The geometric, electronic, and photoabsorption properties of some hydrogenated silicon clusters are investigated. The density functional theory with generalized gradient approximation fimctional is applied. Our study ...The geometric, electronic, and photoabsorption properties of some hydrogenated silicon clusters are investigated. The density functional theory with generalized gradient approximation fimctional is applied. Our study shows that the geometric structures of them relax with their increasing sizes. Synchronously, the polarizations of Si-H bonds become weak slowly but overlap populations increase. In Mulliken population analysis, we find a distinctive passivation effect (some electrons are transferred from outer Si atoms to the central Si with four-coordinate Si atoms). Owing to the quantum confinement, the energy gap and the lowest excitation energy increase with the decreasing sizes. For nanometer scale cluster, the transition from the highest occupied molecular orbital to the lowest unoccupied molecular orbital state is usually prohibited.展开更多
Density functional theory B3LYP/6-311 G* method was used in the geometry optimization and frequency calculation on Si5X (X = Li, Be, B, C, N, O, E Na, Mg, Al, Si, P, S, Cl) clusters. The influence of the doped seco...Density functional theory B3LYP/6-311 G* method was used in the geometry optimization and frequency calculation on Si5X (X = Li, Be, B, C, N, O, E Na, Mg, Al, Si, P, S, Cl) clusters. The influence of the doped second and third period element impurities on the structure and stability of Si5X clusters with C2p symmetry has been investigated, and the thermal stability and dynamic activity have also been discussed.展开更多
The density functional theory B3LYP/6-311g* method is used in the geometry optimization and frequency calculation on Si4X (X = Li, Be, B, C, N, O, F) clusters. The equi- librium structures of these clusters are quas...The density functional theory B3LYP/6-311g* method is used in the geometry optimization and frequency calculation on Si4X (X = Li, Be, B, C, N, O, F) clusters. The equi- librium structures of these clusters are quasi-trigonal bipyramidal structures with C2v symmetry. The periodicity of their thermal stabilities and vibration spectra has been discussed. The influence of the inserted second period element impurities for the structures and stabilities of the Si5 clusters have also been investigated.展开更多
The geometric and electronic properties of some hydrogenated silicon clusters in the presence of oxygen on the surface have been investigated.The density functional theory with generalized gradient approximation funct...The geometric and electronic properties of some hydrogenated silicon clusters in the presence of oxygen on the surface have been investigated.The density functional theory with generalized gradient approximation functional was applied in our calculations.By calculating the total energy,the double bond Si=O is shown to be more stable than the bridge bond Si-O-Si for large size oxidized clusters.The results of Mulliken population analysis indicate that a so-called passivation effect is enhanced by oxidization effects.From the energy band structures and density of states,we find that some localized states are induced by the p-orbital of O atom mainly and reduce the energy gaps substantially.展开更多
Several important equilibrium Si isotope fractionation factors among minerals,organic molecules and the H_4SiO_4 solution are complemented to facilitate the explanation of the distributions of Si isotopes in Earth'...Several important equilibrium Si isotope fractionation factors among minerals,organic molecules and the H_4SiO_4 solution are complemented to facilitate the explanation of the distributions of Si isotopes in Earth's surface environments.The results reveal that,in comparison to aqueous H_4SiO_4,heavy Si isotopes will be significantly enriched in secondary silicate minerals.On the contrary,quadra-coordinated organosilicon complexes are enriched in light silicon isotope relative to the solution.The extent of ^(28)Si-enrichment in hyper-coordinated organosilicon complexes was found to be the largest.In addition,the large kinetic isotope effect associated with the polymerization of monosilicic acid and dimer was calculated,and the results support the previous statement that highly ^(28)Sienrichment in the formation of amorphous quartz precursor contributes to the discrepancy between theoretical calculations and field observations.With the equilibrium Si isotope fractionation factors provided here,Si isotope distributions in many of Earth's surface systems can be explained.For example,the change of bulk soil δ^(30)Si can be predicted as a concave pattern with respect to the weathering degree,with the minimum value where allophane completely dissolves and the total amount of sesquioxides and poorly crystalline minerals reaches their maximum.When,under equilibrium conditions,the well-crystallized clays start to precipitate from the pore solutions,the bulk soil δ^(30)Si will increase again and reach a constant value.Similarly,the precipitation of crystalline smectite and the dissolution of poorly crystalline kaolinite may explain the δ^(30)Si variations in the ground water profile.The equilibrium Si isotope fractionations among the quadracoordinated organosilicon complexes and the H_4SiO_4solution may also shed light on the Si isotope distributions in the Si-accumulating plants.展开更多
Based on the density functional theory with generalized gradient approximation, the stable geometrical structures of one or more CO molecules adsorbed on the Al6Si cluster are investigated and the corresponding adsorp...Based on the density functional theory with generalized gradient approximation, the stable geometrical structures of one or more CO molecules adsorbed on the Al6Si cluster are investigated and the corresponding adsorption energies are also calculated. It is found that the cluster Al6Si can adsorb six CO molecules. The thermal stability of the(CO)6@Al6Si complexes is examined using the atom centered density matrix propagation molecular dynamics calculations at 373 K. The results show that two isomers of Al6Si cluster can solidly adsorb six CO molecules, and the other isomer adsorbs four ones. Therefore, the Al6Si cluster is a promising candidate for eliminating CO effectively.展开更多
We designed and optimized a large number of the isomers of Si12+ at the level of density functional theory (DFT)-B3LYP/6-311++G(d) using the Gaussian 03 software package. An unambiguous structure of the Si12+ ...We designed and optimized a large number of the isomers of Si12+ at the level of density functional theory (DFT)-B3LYP/6-311++G(d) using the Gaussian 03 software package. An unambiguous structure of the Si12+ cluster is presented, whose IR spectrum agrees well with the experiment result. The most stable geometric structures of Gen+(n=2―15) clusters were determined by the all-electron PBE/DND method in DMol3 of the Material Studio Package, and compared with those of the corresponding Sin+ geometries. Most structures of Gen+ and Sin+ are similar except the ones of those for n=9, 12, 13 and 14, and the pentagonal bipyramid motif and the tri-capped trigonal prism(TTP) motif often appear in the Sin+ and Gen+(n=7―15) structures(except for Si14+).展开更多
基金supported by the Hebei North University Foundation (No.200706)
文摘The geometric, electronic, and photoabsorption properties of some hydrogenated silicon clusters are investigated. The density functional theory with generalized gradient approximation fimctional is applied. Our study shows that the geometric structures of them relax with their increasing sizes. Synchronously, the polarizations of Si-H bonds become weak slowly but overlap populations increase. In Mulliken population analysis, we find a distinctive passivation effect (some electrons are transferred from outer Si atoms to the central Si with four-coordinate Si atoms). Owing to the quantum confinement, the energy gap and the lowest excitation energy increase with the decreasing sizes. For nanometer scale cluster, the transition from the highest occupied molecular orbital to the lowest unoccupied molecular orbital state is usually prohibited.
基金This work was supported by Foundation of Education Committee of Liaoning Province (No. 990321076)
文摘Density functional theory B3LYP/6-311 G* method was used in the geometry optimization and frequency calculation on Si5X (X = Li, Be, B, C, N, O, E Na, Mg, Al, Si, P, S, Cl) clusters. The influence of the doped second and third period element impurities on the structure and stability of Si5X clusters with C2p symmetry has been investigated, and the thermal stability and dynamic activity have also been discussed.
基金This work was supported by the Foundation of Education Committee of Liaoning Province (990321076)
文摘The density functional theory B3LYP/6-311g* method is used in the geometry optimization and frequency calculation on Si4X (X = Li, Be, B, C, N, O, F) clusters. The equi- librium structures of these clusters are quasi-trigonal bipyramidal structures with C2v symmetry. The periodicity of their thermal stabilities and vibration spectra has been discussed. The influence of the inserted second period element impurities for the structures and stabilities of the Si5 clusters have also been investigated.
基金supported by the major research program from the State Ministry of Science and Technology (No. 2009CB939901)
文摘The geometric and electronic properties of some hydrogenated silicon clusters in the presence of oxygen on the surface have been investigated.The density functional theory with generalized gradient approximation functional was applied in our calculations.By calculating the total energy,the double bond Si=O is shown to be more stable than the bridge bond Si-O-Si for large size oxidized clusters.The results of Mulliken population analysis indicate that a so-called passivation effect is enhanced by oxidization effects.From the energy band structures and density of states,we find that some localized states are induced by the p-orbital of O atom mainly and reduce the energy gaps substantially.
基金the funding support from the 973 Program(2014CB440904)CAS/SAFEA International Partnership Program for Creative Research Teams(Intraplate Mineralization Research Team,KZZD-EW-TZ-20)Chinese NSF projects(41173023,41225012,41490635,41530210)
文摘Several important equilibrium Si isotope fractionation factors among minerals,organic molecules and the H_4SiO_4 solution are complemented to facilitate the explanation of the distributions of Si isotopes in Earth's surface environments.The results reveal that,in comparison to aqueous H_4SiO_4,heavy Si isotopes will be significantly enriched in secondary silicate minerals.On the contrary,quadra-coordinated organosilicon complexes are enriched in light silicon isotope relative to the solution.The extent of ^(28)Si-enrichment in hyper-coordinated organosilicon complexes was found to be the largest.In addition,the large kinetic isotope effect associated with the polymerization of monosilicic acid and dimer was calculated,and the results support the previous statement that highly ^(28)Sienrichment in the formation of amorphous quartz precursor contributes to the discrepancy between theoretical calculations and field observations.With the equilibrium Si isotope fractionation factors provided here,Si isotope distributions in many of Earth's surface systems can be explained.For example,the change of bulk soil δ^(30)Si can be predicted as a concave pattern with respect to the weathering degree,with the minimum value where allophane completely dissolves and the total amount of sesquioxides and poorly crystalline minerals reaches their maximum.When,under equilibrium conditions,the well-crystallized clays start to precipitate from the pore solutions,the bulk soil δ^(30)Si will increase again and reach a constant value.Similarly,the precipitation of crystalline smectite and the dissolution of poorly crystalline kaolinite may explain the δ^(30)Si variations in the ground water profile.The equilibrium Si isotope fractionations among the quadracoordinated organosilicon complexes and the H_4SiO_4solution may also shed light on the Si isotope distributions in the Si-accumulating plants.
基金supported by the National Natural Science Foundation of China(Nos.NSFC-11574125 and NSFC-11374132)the Taishan Scholar Project of Shandong Province(ts201511055)
文摘Based on the density functional theory with generalized gradient approximation, the stable geometrical structures of one or more CO molecules adsorbed on the Al6Si cluster are investigated and the corresponding adsorption energies are also calculated. It is found that the cluster Al6Si can adsorb six CO molecules. The thermal stability of the(CO)6@Al6Si complexes is examined using the atom centered density matrix propagation molecular dynamics calculations at 373 K. The results show that two isomers of Al6Si cluster can solidly adsorb six CO molecules, and the other isomer adsorbs four ones. Therefore, the Al6Si cluster is a promising candidate for eliminating CO effectively.
基金Supported by the National Natural Science Foundation of China(Nos.20773047 and 21043001)
文摘We designed and optimized a large number of the isomers of Si12+ at the level of density functional theory (DFT)-B3LYP/6-311++G(d) using the Gaussian 03 software package. An unambiguous structure of the Si12+ cluster is presented, whose IR spectrum agrees well with the experiment result. The most stable geometric structures of Gen+(n=2―15) clusters were determined by the all-electron PBE/DND method in DMol3 of the Material Studio Package, and compared with those of the corresponding Sin+ geometries. Most structures of Gen+ and Sin+ are similar except the ones of those for n=9, 12, 13 and 14, and the pentagonal bipyramid motif and the tri-capped trigonal prism(TTP) motif often appear in the Sin+ and Gen+(n=7―15) structures(except for Si14+).