites were opposite.The MRL included eutectic layer(E layer),intermetallic compound layer(IMC layer)and transition region layer(T layer).In the IMC layer,the hypereutectic Al-Si/AZ91D composites contained some Si solid solution and flocculent Mg_(2)Si+Al-Mg IMCs phases not presented in the hypoeutectic Al-Si/AZ91D composites.Besides,increasing Si content,the thickness proportion of the T layer increased,forming an inconsistent preferred orientation of the MRL.The shear strengths of the Al-xSi/AZ91D bimetallic composites enhanced with increasing Si content,and the Al-15Si/AZ91D composite obtained a maximum shear strength of 58.6 MPa,which was 73.4% higher than the Al-6Si/AZ91D composite.The fractures of the Al-xSi/AZ91D bimetallic composites transformed from the T layer into the E layer with the increase of the Si content.The improvement of the shear strength of the Al-xSi/AZ91D bimetallic composites was attributed to the synergistic action of the Mg_(2)Si particle reinforcement,the reduction of oxidizing inclusions and the ratio of Al-Mg IMCs as well as the orientation change of the MRL.
基金Funded by Natural National Science Foundation of China(NSFC)(No.11305149)National High-Tech R&D Program(863 Program)(No.2013AA030704)。
文摘Aluminum-matrix boron carbide (B4Cp/Al) is a kind of neutron absorbing material widely used in nuclear spent fuel storage. In order to improve the tensile property of B4Cp/Al composites, a new type of nano-Al2O3 particle (Al2O3np) reinforced B4Cp/Al + Al2O3np composites were prepared by powder metallurgy method. The Monte Carlo particle transport program (MCNP) was used to determine the influence of Al2O3np on the thermal neutron absorptivity of composites. The universal material testing machine and scanning electron microscope (SEM) were used to study the mechanical properties, microstructure and fracture morphology of B4Cp/Al composites. The results indicated that the neutron absorption properties of B4Cp/Al composites were not affected by the addition of nano-Al2O3 particles in the range of 1 wt%-15 wt%. The addition of Al2O3np can obviously reduce the grain size of B4Cp/Al matrix metals thus improve the tensile strength of the composites. The addition threshold of Al2O3np is about 2.5 wt%. Both B4Cp and Al2O3np change the fracture characteristics of the composites from toughness to brittleness, and the latter is more important.
基金Project (60776019) supported by the National Natural Science Foundation of ChinaProject (61-TP-2010) supported by the Research Fund of the State Key Laboratory of Solidification Processing (NWPU),China
文摘The Al/Si/SiC composites with medium volume fraction for electronic packaging were fabricated by gas pressure infiltration.On the premise of keeping the machinability of the composites,the silicon carbide particles,which have the similar size with silicon particles(average 13 μm),were added to replace silicon particles of same volume fraction,and microstructure and properties of the composites were investigated.The results show that reinforcing particles are distributed uniformly and no apparent pores are observed in the composites.It is also observed that higher thermal conductivity(TC) and flexural strength will be obtained with the addition of SiC particles.Meanwhile,coefficient of thermal expansion(CTE) changes smaller than TC.Models for predicting thermal properties were also discussed.Equivalent effective conductivity(EEC) was proposed to make H-J model suitable for hybrid particles and multimodal particle size distribution.
基金Project (51374039) supported by the National Natural Science Foundation of ChinaProject (613135) supported by National Security Basic Research Program of China
文摘Si/Al composites with different Si contents for electronic packaging were prepared by spark plasma sintering (SPS) technique. Properties of the composites were investigated, including density, thermal conductivity, coefficient of thermal expansion and flexural strength. The effects of the Si content on microstructure and thermal and mechanical properties of the composites were studied. The results show that the Si/Al composites consist of Si and Al components and Al uniformly distributes among Si grains. The relative density of the Si/Al composites gradually increases with the decrease of Si content and reaches 98.0% when the Si content is 50%. The thermal conductivity, the coefficient of thermal expansion and the flexural strength of the composite all decrease with the increase of the Si content, and an optimal matching of them is obtained when the Si content is 60%(volume fraction).
基金The authors are grateful for the financial supports from the National Natural Science Foundation of China(51804349)the China Postdoctoral Science Foundation(2018M632986)the Natural Science Foundation of Hunan Province,China(2019JJ50766).
文摘In-situ 2 vol.%TiB2 particle reinforced Al−xSi−0.3Mg(x=7,9,12,15 wt.%)composites were prepared by the salt−metal reaction,and the microstructures and mechanical properties were investigated.The results show that the TiB2 particles with a diameter of 20−80 nm and the eutectic Si with a length of 1−10μm are the main strengthening phases in the TiB2/Al−xSi−0.3Mg composites.The TiB2 particles promote grain refinement and modify the eutectic Si from needle-like to short-rod shape.However,the strengthening effect of TiB2 particles is weakened as the Si content exceeds the eutectic composition,which can be attributed to the formation of large and irregular primary Si.The axial tensile test results and fractography observations indicate that these composites show more brittle fracture characteristics than the corresponding alloy matrixes.
文摘Al-Si metal matrix composites (MMCs) reinforced with 20 vol.% alumina-silicate shot fibers (Al2O3-SiO2(sf)) were fabricated by an infiltration squeeze method. Pure Pr metal was added into these composites. The effect of Pr addition on the microstructure evolution of Al-Si MMCs was investigated by SEM,TEM,and EDS. Pr addition is favorable to make uniform microstructures with the modified eutectic Si crystal. PrAlSi phase with high contents of Pr and Si is observed on the interface between the fiber and the m...
基金financially supported by the Science and Technology Program of Guangzhou,China(No.2015B090926013)Postdoctoral Science Foundation of China(No.2015M581348)+1 种基金Postdoctoral Science Foundation of Northeastern University(No.20150302)the Doctoral Foundation of Chinese Ministry of Education(No.20130042130001)
文摘The effect of high-speed direct-chill(DC) casting on the microstructure and mechanical properties of Al–Mg_2Si in situ composites and AA6061 alloy was investigated. The microstructural evolution of the Al–Mg_2Si composites and AA6061 alloy was examined by optical microscopy, field-emission scanning electron microscopy(FE-SEM) and transmission electron microscopy(TEM). The results revealed that an increase of the casting speed substantially refined the primary Mg_2Si particles(from 28 to 12 μm), the spacing of eutectic Mg_2Si(from 3 to 0.5 μm), and the grains of AA6061 alloy(from 102 to 22 μm). The morphology of the eutectic Mg_2Si transformed from lamellar to rod-like and fibrous with increasing casting speed. The tensile tests showed that the yield strength, tensile strength, and elongation improved at higher casting speeds because of refinement of the Mg_2Si phase and the grains in the Al–Mg_2Si composites and the AA6061 alloy. High-speed DC casting is demonstrated to be an effective method to improve the mechanical properties of Al–Mg_2Si composites and AA6061 alloy billets.
基金supported by the National "973"Project under grant No. 2006CB600908
文摘A Si-Al-lr oxidation resistant coating was prepared for SiC coated carbon/carbon composites by slurry dipping. The phase composition, microstructure and oxidation resistance of the as-prepared Si-Al-lr coating were studied by XRD (X-ray diffraction), SEM (scanning electron microscopy), and isothermal oxidation test at 1773 K in air, respectively. The surface of the as-prepared Si-Al-lr coating was dense and the thickness was approximately 100 um. Its anti-oxidation property was superior to that of the inner SiC coating. The weight loss of SiC/Si- Al-lr coated carbon/carbon composites was less than 5 wt. pct after oxidation at 1773 K in air for 79 h. The local oxidation defects in the coating may result in the failure of the SiC/Si-Al-Ir coating.
基金Project(2008B080703001)supported by Guangdong Provincial Science&Technology Breau,China
文摘The Al2O3-SiO2(sf)(volume fraction,20%)/Al-12.6Si metal matrix composites(MMCs)with or without rare earth Pr addition were fabricated by infiltration squeeze method.Effect of Pr addition on microstructures and fractographs of Al-Si MMCs was investigated by SEM and TEM.Tensile properties at room temperature and 200℃were tested.It is shown that the addition of Pr is favorable to produce uniform microstructures and modify the eutectic Si crystal effectively.Compounds/intermetallics with high content of Pr are formed at the interface between short fiber and matrix.Yield strength(σ 0.2 ),ultimate tensile strength(σ b)and fracture elongation of Al-Si MMCs are improved by adding suitable amount of Pr.Compared with those values of Al-Si based MMC at 200 ℃,σ 0.2 andσ bof MMC with 0.29%Pr are increased by 33%and 55%,respectively.The tensile fracture surface of Al-Si MMCs with Pr addition presents ductile fracture features.
基金Project(105055) supported by Key Project of Ministry of Education of China
文摘The Al-Si alloy matrix composite reinforced by γ-Al2O3 particles was produced by adding NH4AlO(OH)HCO3(AACH) into molten Al-Si alloy at 850 ℃. During stirring γ-Al2O3 particles are formed by the decomposing reaction of AACH. It is found that the γ-Al2O3 particles distribute more uniformly in the matrix by adding AACH than by adding γ-Al2O3 directly. The wear tests show that the volume loss of the unreinforced Al-Si alloy matrix is about 3 times larger than that of the γ-Al2O3 reinforced composites and that of the composites fabricated by adding γ-Al2O3 is larger than that by adding AACH.
基金Project(19972021)supported by the National Natural Science Foundation of China
文摘Effects of the volume fraction and the size of crystallized alumina silicate short fibers as well as heat treatment processes on micro-yield strength(MYS) of Al2O3-SiO2(sf)/Al-Si metal matrix composite(MMC) that was fabricated by squeezing cast, were investigated by using continuous loading method on an Instron 5569 tester with a special extensometer with an accuracy of 10?7. The results show that MYS of MMC decreases with the increase of volume fraction and length of the alumina silicate short fibers in the metal matrix composite, respectively. MYS of quenched Al2O3-SiO2(sf)/Al-Si MMC is the lowest, MYS of the MMC through peak-aging treatment is higher than that through other heat treatment methods. And before the peak-aging, MYS of MMC aging treated gradually increases with the increase of the aging time. Aging treatment after solution treatment is a preferred way that enhances micro and macro-yield strength of Al2O3-SiO2(sf)/Al-Si MMC.
文摘High reinforcement content Al/Si composites were fabricated by pressure infiltration technology. The composites are free of porosity and silicon particles distribute uniformly in the composites. The properties and fracture behavior of the composites were studied. The composites fracture is aroused by silicon brittle fracture and extends to the composites inward through the metallurgical structure and fracture analysis. The thermal expansion behavior of the composites was investigated by a high-precision thermomechanical analyzer,and compared with the predictions of theoretical model. The mean linear coefficient of thermal expansion(CET) of Al/Si composites ranges from 8×10-6 to 10×10-6/ ℃ and decreases with increasing silicon volume fraction.
文摘Al-18Si alloy reinforced with 15%,20% and 25%(volume fraction) SiC whiskers were prepared by squeeze casting technique and the solidification behavior and microstructure of as-prepared composites at different cooling rates were studied by DSC,optical microscope,SEM and TEM.The results show that silicon phase is nucleated on SiC whiskers.With the increase of cooling rate,the degree of undercooling increases in the composites as well as in the alloys.The increase of cooling rate leads to a reduction in the size of eutectic Al-Si and also changes its morphology from short stick to equiaxed.However,the change of primary Si is complex.The primary Si size is refined,and then coarsened with increasing cooling rate.The primary Si morphology of composites changes from agglomerate to stick.
文摘The composition, microstructures and properties of SiC /Al-2O-3/Al-Si composites formed by reactive penetration of the molten aluminum into the preforms of SiO-2 and SiC were investigated. The composition of the composites was measured by X-ray diffraction (XRD). The microstructures of the composites were also measured by scanning electron microscopy (SEM) and optical microscopy. In addition, the factors affecting the properties of the composites were discussed.The experiments show that the mechanical properties of the composites depend on their relative densities and the sizes of the fillers“SiC grains".The denser the SiC/Al-2O-3/Al-Si composites,the higher their bending strength.As the filler “SiC grains" become fine,the bending strength of the composites increases.
文摘The effects of Al 2O 3 fiber on wear characteristics of eutectic Al-Si alloy composites were studied using a pin-on-disk tester under dry sliding condition. The results show that the Al 2O 3 fiber can make matrix grain be fine, specially the eutectic Si be finer and prevent the plastic flow of matrix and prohibit the crack propagation in the wear layer, thereby it can remarkably improve the mechanical property and the wear resistance of the MMCs. Since Al 2O 3 fiber plays a role of certain framework in protecting the matrix against crash, it can eliminate the severe wear of MMCs with higher φ f of fiber from the beginning of test. At mild stage, when φ f is in the range of 8%~10%, the wear rates are the lowest. With increasing φ f of Al 2O 3 fiber, the wear mechanism of MMCs can be transformed from adhesive delamination to brittle breakaway.
基金Project (2003AA305110) supported by the Hi-tech Research and Development Program of ChinaProject (2005AA5CG041) supported by the Key-tech Research and Development Program of Harbin, China
文摘Sip/1199,Sip/4032 and Sip/4019 environment-friendly composites for electronic packaging applications with high volume fraction of Si particles were fabricated by squeeze-casting technology. Effects of microstructure,particle volume fraction,particle size,matrix alloy and heat treatment on the electrical properties of composites were discussed,and the electrical conductivity was calculated by theoretical models. It is shown that the Si/Al interfaces are clean and do not have interface reaction products. For the same matrix alloy,the electrical conductivity of composites decreases with increasing the reinforcement volume fraction. As for the same particle content,the electrical conductivity of composites decreases with increasing the alloying element content of matrix. Particle size has little effects on the electrical conductivity. Electrical conductivity of composites increases slightly after annealing treatment. The electrical conductivity of composites calculated by P.G model is consistent with the experimental results.
文摘In order to improve the thermal properties of MMCs for electronic packaging,the concept of fabrication MMCs with particular interpenetrating phases(IPCs) was proposed. Based on the diffusion theory of reinforcement element in matrix alloys of some particular PMMCs,a novel fabrication method to produce IPCs was proposed. The Si/Al composites(65%Si,volume fraction) with interpenetrating phases were fabricated successfully by squeeze casting and hot press sintering technology. Microstructure observations indicate that the reinforcements Si are of three-dimensional continuous network and the composites are compact without obvious defects. The average linear thermal expansion coefficient(CTE) between 20 ℃ and 100 ℃ of the Si/Al IPCs is 8.27×10-6/K,and the thermal conductivity(TC) is 124.03 W/(m·K),and the composites can meet the demands of electronic packaging. ROM model and Turner model can be used to predict the CTEs of IPCs,and the experimental CTEs are between their theoretical and calculated values.
基金National Natural Science Foundation of China (50372037)Scientific Research Foundations of Shaanxi University of Science and Technology (SUST-B14)
文摘SiCp/Al2O3-Al composites were synthesized by means of direct metal oxidation method. The composition and microstructures of the composites were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and metallurgical microscope. The effects of technical parameters on the properties of the product were analyzed. The results indicate that the composite possesses a dense microstructure, composed of three interpenetrated phases. Of them, SiO2 layer prohibits the powdering of the composites; Mg promotes the wetting and infiltration of the system and Si restricts the interfacial reaction while improving the wetting ability between reinforcement and matrix.