In order to improve the friction-wear properties of the C/C composites for aircraft brake pairs, the fric-tion behavior of samples with infiltrating Si was investigated. The influence of Si smearing thickness on frict...In order to improve the friction-wear properties of the C/C composites for aircraft brake pairs, the fric-tion behavior of samples with infiltrating Si was investigated. The influence of Si smearing thickness on frictionproperties was studied in detail. The results show that with the increase of Si smearing thickness and β-SiC content,the friction coefficient reduces from 0.40 to 0.30; the linear wear of stators increases from 2.0 μm to 18.9 μm percycle, and that of rotors increases from 1.4 μm to 22.6 μm per cycle; mass wear of stators increases from 20.6 mgto 126.9 mg per cycle, and that of rotors increases from 13.7 mg to 166.2 mg per cycle. On the other hand, whena large number of inhomogeneous β-SiC particulates are performed, friction surfaces of the samples flake off layer bylayer and many nicks are observed.展开更多
基金Project [1998(1817)] supported by the National High-Technology for Industrial Development of China
文摘In order to improve the friction-wear properties of the C/C composites for aircraft brake pairs, the fric-tion behavior of samples with infiltrating Si was investigated. The influence of Si smearing thickness on frictionproperties was studied in detail. The results show that with the increase of Si smearing thickness and β-SiC content,the friction coefficient reduces from 0.40 to 0.30; the linear wear of stators increases from 2.0 μm to 18.9 μm percycle, and that of rotors increases from 1.4 μm to 22.6 μm per cycle; mass wear of stators increases from 20.6 mgto 126.9 mg per cycle, and that of rotors increases from 13.7 mg to 166.2 mg per cycle. On the other hand, whena large number of inhomogeneous β-SiC particulates are performed, friction surfaces of the samples flake off layer bylayer and many nicks are observed.