Mg films of various thicknesses were deposited on Si(111) substrates at room temperature by resistive thermal evaporation method, and then the Mg/Si samples were annealed at 40 ℃ for 4 h. The effects of Mg film thi...Mg films of various thicknesses were deposited on Si(111) substrates at room temperature by resistive thermal evaporation method, and then the Mg/Si samples were annealed at 40 ℃ for 4 h. The effects of Mg film thickness on the formation and structure of Mg2Si films were investigated. The results showed that the crystallization quality of Mg2Si films was strongly influenced by the thickness of Mg film. The XRD peak intensity of Mg2Si (220) gradually increased initially and then decreased with increasing Mg film thickness. The XRD peak intensity of Mg2Si (220) reached its maximum when the Mg film of 380 um was used. The thickness of the Mg2Si film annealed at 400℃ for 4 h was approximately 3 times of the Mg film.展开更多
Polycrystalline silicon (poly-Si) films were deposited using Ar diluted SiH4 gaseous mixture by electron cyclotron resonance plasma-enhanced chemical vapor deposition (ECR-PECVD). The effects of the substrate temp...Polycrystalline silicon (poly-Si) films were deposited using Ar diluted SiH4 gaseous mixture by electron cyclotron resonance plasma-enhanced chemical vapor deposition (ECR-PECVD). The effects of the substrate temperature on deposition rate, crystallinity, grain size and the configuration of H existing in poly-Si film were investigated. The results show that, comparing with H2 dilution, Ar dilution could significantly decrease the concentration of H on the growing surface. When the substrate temperature increased, the deposition rate increased and the concentration of H decreased monotonously, but the crystallinity and the grain size of poly-Si films exhibited sophisticated trends. It is proposed that the crystallinity of the films is determined by a competing balance of the self-diffusion activity of Si atoms and the deposition rate. At substrate temperature of 200℃, the deposited film exhibits the maximum poly-Si volume fraction of 79%. Based on these results, higher substrate temperature is suggested to prepare the poly-Si films with advanced stability and compromised crystallinity at high deposition rate.展开更多
In this paper, polycrystalline silicon films were deposited by electron cyclotron resonance plasma-enhanced chemical vapor deposition (ECR-PECVD) using SiH4/Ar and SiH4/H2 gaseous mixture. Effects of argon flow rate...In this paper, polycrystalline silicon films were deposited by electron cyclotron resonance plasma-enhanced chemical vapor deposition (ECR-PECVD) using SiH4/Ar and SiH4/H2 gaseous mixture. Effects of argon flow rate on the deposition efficiency and the film property were investigated by comparing with H2. The results indicated that the deposition rate of using Ar as discharge gas was 1.5-2 times higher than that of using H2, while the preferred orientations and the grain sizes of the films were analogous. Film crystallinity increased with the increase of Ar flow rate. Optimized flow ratio of SiH4 to Ar was obtained as F(SiH4): F(Ar)=10:70 for the highest deposition rate.展开更多
We have developed an apparatus for producing high-density hydrogen plasma. The atomic hydrogen density was 3.0 × 1021 m?3 at a pressure of 30 Pa, a microwave power of 1000 W, and a hydrogen gas flow rate of 5 scc...We have developed an apparatus for producing high-density hydrogen plasma. The atomic hydrogen density was 3.0 × 1021 m?3 at a pressure of 30 Pa, a microwave power of 1000 W, and a hydrogen gas flow rate of 5 sccm. We confirmed that the temperatures of tungsten films increased to above 1000?C within 5 s when they were exposed to hydrogen plasma formed using the apparatus. We applied this phenomenon to the selective heat treatment of tungsten films deposited on amorphous silicon films on glass substrates and formed polycrystalline silicon films. To utilize this method, we can perform the crystalline process only on device regions. TFTs were fabricated on the polycrystalline silicon films and the electron mobilities of 60 cm2/Vs were obtained.展开更多
We report the performances of a chalcopyrite Cu(In, Ga)Se<sub>2 </sub>CIGS-based thin-film solar cell with a newly employed high conductive n-Si layer. The data analysis was performed with the help of the ...We report the performances of a chalcopyrite Cu(In, Ga)Se<sub>2 </sub>CIGS-based thin-film solar cell with a newly employed high conductive n-Si layer. The data analysis was performed with the help of the 1D-Solar Cell Capacitance Simulator (1D-SCAPS) software program. The new device structure is based on the CIGS layer as the absorber layer, n-Si as the high conductive layer, i-In<sub>2</sub>S<sub>3</sub>, and i-ZnO as the buffer and window layers, respectively. The optimum CIGS bandgap was determined first and used to simulate and analyze the cell performance throughout the experiment. This analysis revealed that the absorber layer’s optimum bandgap value has to be 1.4 eV to achieve maximum efficiency of 22.57%. Subsequently, output solar cell parameters were analyzed as a function of CIGS layer thickness, defect density, and the operating temperature with an optimized n-Si layer. The newly modeled device has a p-CIGS/n-Si/In<sub>2</sub>S<sub>3</sub>/Al-ZnO structure. The main objective was to improve the overall cell performance while optimizing the thickness of absorber layers, defect density, bandgap, and operating temperature with the newly employed optimized n-Si layer. The increase of absorber layer thickness from 0.2 - 2 µm showed an upward trend in the cell’s performance, while the increase of defect density and operating temperature showed a downward trend in solar cell performance. This study illustrates that the proposed cell structure shows higher cell performances and can be fabricated on the lab-scale and industrial levels.展开更多
Using H 2 diluted silane,series of μc Si∶H films are fabricated at low temperature with VHF PECVD.The thickness measurements reveal that the deposition rates are obviously enhanced with higher plasma excitation ...Using H 2 diluted silane,series of μc Si∶H films are fabricated at low temperature with VHF PECVD.The thickness measurements reveal that the deposition rates are obviously enhanced with higher plasma excitation frequency or working pressure,but increase firstly and then decrease with the increase of plasma power density.Raman spectra show that the crystallinity and the average grain sizes of the films strongly depend on the temperature of substrate and the concentration of silane.However,the plasma excitation frequency only has effect on the crystallinity,and a maximum occurs during the further increase of plasma excitation frequency.From XRD and TEM experiments,three preferential crystalline orientations (111),(220) and (311) are observed,and the average grain sizes are different for every crystalline orientation.展开更多
Active control of the optical parameters in strontium titanate(SrTiO_(3),STO)thin films is highly desirable for tunable terahertz(THz)integrated devices such as filters,phase modulators,and electro-optical devices.In ...Active control of the optical parameters in strontium titanate(SrTiO_(3),STO)thin films is highly desirable for tunable terahertz(THz)integrated devices such as filters,phase modulators,and electro-optical devices.In this work,optically tuned dielectric parameters of a STO thin film epitaxially grown on a silicon wafer were characterized in the THz region with an 800 nm laser pump-THz detection system.The refractive index,extinction coefficient,and complex dielectric constant of the STO thin film were calculated using thin-film parameter extraction.Owing to carrier transportation and soft-mode oscillation,the above optical parameters changed notably with the pump power of the external laser.This study is of great significance for rapid and non-contact THz phase-modulation technology and may serve as a powerful tool to tune the dielectric properties of the STO thin films.展开更多
The properties of temperature dependence of conductivity σ of electron beam evaporated a-Si_(1-x)Gd_x films which was deposited on some substrates of glass and Al-foil at a substrate temperature of approximately 300...The properties of temperature dependence of conductivity σ of electron beam evaporated a-Si_(1-x)Gd_x films which was deposited on some substrates of glass and Al-foil at a substrate temperature of approximately 300℃ in a background pressure about 2×10^(-4) Pa with a deposition speed about 0.2 nm/s was analyzed and studied.The forms of Gd^(3+) ions in the films,the dangling bond compensation achieved by Gd^(3+) ions and the impurity states compensation achieved by structural disorder aroused by doping Gd ele- ment into a-Si film could be the key factors in resolving the properties of conduction in a-Si_(1-x)Gd_x films.In the temperature region of 290 K<T<500 K,an analysis of conductivity allows to reveal two conductivity regions:(1)conducting conduction of the carriers excited to conductive band,(2)hopping conduction of the carriers in the impurity band near E_F level thermo-excited.展开更多
Optical absorption properties of electron beam evaporated a-Si films(a-Si_(1-x)Gd_x films)are studied for various composition x.It is shown from the experimental results that variation of chemical composition in this ...Optical absorption properties of electron beam evaporated a-Si films(a-Si_(1-x)Gd_x films)are studied for various composition x.It is shown from the experimental results that variation of chemical composition in this kind of materials will lead to a change in near infrared absorption.For 0.1 at%<x<1.0 at%,the changes of op- tical absorption in the films are more sensitive.The optical band gap narrows with increasing content x from 1.52 to 1.36 eV.Doping Gd element properly will be able to compensate the dangling bonds in a-Si films to improve thermal stability and mechanical properties of a-Si films.展开更多
A film growth mechanism, expressed in terms of depositing hard films onto the soft substrate, was proposed. Multicomponent thin films of Ti-Si-N were deposited onto Al substrate with a double-target magnetron sputteri...A film growth mechanism, expressed in terms of depositing hard films onto the soft substrate, was proposed. Multicomponent thin films of Ti-Si-N were deposited onto Al substrate with a double-target magnetron sputtering system in an Ar-N 2 gas mixture. The Ti-Si-N films were investigated by characterization techniques such as X-ray diffraction (XRD), atomic force microscope (AFM), electron probe microanalyzer (EPMA), scratch test and nanoindentation. The as-deposited films have a good adhesion to Al substrate and appear with smooth and lustrous surface. The films show nanocomposite structure with nano TiN grains embedded in an amorphous SiN x matrix. The maximum hardness of the films was achieved as high as 27 GPa. The influences of the N 2 flow rate and substrate temperature on the growth rate and quality of the films were also discussed. For all samples, the Ar flow rate was maintained constant at 10 ml min 1 , while the flow rate of N 2 was varied to analyze the structural changes related to chemical composition and friction coefficient. The low temperature in the deposited Ti-Si-N films favors the formation of crystalline TiN, and it leads to a lower hardness at low N 2 flow rate. At the same time, the thin films deposited are all crystallized well and bonded firmly to Al substrate, with smooth and lustrous appearance and high hardness provided. The results indicate that magnetron sputtering is a promising method to deposit hard films onto soft substrate.展开更多
The CrN and Cr-Al-Si-N films were deposited on Si wafer and SUS 304 substrates by a hybrid coating system with high power impulse magnetron sputtering (HIPIMS) and a DC pulse sputtering using Cr and AlSi targets under...The CrN and Cr-Al-Si-N films were deposited on Si wafer and SUS 304 substrates by a hybrid coating system with high power impulse magnetron sputtering (HIPIMS) and a DC pulse sputtering using Cr and AlSi targets under N2/Ar atmosphere.By varying the sputtering current of the AlSi target in the range of 0-2.5 A,both the Al and Si contents in the films increased gradually from 0 to 19.1% and 11.1% (mole fraction),respectively.The influences of the AlSi cathode DC pulse current on the microstructure,phase constituents,mechanical properties,and oxidation behaviors of the Cr-Al-Si-N films were investigated systematically.The results indicate that the as-deposited Cr-Al-Si-N films possess the typical nanocomposite structure,namely the face centered cubic (Cr,Al)N nano-crystallites are embedded in the amorphous Si3N4 matrix.With increasing the Al and Si contents,the hardness of the film first increases from 20.8 GPa for the CrN film to the peak value of 29.4 GPa for the Cr0.23Al0.14Si0.07 N film,and then decreases gradually.In the meanwhile,the Cr0.23Al0.14Si0.07N film also possesses excellent high-temperature oxidation resistance that is much better than that of the CrN film at 900 or 1000 °C.展开更多
An effective and low-cost front-side anti-reflection(AR) technique has long been sought to enhance the performance of highly efficient photovoltaic devices due to its capability of maximizing the light absorption in p...An effective and low-cost front-side anti-reflection(AR) technique has long been sought to enhance the performance of highly efficient photovoltaic devices due to its capability of maximizing the light absorption in photovoltaic devices. In order to achieve high throughput fabrication of nanostructured flexible and anti-reflection films, large-scale, nano-engineered wafer molds were fabricated in this work. Additionally, to gain in-depth understanding of the optical and electrical performance enhancement with AR films on polycrystalline Si solar cells, both theoretical and experimental studies were performed. Intriguingly,the nanocone structures demonstrated an efficient light trapping effect which reduced the surface reflection of a solar cell by17.7% and therefore enhanced the overall electric output power of photovoltaic devices by 6% at normal light incidence. Notably, the output power improvement is even more significant at a larger light incident angle which is practically meaningful for daily operation of solar panels. The application of the developed AR films is not only limited to crystalline Si solar cells explored here, but also compatible with any types of photovoltaic technology for performance enhancement.展开更多
Anodized composite films containing Si C nanoparticles were synthesized on Ti6Al4 V alloy by anodic oxidation procedure in C4O6H4Na2 electrolyte. Scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) ...Anodized composite films containing Si C nanoparticles were synthesized on Ti6Al4 V alloy by anodic oxidation procedure in C4O6H4Na2 electrolyte. Scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) and X-ray photoelectron spectroscopy(XPS) were employed to characterize the morphology and composition of the films fabricated in the electrolytes with and without addition of Si C nanoparticles. Results show that Si C particles can be successfully incorporated into the oxide film during the anodizing process and preferentially concentrate within internal cavities and micro-cracks. The ball-on-disk sliding tests indicate that Si C-containing oxide films register much lower wear rate than the oxide films without Si C under dry sliding condition. Si C particles are likely to melt and then are oxidized by frictional heat during sliding tests. Potentiodynamic polarization behavior reveals that the anodized alloy with Si C nanoparticles results in a reduction in passive current density to about 1.54×10-8 A/cm2, which is more than two times lower than that of the Ti O2 film(3.73×10-8 A/cm2). The synthesized composite film has good anti-wear and anti-corrosion properties and the growth mechanism of nanocomposite film is also discussed.展开更多
Hydrogenated silicon (Si:H) thin films for application in solar ceils were deposited by using very high frequency plasma enhanced chemical vapour deposition (VHF PECVD) at a substrate temperature of about 170 ℃,...Hydrogenated silicon (Si:H) thin films for application in solar ceils were deposited by using very high frequency plasma enhanced chemical vapour deposition (VHF PECVD) at a substrate temperature of about 170 ℃, The electrical, structural, and optical properties of the films were investigated. The deposited films were then applied as i-layers for p-i-n single junction solar cells. The current-voltage (I - V) characteristics of the cells were measured before and after the light soaking. The results suggest that the films deposited near the transition region have an optimum properties for application in solar cells. The cell with an i-layer prepared near the transition region shows the best stable performance.展开更多
The indium-tin oxide (ITO) film as the antireflection layer and front electrodes is of key importance to obtaining high efficiency Si heterojunction (HJ) solar cells. To obtain high transmittance and low resistivi...The indium-tin oxide (ITO) film as the antireflection layer and front electrodes is of key importance to obtaining high efficiency Si heterojunction (HJ) solar cells. To obtain high transmittance and low resistivity ITO films by direct-current (DC) magnetron sputtering, we studied the impacts of the ITO film deposition conditions, such as the oxygen flow rate, pressure, and sputter power, on the electrical and optical properties of the ITO films. ITO films of resistivity of 4 x 10-4 ~.m and average transmittance of 89% in the wavelength range of 380-780 nm were obtained under the optimized conditions: oxygen flow rate of 0.1 sccm, pressure of 0.8 Pa, and sputtering power of 110 W. These ITO films were used to fabricate the single-side HJ solar cell without an intrinsic a-Si:H layer. However, the best HJ solar cell was fabricated with a lower sputtering power of 95 W, which had an efficiency of 11.47%, an open circuit voltage (Voc) of 0.626 V, a filling factor (FF) of 0.50, and a short circuit current density (Jsc) of 36.4 mA/cm2. The decrease in the performance of the solar cell fabricated with high sputtering power of 110 W is attributed to the ion bombardment to the emitter. The Voc was improved to 0.673 V when a 5 nm thick intrinsic a-Si:H layer was inserted between the (p) a-Si:H and (n) c-Si layer. The higher Voc of 0.673 V for the single-side HJ solar cell implies the excellent c-Si surface passivation by a-Si:H.展开更多
The preparation of LiNbO 3 films on Si substrates was improved by adding CH 3CH 2OH solution containing a little water to the sol of LiNb(OC 2H 5) 6. The crystallization behavior of LiNbO 3 films on Si (111) substrate...The preparation of LiNbO 3 films on Si substrates was improved by adding CH 3CH 2OH solution containing a little water to the sol of LiNb(OC 2H 5) 6. The crystallization behavior of LiNbO 3 films on Si (111) substrates was studied and completely c axis oriented LiNbO 3 films were obtained. Such factors as the hydrogen termination of silicon surface, the RTP annealing process used, the unidirectional heat flow and the preheating temperature were taken into consideration while the crystallization of c axis oriented films was analysed. Surface morphologies of the films annealed in RTP and conventional furnaces were observed by means of AFM.展开更多
基金Supported by the National Natural Science Foundation of China(No.61264004)the Special Fund for International Cooperation of the Ministry of Science and Technology of China(No.2008DFA52210)+5 种基金the Key Sci-Tech Research Project of Guizhou Province of China(No.20113015)the Special Fund for Construction of Sci-Tech Innovative Talents Team of Guizhou Province of China(No.20114002)the Fund for International Sci-Tech Cooperation of Guizhou Province of China(No.20127004)the National Natural Science Foundation of Guizhou Province of China(No.20112323)the Young Talents Training Project of Guizhou Province of China(No.2012152)the Introducing Talents Foundation for the Doctor of Guizhou University of China(No.2010032)
文摘Mg films of various thicknesses were deposited on Si(111) substrates at room temperature by resistive thermal evaporation method, and then the Mg/Si samples were annealed at 40 ℃ for 4 h. The effects of Mg film thickness on the formation and structure of Mg2Si films were investigated. The results showed that the crystallization quality of Mg2Si films was strongly influenced by the thickness of Mg film. The XRD peak intensity of Mg2Si (220) gradually increased initially and then decreased with increasing Mg film thickness. The XRD peak intensity of Mg2Si (220) reached its maximum when the Mg film of 380 um was used. The thickness of the Mg2Si film annealed at 400℃ for 4 h was approximately 3 times of the Mg film.
文摘Polycrystalline silicon (poly-Si) films were deposited using Ar diluted SiH4 gaseous mixture by electron cyclotron resonance plasma-enhanced chemical vapor deposition (ECR-PECVD). The effects of the substrate temperature on deposition rate, crystallinity, grain size and the configuration of H existing in poly-Si film were investigated. The results show that, comparing with H2 dilution, Ar dilution could significantly decrease the concentration of H on the growing surface. When the substrate temperature increased, the deposition rate increased and the concentration of H decreased monotonously, but the crystallinity and the grain size of poly-Si films exhibited sophisticated trends. It is proposed that the crystallinity of the films is determined by a competing balance of the self-diffusion activity of Si atoms and the deposition rate. At substrate temperature of 200℃, the deposited film exhibits the maximum poly-Si volume fraction of 79%. Based on these results, higher substrate temperature is suggested to prepare the poly-Si films with advanced stability and compromised crystallinity at high deposition rate.
文摘In this paper, polycrystalline silicon films were deposited by electron cyclotron resonance plasma-enhanced chemical vapor deposition (ECR-PECVD) using SiH4/Ar and SiH4/H2 gaseous mixture. Effects of argon flow rate on the deposition efficiency and the film property were investigated by comparing with H2. The results indicated that the deposition rate of using Ar as discharge gas was 1.5-2 times higher than that of using H2, while the preferred orientations and the grain sizes of the films were analogous. Film crystallinity increased with the increase of Ar flow rate. Optimized flow ratio of SiH4 to Ar was obtained as F(SiH4): F(Ar)=10:70 for the highest deposition rate.
文摘We have developed an apparatus for producing high-density hydrogen plasma. The atomic hydrogen density was 3.0 × 1021 m?3 at a pressure of 30 Pa, a microwave power of 1000 W, and a hydrogen gas flow rate of 5 sccm. We confirmed that the temperatures of tungsten films increased to above 1000?C within 5 s when they were exposed to hydrogen plasma formed using the apparatus. We applied this phenomenon to the selective heat treatment of tungsten films deposited on amorphous silicon films on glass substrates and formed polycrystalline silicon films. To utilize this method, we can perform the crystalline process only on device regions. TFTs were fabricated on the polycrystalline silicon films and the electron mobilities of 60 cm2/Vs were obtained.
文摘We report the performances of a chalcopyrite Cu(In, Ga)Se<sub>2 </sub>CIGS-based thin-film solar cell with a newly employed high conductive n-Si layer. The data analysis was performed with the help of the 1D-Solar Cell Capacitance Simulator (1D-SCAPS) software program. The new device structure is based on the CIGS layer as the absorber layer, n-Si as the high conductive layer, i-In<sub>2</sub>S<sub>3</sub>, and i-ZnO as the buffer and window layers, respectively. The optimum CIGS bandgap was determined first and used to simulate and analyze the cell performance throughout the experiment. This analysis revealed that the absorber layer’s optimum bandgap value has to be 1.4 eV to achieve maximum efficiency of 22.57%. Subsequently, output solar cell parameters were analyzed as a function of CIGS layer thickness, defect density, and the operating temperature with an optimized n-Si layer. The newly modeled device has a p-CIGS/n-Si/In<sub>2</sub>S<sub>3</sub>/Al-ZnO structure. The main objective was to improve the overall cell performance while optimizing the thickness of absorber layers, defect density, bandgap, and operating temperature with the newly employed optimized n-Si layer. The increase of absorber layer thickness from 0.2 - 2 µm showed an upward trend in the cell’s performance, while the increase of defect density and operating temperature showed a downward trend in solar cell performance. This study illustrates that the proposed cell structure shows higher cell performances and can be fabricated on the lab-scale and industrial levels.
文摘Using H 2 diluted silane,series of μc Si∶H films are fabricated at low temperature with VHF PECVD.The thickness measurements reveal that the deposition rates are obviously enhanced with higher plasma excitation frequency or working pressure,but increase firstly and then decrease with the increase of plasma power density.Raman spectra show that the crystallinity and the average grain sizes of the films strongly depend on the temperature of substrate and the concentration of silane.However,the plasma excitation frequency only has effect on the crystallinity,and a maximum occurs during the further increase of plasma excitation frequency.From XRD and TEM experiments,three preferential crystalline orientations (111),(220) and (311) are observed,and the average grain sizes are different for every crystalline orientation.
基金supported by the National Natural Science Foundation of China(Grant No.62075248)the National Key R&D Program of China(Grant Nos.2017YFB0405400 and 2020YFB2009300)the Program for the Innovation Team of Science and Technology in University of Henan,China(Grant No.20IRTSTHN014).
文摘Active control of the optical parameters in strontium titanate(SrTiO_(3),STO)thin films is highly desirable for tunable terahertz(THz)integrated devices such as filters,phase modulators,and electro-optical devices.In this work,optically tuned dielectric parameters of a STO thin film epitaxially grown on a silicon wafer were characterized in the THz region with an 800 nm laser pump-THz detection system.The refractive index,extinction coefficient,and complex dielectric constant of the STO thin film were calculated using thin-film parameter extraction.Owing to carrier transportation and soft-mode oscillation,the above optical parameters changed notably with the pump power of the external laser.This study is of great significance for rapid and non-contact THz phase-modulation technology and may serve as a powerful tool to tune the dielectric properties of the STO thin films.
文摘The properties of temperature dependence of conductivity σ of electron beam evaporated a-Si_(1-x)Gd_x films which was deposited on some substrates of glass and Al-foil at a substrate temperature of approximately 300℃ in a background pressure about 2×10^(-4) Pa with a deposition speed about 0.2 nm/s was analyzed and studied.The forms of Gd^(3+) ions in the films,the dangling bond compensation achieved by Gd^(3+) ions and the impurity states compensation achieved by structural disorder aroused by doping Gd ele- ment into a-Si film could be the key factors in resolving the properties of conduction in a-Si_(1-x)Gd_x films.In the temperature region of 290 K<T<500 K,an analysis of conductivity allows to reveal two conductivity regions:(1)conducting conduction of the carriers excited to conductive band,(2)hopping conduction of the carriers in the impurity band near E_F level thermo-excited.
文摘Optical absorption properties of electron beam evaporated a-Si films(a-Si_(1-x)Gd_x films)are studied for various composition x.It is shown from the experimental results that variation of chemical composition in this kind of materials will lead to a change in near infrared absorption.For 0.1 at%<x<1.0 at%,the changes of op- tical absorption in the films are more sensitive.The optical band gap narrows with increasing content x from 1.52 to 1.36 eV.Doping Gd element properly will be able to compensate the dangling bonds in a-Si films to improve thermal stability and mechanical properties of a-Si films.
基金supported by the Cultivation Fund of the Key Scientific and Technical Innovation Project and Ministry of Education of China (No. 707015)
文摘A film growth mechanism, expressed in terms of depositing hard films onto the soft substrate, was proposed. Multicomponent thin films of Ti-Si-N were deposited onto Al substrate with a double-target magnetron sputtering system in an Ar-N 2 gas mixture. The Ti-Si-N films were investigated by characterization techniques such as X-ray diffraction (XRD), atomic force microscope (AFM), electron probe microanalyzer (EPMA), scratch test and nanoindentation. The as-deposited films have a good adhesion to Al substrate and appear with smooth and lustrous surface. The films show nanocomposite structure with nano TiN grains embedded in an amorphous SiN x matrix. The maximum hardness of the films was achieved as high as 27 GPa. The influences of the N 2 flow rate and substrate temperature on the growth rate and quality of the films were also discussed. For all samples, the Ar flow rate was maintained constant at 10 ml min 1 , while the flow rate of N 2 was varied to analyze the structural changes related to chemical composition and friction coefficient. The low temperature in the deposited Ti-Si-N films favors the formation of crystalline TiN, and it leads to a lower hardness at low N 2 flow rate. At the same time, the thin films deposited are all crystallized well and bonded firmly to Al substrate, with smooth and lustrous appearance and high hardness provided. The results indicate that magnetron sputtering is a promising method to deposit hard films onto soft substrate.
基金supported by a 2-Year Research Grant of Pusan National University,Korea
文摘The CrN and Cr-Al-Si-N films were deposited on Si wafer and SUS 304 substrates by a hybrid coating system with high power impulse magnetron sputtering (HIPIMS) and a DC pulse sputtering using Cr and AlSi targets under N2/Ar atmosphere.By varying the sputtering current of the AlSi target in the range of 0-2.5 A,both the Al and Si contents in the films increased gradually from 0 to 19.1% and 11.1% (mole fraction),respectively.The influences of the AlSi cathode DC pulse current on the microstructure,phase constituents,mechanical properties,and oxidation behaviors of the Cr-Al-Si-N films were investigated systematically.The results indicate that the as-deposited Cr-Al-Si-N films possess the typical nanocomposite structure,namely the face centered cubic (Cr,Al)N nano-crystallites are embedded in the amorphous Si3N4 matrix.With increasing the Al and Si contents,the hardness of the film first increases from 20.8 GPa for the CrN film to the peak value of 29.4 GPa for the Cr0.23Al0.14Si0.07 N film,and then decreases gradually.In the meanwhile,the Cr0.23Al0.14Si0.07N film also possesses excellent high-temperature oxidation resistance that is much better than that of the CrN film at 900 or 1000 °C.
基金supported by National Natural Science Foundation of China(Project No.51672231)Shen Zhen Science and Technology Innovation Commission(Project No.JCYJ20170818114107730)+1 种基金Hong Kong Research Grant Council(General Research Fund Project Nos.16237816,16309018)the support from the Center for 1D/2D Quantum Materials and the State Key Laboratory on Advanced Displays and Optoelectronics at HKUST
文摘An effective and low-cost front-side anti-reflection(AR) technique has long been sought to enhance the performance of highly efficient photovoltaic devices due to its capability of maximizing the light absorption in photovoltaic devices. In order to achieve high throughput fabrication of nanostructured flexible and anti-reflection films, large-scale, nano-engineered wafer molds were fabricated in this work. Additionally, to gain in-depth understanding of the optical and electrical performance enhancement with AR films on polycrystalline Si solar cells, both theoretical and experimental studies were performed. Intriguingly,the nanocone structures demonstrated an efficient light trapping effect which reduced the surface reflection of a solar cell by17.7% and therefore enhanced the overall electric output power of photovoltaic devices by 6% at normal light incidence. Notably, the output power improvement is even more significant at a larger light incident angle which is practically meaningful for daily operation of solar panels. The application of the developed AR films is not only limited to crystalline Si solar cells explored here, but also compatible with any types of photovoltaic technology for performance enhancement.
基金Project(51271012)supported by the National Natural Science Foundation of China
文摘Anodized composite films containing Si C nanoparticles were synthesized on Ti6Al4 V alloy by anodic oxidation procedure in C4O6H4Na2 electrolyte. Scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) and X-ray photoelectron spectroscopy(XPS) were employed to characterize the morphology and composition of the films fabricated in the electrolytes with and without addition of Si C nanoparticles. Results show that Si C particles can be successfully incorporated into the oxide film during the anodizing process and preferentially concentrate within internal cavities and micro-cracks. The ball-on-disk sliding tests indicate that Si C-containing oxide films register much lower wear rate than the oxide films without Si C under dry sliding condition. Si C particles are likely to melt and then are oxidized by frictional heat during sliding tests. Potentiodynamic polarization behavior reveals that the anodized alloy with Si C nanoparticles results in a reduction in passive current density to about 1.54×10-8 A/cm2, which is more than two times lower than that of the Ti O2 film(3.73×10-8 A/cm2). The synthesized composite film has good anti-wear and anti-corrosion properties and the growth mechanism of nanocomposite film is also discussed.
文摘Hydrogenated silicon (Si:H) thin films for application in solar ceils were deposited by using very high frequency plasma enhanced chemical vapour deposition (VHF PECVD) at a substrate temperature of about 170 ℃, The electrical, structural, and optical properties of the films were investigated. The deposited films were then applied as i-layers for p-i-n single junction solar cells. The current-voltage (I - V) characteristics of the cells were measured before and after the light soaking. The results suggest that the films deposited near the transition region have an optimum properties for application in solar cells. The cell with an i-layer prepared near the transition region shows the best stable performance.
基金supported by the National High Technology Research and Development Program of China(Grant No.2011AA050501)
文摘The indium-tin oxide (ITO) film as the antireflection layer and front electrodes is of key importance to obtaining high efficiency Si heterojunction (HJ) solar cells. To obtain high transmittance and low resistivity ITO films by direct-current (DC) magnetron sputtering, we studied the impacts of the ITO film deposition conditions, such as the oxygen flow rate, pressure, and sputter power, on the electrical and optical properties of the ITO films. ITO films of resistivity of 4 x 10-4 ~.m and average transmittance of 89% in the wavelength range of 380-780 nm were obtained under the optimized conditions: oxygen flow rate of 0.1 sccm, pressure of 0.8 Pa, and sputtering power of 110 W. These ITO films were used to fabricate the single-side HJ solar cell without an intrinsic a-Si:H layer. However, the best HJ solar cell was fabricated with a lower sputtering power of 95 W, which had an efficiency of 11.47%, an open circuit voltage (Voc) of 0.626 V, a filling factor (FF) of 0.50, and a short circuit current density (Jsc) of 36.4 mA/cm2. The decrease in the performance of the solar cell fabricated with high sputtering power of 110 W is attributed to the ion bombardment to the emitter. The Voc was improved to 0.673 V when a 5 nm thick intrinsic a-Si:H layer was inserted between the (p) a-Si:H and (n) c-Si layer. The higher Voc of 0.673 V for the single-side HJ solar cell implies the excellent c-Si surface passivation by a-Si:H.
文摘The preparation of LiNbO 3 films on Si substrates was improved by adding CH 3CH 2OH solution containing a little water to the sol of LiNb(OC 2H 5) 6. The crystallization behavior of LiNbO 3 films on Si (111) substrates was studied and completely c axis oriented LiNbO 3 films were obtained. Such factors as the hydrogen termination of silicon surface, the RTP annealing process used, the unidirectional heat flow and the preheating temperature were taken into consideration while the crystallization of c axis oriented films was analysed. Surface morphologies of the films annealed in RTP and conventional furnaces were observed by means of AFM.