期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Interfacial photoconductivity effect of type-Ⅰ and type-Ⅱ Sb2Se3/Si heterojunctions for THz wave modulation
1
作者 曹雪芹 黄媛媛 +7 位作者 席亚妍 雷珍 王静 刘昊楠 史明坚 韩涛涛 张蒙恩 徐新龙 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第11期82-86,共5页
An in-depth understanding of the photoconductivity and photocarrier density at the interface is of great significance for improving the performance of optoelectronic devices. However, extraction of the photoconductivi... An in-depth understanding of the photoconductivity and photocarrier density at the interface is of great significance for improving the performance of optoelectronic devices. However, extraction of the photoconductivity and photocarrier density at the heterojunction interface remains elusive. Herein, we have obtained the photoconductivity and photocarrier density of 173 nm Sb2Se3/Si(type-Ⅰ heterojunction) and 90 nm Sb2Se3/Si(type-Ⅱ heterojunction) utilizing terahertz(THz) time-domain spectroscopy(THz-TDS) and a theoretical Drude model. Since type-Ⅰ heterojunctions accelerate carrier recombination and type-Ⅱ heterojunctions accelerate carrier separation, the photoconductivity and photocarrier density of the type-Ⅱ heterojunction(21.8×10^(4)S·m^(-1),1.5 × 10^(15)cm^(-3)) are higher than those of the type-Ⅰ heterojunction(11.8×10^(4)S·m^(-1),0.8×10^(15)cm^(-3)). These results demonstrate that a type-Ⅱ heterojunction is superior to a type-Ⅰ heterojunction for THz wave modulation. This work highlights THz-TDS as an effective tool for studying photoconductivity and photocarrier density at the heterojunction interface. In turn, the intriguing interfacial photoconductivity effect provides a way to improve the THz wave modulation performance. 展开更多
关键词 PHOTOCONDUCTIVITY Sb2 Se3/si heterojunctions THZ-TDS Drude model
下载PDF
Indium–tin oxide films obtained by DC magnetron sputtering for improved Si heterojunction solar cell applications 被引量:1
2
作者 谷锦华 司嘉乐 +3 位作者 王九秀 冯亚阳 郜小勇 卢景霄 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第11期502-505,共4页
The indium-tin oxide (ITO) film as the antireflection layer and front electrodes is of key importance to obtaining high efficiency Si heterojunction (HJ) solar cells. To obtain high transmittance and low resistivi... The indium-tin oxide (ITO) film as the antireflection layer and front electrodes is of key importance to obtaining high efficiency Si heterojunction (HJ) solar cells. To obtain high transmittance and low resistivity ITO films by direct-current (DC) magnetron sputtering, we studied the impacts of the ITO film deposition conditions, such as the oxygen flow rate, pressure, and sputter power, on the electrical and optical properties of the ITO films. ITO films of resistivity of 4 x 10-4 ~.m and average transmittance of 89% in the wavelength range of 380-780 nm were obtained under the optimized conditions: oxygen flow rate of 0.1 sccm, pressure of 0.8 Pa, and sputtering power of 110 W. These ITO films were used to fabricate the single-side HJ solar cell without an intrinsic a-Si:H layer. However, the best HJ solar cell was fabricated with a lower sputtering power of 95 W, which had an efficiency of 11.47%, an open circuit voltage (Voc) of 0.626 V, a filling factor (FF) of 0.50, and a short circuit current density (Jsc) of 36.4 mA/cm2. The decrease in the performance of the solar cell fabricated with high sputtering power of 110 W is attributed to the ion bombardment to the emitter. The Voc was improved to 0.673 V when a 5 nm thick intrinsic a-Si:H layer was inserted between the (p) a-Si:H and (n) c-Si layer. The higher Voc of 0.673 V for the single-side HJ solar cell implies the excellent c-Si surface passivation by a-Si:H. 展开更多
关键词 ITO films si heterojunction solar cell DC magnetron sputtering
下载PDF
Ge/Si heterojunction L-shape tunnel field-effect transistors with hetero-gate-dielectric
3
作者 李聪 闫志蕊 +2 位作者 庄奕琪 赵小龙 郭嘉敏 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第7期572-579,共8页
A Ge/Si heterojunction L-shaped tunnel field-effect transistor combined with hetero-gate-dielectric (GHL-TFET) is proposed and investigated by TCAD simulation. Current-voltage characteristics, energy-band diagrams, ... A Ge/Si heterojunction L-shaped tunnel field-effect transistor combined with hetero-gate-dielectric (GHL-TFET) is proposed and investigated by TCAD simulation. Current-voltage characteristics, energy-band diagrams, and the distri- bution of the band-to-band tunneling (BTBT) generation rate of GHL-TFET are analyzed. In addition, the effect of the vertical channel width on the ON-current is studied and the thickness of the gate dielectric is optimized for better suppression of ambipolar current. Moreover, analog/RF figure-of-merits of GHL-TFET are also investigated in terms of the cut-off frequency and gain bandwidth production. Simulation results indicate that the ON-current of GHL-TFET is increased by about three orders of magnitude compared with that of the conventional L-shaped TFET. Besides, the introduction of the hetero-gate-dielectric not only suppresses the ambipolar current effectively but also improves the analog/RF performance drastically. It is demonstrated that the maximum cut-off frequency of GHL-TFET is about 160 GHz, which is 20 times higher than that of the conventional L-shaped TFET. 展开更多
关键词 tunnel field-effect transistors Ge/si heterojunction hetero-gate-dielectric ambipolar effect
下载PDF
Temperature-dependent rectifying and photovoltaic characteristics of an oxygen-deficient Bi_2Sr_2Co_2O_y/Si heterojunction
4
作者 闫国英 白子龙 +5 位作者 李慧玲 傅广生 刘富强 于威 王江龙 王淑芳 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第10期500-503,共4页
A Bi2Sr2Co2Oy/Si heterojunction is obtained by growing a layer of p-type oxygen-deficient Bi2Sr2Co2Oy film on a commercial n-type silicon wafer by pulsed laser deposition. Its rectifying and photovoltaic properties ar... A Bi2Sr2Co2Oy/Si heterojunction is obtained by growing a layer of p-type oxygen-deficient Bi2Sr2Co2Oy film on a commercial n-type silicon wafer by pulsed laser deposition. Its rectifying and photovoltaic properties are studied in a wide temperature range from 20 K to 300 K. The transport mechanism under the forward bias can be attributed to a trap- filled space-charge-limited current conduction mechanism. Under the irradiation of a 532-nm continuous wave laser, a clear photovoltaic effect is observed and the magnitude ofphotovoltage increases as the temperature decreases, The results demonstrate the potential application of a Bi2SrzCo2Oy-based heterojunction in the photoelectronic devices. 展开更多
关键词 Bi2Sr2Co2Oy/si heterojunction rectifying characteristics photovoltaic effect space-charge-limited current
下载PDF
Sensitivity investigation of 100-MeV proton irradiation to SiGe HBT single event effect
5
作者 冯亚辉 郭红霞 +7 位作者 刘益维 欧阳晓平 张晋新 马武英 张凤祁 白如雪 马晓华 郝跃 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期554-562,共9页
The single event effect(SEE) sensitivity of silicon–germanium heterojunction bipolar transistor(Si Ge HBT) irradiated by 100-Me V proton is investigated. The simulation results indicate that the most sensitive positi... The single event effect(SEE) sensitivity of silicon–germanium heterojunction bipolar transistor(Si Ge HBT) irradiated by 100-Me V proton is investigated. The simulation results indicate that the most sensitive position of the Si Ge HBT device is the emitter center, where the protons pass through the larger collector-substrate(CS) junction. Furthermore, in this work the experimental studies are also carried out by using 100-Me V proton. In order to consider the influence of temperature on SEE, both simulation and experiment are conducted at a temperature of 93 K. At a cryogenic temperature, the carrier mobility increases, which leads to higher transient current peaks, but the duration of the current decreases significantly.Notably, at the same proton flux, there is only one single event transient(SET) that occurs at 93 K. Thus, the radiation hard ability of the device increases at cryogenic temperatures. The simulation results are found to be qualitatively consistent with the experimental results of 100-Me V protons. To further evaluate the tolerance of the device, the influence of proton on Si Ge HBT after gamma-ray(^(60)Coγ) irradiation is investigated. As a result, as the cumulative dose increases, the introduction of traps results in a significant reduction in both the peak value and duration of the transient currents. 展开更多
关键词 silicon–germanium heterojunction bipolar transistor(si Ge HBT) 100-Me V proton technology computer-aided design(TCAD) single event effect(SEE)
下载PDF
Research progress in improving the performance of PEDOT:PSS/Microand Nano-textured Si heterojunction for hybrid solar cells
6
作者 Guilu Lin Zhongliang Gao +5 位作者 Ting Gao Yongcong Chen Qi Geng Yingfeng Li Lei Chen Meicheng Li 《Journal of Materiomics》 SCIE EI 2021年第5期1161-1179,共19页
Silicon-based hybrid solar cells(HSCs),especially PEDOT:PSS/Si HSC,have attracted the interest of researchers because they combine the advantages of organic and inorganic materials.A high quality PEDOT:PSS/Si heteroju... Silicon-based hybrid solar cells(HSCs),especially PEDOT:PSS/Si HSC,have attracted the interest of researchers because they combine the advantages of organic and inorganic materials.A high quality PEDOT:PSS/Si heterojunction is the key to the good performance of PEDOT:PSS/Si HSC.However,as generally requisite to enhance light absorption for HSCs,Si Micro/Nano structures will reduce the interface contact quality between PEDOT:PSS and Si surface.The inferior interface contact quality will limit the separation efficiency of the photogenerated carriers.In this paper,we summarize the research progress in improving the interface contact between Si Micro/Nano structures and PEDOT:PSS film from three aspects:the optimization of Si Micro/Nano structures aimed to improve the fluid properties of PEDOT:PSS solution,the material modification of PEDOT:PSS and interface modification with the purpose to enlarge the heterojunction area and improve the electrical contact,and the specific deposition process of PEDOT:PSS solution developed to achieve the high filling rate of PEDOT:PSS on Si Micro/Nano structures.The insight of this paper is helpful for the preparation of high-quality heterojunction,which is vitally important for the development of high efficiency PEDOT:PSS/Si HSCs. 展开更多
关键词 PEDOT:PSS/si heterojunction si Micro/Nano structures Interface modification Deposition method of PEDOT:PSS
原文传递
CdS/Si nanofilm heterojunctions based on amorphous silicon films:Fabrication,structures,and electrical properties
7
作者 李勇 姬鹏飞 +3 位作者 宋月丽 周丰群 黄宏春 袁书卿 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第2期385-389,共5页
Shortening the distance between the depletion region and the electrodes to reduce the trapped probability of carriers is a useful approach for improving the performance of heterojunction.The CdS/Si nanofilm heterojunc... Shortening the distance between the depletion region and the electrodes to reduce the trapped probability of carriers is a useful approach for improving the performance of heterojunction.The CdS/Si nanofilm heterojunctions are fabricated by using the radio frequency magnetron sputtering method to deposit the amorphous silicon nanofilms and Cd S nanofilms on the ITO glass in turn.The relation of current density to applied voltage(I-V)shows the obvious rectification effect.From the analysis of the double logarithm I-V curve it follows that below~2.73 V the electron behaviors obey the Ohmic mechanism and above~2.73 V the electron behaviors conform to the space charge limited current(SCLC)mechanism.In the SCLC region part of the traps between the Fermi level and conduction band are occupied,and with the increase of voltage most of the traps are occupied.It is believed that Cd S/Si nanofilm heterojunction is a potential candidate in the field of nano electronic and optoelectronic devices by optimizing its fabricating procedure. 展开更多
关键词 magnetron sputtering CdS/si nanofilm heterojunctions electron behaviors SCLC mechanisms
下载PDF
Novel Si/SiC heterojunction lateral double-diffused metal-oxide semiconductor field-effect transistor with p-type buried layer breaking silicon limit
8
作者 段宝兴 黄鑫 +2 位作者 宋海涛 王彦东 杨银堂 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第4期605-609,共5页
A novel silicon carbide(SiC) on silicon(Si) heterojunction lateral double-diffused metal-oxide semiconductor fieldeffect transistor with p-type buried layer(PBL Si/SiC LDMOS) is proposed in this paper for the first ti... A novel silicon carbide(SiC) on silicon(Si) heterojunction lateral double-diffused metal-oxide semiconductor fieldeffect transistor with p-type buried layer(PBL Si/SiC LDMOS) is proposed in this paper for the first time.The heterojunction has breakdown point transfer(BPT) characteristics,and the BPT terminal technology is used to increase the breakdown voltage(BV) of Si/SiC LDMOS with the deep drain region.In order to further optimize the surface lateral electric field distribution of Si/SiC LDMOS with the deep drain region,the p-type buried layer is introduced in PBL Si/SiC LDMOS.The vertical electric field is optimized by Si/SiC heterojunction and the surface lateral electric field is optimized by the p-type buried layer,which greatly improves the BV of device and alleviates the relationship between BV and specific on-resistance(R_(on,sp)).Through TCAD simulation,when the drift region length is 20 μm,the BV is significantly improved from 249 V for the conventional Si LDMOS to 440 V for PBL Si/SiC LDMOS,increased by 77%;And the BV is improved from 384 V for Si/SiC LDMOS with the deep drain region to 440 V for the proposed structure,increased by 15%.The figure-of-merit(FOM) of the Si/SiC LDMOS with the deep drain region and PBL Si/SiC LDMOS are 4.26 MW/cm^(2) and 6.37 MW/cm^(2),respectively.For the PBL Si/SiC LDMOS with the drift length of 20 μm,the maximum FOM is 6.86 MW/cm^(2).The PBL Si/SiC LDMOS breaks conventional silicon limit. 展开更多
关键词 si/siC heterojunction LDMOS breakdown voltage specific on-resistance
下载PDF
Single-event response of the SiGe HBT in TCAD simulations and laser microbeam experiment 被引量:2
9
作者 李培 郭红霞 +7 位作者 郭旗 张晋新 肖尧 魏莹 崔江维 文林 刘默寒 王信 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第8期609-612,共4页
In this paper the single-event responses of the silicon germanium heterojunction bipolar transistors(SiGe HBTs) are investigated by TCAD simulations and laser microbeam experiment. A three-dimensional(3D) simulation m... In this paper the single-event responses of the silicon germanium heterojunction bipolar transistors(SiGe HBTs) are investigated by TCAD simulations and laser microbeam experiment. A three-dimensional(3D) simulation model is established, the single event effect(SEE) simulation is further carried out on the basis of Si Ge HBT devices, and then, together with the laser microbeam test, the charge collection behaviors are analyzed, including the single event transient(SET) induced transient terminal currents, and the sensitive area of SEE charge collection. The simulations and experimental results are discussed in detail and it is demonstrated that the nature of the current transient is controlled by the behaviors of the collector–substrate(C/S) junction and charge collection by sensitive electrodes, thereby giving out the sensitive area and electrode of SiGe HBT in SEE. 展开更多
关键词 si Ge heterojunction bipolar transistor single event effect three-dimensional numerical simulation laser microbeam experiment
下载PDF
Thermal studies of individual Si/Ge heterojunctions--The influence of the alloy layer on the heterojunction
10
作者 Sien Wang Dongchao Xu +2 位作者 Ramya Gurunathan G.Jeffrey Snyder Qing Hao 《Journal of Materiomics》 SCIE EI 2020年第2期248-255,共8页
Phonon transport across an interface is of fundamental importance to applications ranging from electronic and optical devices to thermoelectric materials.The phonon scattering by an interface can dramatically suppress... Phonon transport across an interface is of fundamental importance to applications ranging from electronic and optical devices to thermoelectric materials.The phonon scattering by an interface can dramatically suppress the thermal transport,which can benefit thermoelectric applications but create problems for the thermal management of electronic/optical devices.In this aspect,existing molecular dynamics simulations on phonon transport across various interfaces are often based on estimates of atomic structures and are seldom compared with measurements on real interfaces.In this work,planar Si/Ge heterojunctions formed by film-wafer bonding are measured for the interfacial thermal resistance (R_(K)) that is further compared with predictions from existing simulations and analytical models.The twist angle between a 70-nm-thick Si film and a Ge wafer is varied to check the influence of the crystal misorientation.Detailed transmission electron microscopy studies are carried out to better understand the interfacial atomic structure.It is found that the alloyed interfacial layer with mixed Si and Ge atoms dominates the measured thermal resistance(R_(K)).Some oxygen impurities may also help to increase RK due to the formation of glassy structures.Following this,RK reduction should be focused on how to minimize the interdiffusion of Si and Ge atoms during the formation of a Si/Ge heterojunction. 展开更多
关键词 Thermal boundary resistance si/Ge heterojunction Film-wafer bonding PHONON
原文传递
Ga/GaSb nanostructures:Solution-phase growth for highperformance infrared photodetection
11
作者 Huanran Li Su You +3 位作者 Yongqiang Yu Lin Ma Li Zhang Qing Yang 《Nano Research》 SCIE EI CSCD 2023年第2期3304-3311,共8页
Gallium antimonide(GaSb)-based nanostructures have been reported via various vapor-phase synthetic routes while there is not a report on the growth of GaSb nanostructures via a complete one-step solution-phase synthet... Gallium antimonide(GaSb)-based nanostructures have been reported via various vapor-phase synthetic routes while there is not a report on the growth of GaSb nanostructures via a complete one-step solution-phase synthetic strategy.Herein we report the design and synthesis of tadpole-like Ga/GaSb nanostructures by a one-step solution-phase synthetic route typically from the precursors of commercial triphenyl antimony(Sb(Ph)_(3))and trimethylaminogallium(Ga(NMe_(2))_(3))at 260°C in 1-octadecene.The GaSb nanocrystals are grown based on a solution–liquid–solid(SLS)mechanism with zinc blende phase,and their size and shape can be controlled in the procedures via manipulating the reaction conditions.Meanwhile,the tadpole-like Ga/GaSb nanostructures can be applied for the fabrication of a GaSb/Si nanostructured heterojunction-like photodetector over silicon wafer,which demonstrates excellent photoresponse and detection performances from wavelength of 405 to 1,064 nm with high photoresponding rate.Typically,the photodetector exhibits a high responsivity of 18.9 A·W^(−1),a superior detectivity of 1.1×10^(13)Jones,and an ultrafast response speed of 44 ns.The present work provides a new strategy to group III–V antimonide-based semiconducting nanostructures that are capable for the fabrication of photodetector with broadband,high-detectivity,and high-speed photodetecting performances. 展开更多
关键词 Ga/GaSb nanostructure metal-semiconductor heterojunction narrow bandgap semiconductor solution-liquid-solid(SLS)growth model GaSb/si heterojunction photodetector hybrid nanostructured photodetector infrared photodetection
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部