期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Preparation of Ultrafine Si Powders from SiH_4 by Laser-induced Gas Phase Reaction
1
作者 Yali LI Yong LIANG +1 位作者 Kesheng XIAO Fen ZHENG and Zhuangqi HU(State Key Laboratory of Rapidly Solidified Nonequlibrium Alloys, Institute of Metal Research,Chinese Academy of Sciences, Shenyang, 110015, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1995年第1期71-74,共4页
High quality ultrafine Si powders have been synthesized from SiH4 by laser induced gas phase reaction. The powders prduced under different synthesis conditions have mean particle size of 10-120nm in diam. with narrow ... High quality ultrafine Si powders have been synthesized from SiH4 by laser induced gas phase reaction. The powders prduced under different synthesis conditions have mean particle size of 10-120nm in diam. with narrow particle size distribution, and free of hard agglomerates.The powders are polycrystalline with the ratio of mean grain to particle diameter being between 0.3-0.7. The size of the powder increases with increasing laser power and reaction pressure,but decreases with increasing silane gas flow rate and the addition of Ar diluent. Grain sizes drop distinctly with the rise of the addition of Ar gas and laser power, but change little with the gas flow rate and reaction temperature. The formation of Si particles under different synthesis conditions is discussed 展开更多
关键词 si Preparation of Ultrafine si powders from siH4 by Laser-induced Gas Phase Reaction FIGURE
下载PDF
Crystallization Behaviour of Laser Synthesized Nanometric Amorphous Si_3N_4 Powders
2
作者 Yali LI Yong LIANG Zhuangqi HU(National Key Lab. of Rapidly Solidified Nonequilibrium Alloys, Institute of Metal Research,Chinese Academy of Sciences, Shenyang, 110015, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1995年第3期187-191,共5页
The crystallization behaviour of the laser synthesized nanometric amorphous Si3N4 powders with the particle size of 15 nm in diameter has been studied between 1200° and 1700℃ by XRD,TEM and FTIR techniques. A sm... The crystallization behaviour of the laser synthesized nanometric amorphous Si3N4 powders with the particle size of 15 nm in diameter has been studied between 1200° and 1700℃ by XRD,TEM and FTIR techniques. A small amount of β-Si3N4 formed at 1250℃ and increased slowly until the α- β transformation happened at 1700℃, whereas α-Si3N4 appeared at 1300℃ andincreased rapidly between 1500-1600℃. The formation of β phase at the lower temperature was caused by the nitridation of free Si due to the preexisted β-nuclei in the Si3N4 particles, whereasthe α phase was formed by solid crystallization from the amorphous matrix. There were α and β SiC formed at 1700℃ due to the presence of Sio and Co gases in the system. FTIR analysis shows that two new IR absorption at 1356 and 1420 cm-1, and an overall strong absorption in wide wavenumber range resulted from the powders annealed at 1600 and 1700℃ respectively 展开更多
关键词 si AM Crystallization Behaviour of Laser Synthesized Nanometric Amorphous si3N4 powders OO
下载PDF
Preparation and Properties of Sintering Additives Coated Si_3N_4 from Heterogeneous Nucleation Processing 被引量:1
3
作者 Juxian ZHANG, Jinjun FENG and Longqiao GAOBeijing Vacuum Electronics Research Institute, 100016 Beijing, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2002年第1期34-36,共3页
The sintering additives such as Al2O3 and/or Y2O3 were coated on the surfaces of Si3N4 particles via heterogeneous nucleation processing using a buffered pH solution as the precipitation reagent. They nucleated and gr... The sintering additives such as Al2O3 and/or Y2O3 were coated on the surfaces of Si3N4 particles via heterogeneous nucleation processing using a buffered pH solution as the precipitation reagent. They nucleated and grew only on the surfaces of Si3N4 and did not form sol particles in solution by TEM observation. The isoelectric point (IEP) of coated Si3N4 was different from that of as-received Si3N4. The IEP of AI(OH)3-coated Si3N4 occurred at pH8.4, which is close to that of alumina. When AI(OH)3-coated Si3N4 particles were coated with Y(OH)3, the IEP of coated Si3N4 powder shifted from pH8.4 to pH9.2, similar to that of yttria. In addition, the rheological data showed that Al2O3 and/or Y2O3 coated Si3N4 suspension is nearly Newtonian and that added Si3N4 suspension shows a shear rate thinning behavior. 展开更多
关键词 si3N4 powder sintering additives Zeta potential Rheological property
下载PDF
DIELECTRIC PROPERTIES OF NANO Si/C/N COMPOSITE POWDER AND NANO SiC POWDER AT HIGH FREQUENCIES AND MICROSTRUCTURE CHARACTERIZATION 被引量:2
4
作者 D.L.Zhao, H.S.Zhao and W.C.Zhou State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1999年第5期1136-1141,共6页
The dielectric properties of nano Si/C/N composite powder and nano SiC powder at high frequencies have been studied. The nano Si/C/N composite powder and nano SiC powder were synthesized from hexamethyldisilazane ((Me... The dielectric properties of nano Si/C/N composite powder and nano SiC powder at high frequencies have been studied. The nano Si/C/N composite powder and nano SiC powder were synthesized from hexamethyldisilazane ((Me 3Si) 2NH) (Me:CH 3) and SiH 4 C 2H 2 respectively by a laser induced gas phase reaction. The complex permittivities of the nano Si/C/N composite powder and nano SiC powder were measured between 8 2GHz and 12 4GHz. The real and imaginary parts of the complex permittivities of nano Si/C/N composite powder are much higher than those of nano SiC powder. The SiC microcrystalline in the nano Si/C/N composite powder dissolved a great deal of nitrogen. The local structure around Si atoms changed by introducing N into SiC. Carbon atoms around Si were substituted by N atoms. So charged defects and quasi free electrons moved in response to the electric field, diffusion or polarization current resulted from the field propagation. The high ε″and loss factor tgδ(ε″/ε′) of Si/C/N composite powder were due to the dielectric relaxation. 展开更多
关键词 nano si/C/N composite powder nano siC powder dielectric properties MICROSTRUCTURE
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部