The structure of eight-carbon monolayers on the H-terminated Si(III) surface was investigated by molecular simulation method. The best substitution percent 50% for octene or octyne-derived monolayer can be obtained u...The structure of eight-carbon monolayers on the H-terminated Si(III) surface was investigated by molecular simulation method. The best substitution percent 50% for octene or octyne-derived monolayer can be obtained using molecular mechanics calculation. And the densely packed, well-ordered monolayer on Si(III) surface can be shown through energy minimization in the suitable-size simulation cell.展开更多
The adsorptions of a series of alkali metal (AM) atoms, Li, Na, K, Rb and Cs, on a Si(001)-2 × 2 surface at 0.25 monolayer coverage have been investigated systematically by means of density functional theory ...The adsorptions of a series of alkali metal (AM) atoms, Li, Na, K, Rb and Cs, on a Si(001)-2 × 2 surface at 0.25 monolayer coverage have been investigated systematically by means of density functional theory calculations. The effects of the size of AM atoms on the Si(001) surface are focused in the present work by examining the most stable adsorption site, diffusion path, band structure, charge transfer, and the change of work function for different adsorbates. Our results suggest that, when the interactions among AM atoms are neglectable, these AM atoms can be divided into three classes. For Li and Na atoms, they show unique site preferences, and correspond to the strongest and weakest AM-Si interactions, respectively. In particular, the band structure calculation indicates that the nature of Li-Si interaction differs significantly from others. For the adsorptions of other AM atoms with larger size (namely, K, Rb and Cs), the similarities in the atomic and electronic structures are observed, implying that the atom size has little influence on the adsorption behavior for these large AM atoms on the Si(001) surface.展开更多
First-principles calculations are carried out to study the relaxation of 6H-SiC (0001) surface and chemisorption models of Si adatoms on four high-symmetry adsorption sites. The surface results show that Si-terminat...First-principles calculations are carried out to study the relaxation of 6H-SiC (0001) surface and chemisorption models of Si adatoms on four high-symmetry adsorption sites. The surface results show that Si-termination is the preferred termination of the 6H-SiC(0001) polar surface and is more stable than the C-terminated 61-1- SiC(0001) polar surface over a wide range of allowed chemical potentials. Four stable atomic configurations (top, bridge, hcp and fcc) are considered, and the adsorption energies and geometries, Mulliken charge population, and partial density of state (PDOS) properties are analyzed. Adsorption energy results show that the top site is the most stable site. The structural properties of Si adsorption on the SiC (0001) surface shows that increasing stability means decreasing bond lengths. Charge populations analysis and PDOS results imply that there is strong interaction between Si adatoms and 6H-SiC (0001) surface.展开更多
We investigate the influence of A1 preflow time on surface morphology and quality of AIN and GaN. The AIN and GaN layers are grown on a Si (111) substrate by metal organic chemical vapor deposition. Scanning electro...We investigate the influence of A1 preflow time on surface morphology and quality of AIN and GaN. The AIN and GaN layers are grown on a Si (111) substrate by metal organic chemical vapor deposition. Scanning electron microscopy, atomic force microscopy, x-ray diffraction and optical microscopy are used for analysis. Consequently, we find significant differences in the epitaxial properties of AlN buffer and the GaN layer, which are dependent on the AI preflow time. A1 preflow layers act as nucleation sites in the case of AiN growth. Compact and uniform AIN nucleation sites are observed with optimizing A1 preflow at an early nucleation stage, which will lead to a smooth AIN surface. Trenches and AlN grain clusters appear on the AIN surface while meltoback etching occurs on the GaN surface with excessive A1 preflow. The GaN quality variation keeps a similar trend with the AIN quality, which is influenced by AI preflow. With an optimized duration orAl preflow, crystal quality and surface morphology of AIN and GaN could be improved.展开更多
We report the formation and local electronic structure of Ge clusters on the Si(111)-7×7 surface studied by using variable temperature scanning tunnelling microscopy (VT-STM) and low-temperature scanning tunn...We report the formation and local electronic structure of Ge clusters on the Si(111)-7×7 surface studied by using variable temperature scanning tunnelling microscopy (VT-STM) and low-temperature scanning tunnelling spectroscopy (STS). Atom-resolved STM images reveal that the Ce atoms are prone to forming clusters with 1.0 nm in diameter for coverage up to 0.12 ML. Such Ce clusters preferentially nucleate at the centre of the faulted-half unit cells, leading to the 'dark sites' of Si centre adatoms from the surrounding three unfaulted-half unit cells in filled-state images. Biasdependent STM images show the charge transfer from the neighbouring Si adatoms to Ce clusters. Low-temperature STS of the Ce clusters reveals that there is a band gap on the Ce cluster and the large voltage threshold is about 0.9 V.展开更多
Current-voltage electrical characteristics of Er silicide/Si(001) nanocontacts are measured in situ in a scanning tunneling microscopy system. Introduced as a new technique to suppress surface leakage conduction on...Current-voltage electrical characteristics of Er silicide/Si(001) nanocontacts are measured in situ in a scanning tunneling microscopy system. Introduced as a new technique to suppress surface leakage conduction on Si(001),a silver wetting layer is evaporated onto the substrate surface kept at room temperature with Er Si2 nanoislands already existing. The effects of the silver layer on the current-voltage characteristics of nanocontacts are discussed.Our experimental results reveal that the silver layer at coverage of 0.4–0.7 monolayer can suppress effectively the current contribution from the surface conduction path. After the surface leakage path of nanocontacts is obstructed, the ideality factor and the Schottky barrier height are determined using the thermionic emission theory, about 2 and 0.5 eV, respectively. The approach adopted here could shed light on the intrinsic transport properties of metal-semiconductor nanocontacts.展开更多
Within the framework of the density functional theory and the pseudopotential method,the electronic structure calculations of the“metal-Si(100)”systems with Li,Be and Al as metal coverings of one to four monolayers(...Within the framework of the density functional theory and the pseudopotential method,the electronic structure calculations of the“metal-Si(100)”systems with Li,Be and Al as metal coverings of one to four monolayers(ML)thickness,were carried out.Calculations showed that band gaps of 1.02 eV,0.98 eV and 0.5 eV,respectively,appear in the densities of electronic states when the thickness of Li,Be and Al coverings is one ML.These gaps disappear with increasing thickness of the metal layers:first in the Li-Si system(for two ML),then in the Al-Si system(for three ML)and then in the Be-Si system(for four ML).This behavior of the band gap can be explained by the passivation of the substrate surface states and the peculiarities of the electronic structure of the adsorbed metals.In common the results can be interpreted as describing the possibility of the formation of a two-dimensional silicide with semiconducting properties in Li-Si(100),Be-Si(100)and Al-Si(100)systems.展开更多
The selection of milling tools for Si C14Cu4Mg0.5Si based on Aluminium matrix 2A14 was analyzed, and the factors that affect the efficiency of the milling were discussed. The Si C14Cu4Mg0.5Si was designed for use on t...The selection of milling tools for Si C14Cu4Mg0.5Si based on Aluminium matrix 2A14 was analyzed, and the factors that affect the efficiency of the milling were discussed. The Si C14Cu4Mg0.5Si was designed for use on the moon landing vehicle or missile wings, but the hardness of aluminium-silicon carbide composite material was very high, much higher than the general hardness of cemented carbide, which will bring many difficulties in the aluminium-silicon carbide composite material processing. The chemical compositions of Si C14Cu4Mg0.5Si were analyzed. A new selected indexable cutter was designed to mill Si C14Cu4Mg0.5Si. The structure design of milling cutter was different from the conventional milling cutter, breaking the previous limitations to a certain extent, pioneering the idea. The tool material wear was detected by experiments. The mechanical and physical properties of Si C14Cu4Mg0.5Si were also tested. Si C14Cu4Mg0.5Si exhibited different surface quality characteristics under different milling tools.展开更多
FT IR, Raman microscopy, XRD, 29 Si and 27 Al MAS NMR, were used to investigate changes in surface properties of a natural illite sample after acid base potentiometric titration. The characteristic ...FT IR, Raman microscopy, XRD, 29 Si and 27 Al MAS NMR, were used to investigate changes in surface properties of a natural illite sample after acid base potentiometric titration. The characteristic XRD lines indicated the presence of surface Al Si complexes, preferable to Al(OH) 3 precipitates. In the microscopic Raman spectra, the vibration peaks of Si O and Al O bonds diminished as a result of treatment with acid, then increased after hydroxide back titration. The varied ratio of signal intensity between IV Al and VI Al species in 27 Al MAS NMR spectra, together with the stable BET surface area after acidimetric titration, suggested that edge faces and basal planes in the layer structure of illite participated in dissolution of structural components. The combined spectroscopic evidence demonstrated that the reactions between illite surfaces and acid leaching silicic acid and aluminum ions should be considered in the model description of surface acid base properties of the aqueous illite.展开更多
Si alloying in the surface layer of NdFeB magnets was realized by thermal diffusion combined with magnetron sputtering.The surface composition,phase structure and morphology of NdFeB(S-Si)specimens were characterized ...Si alloying in the surface layer of NdFeB magnets was realized by thermal diffusion combined with magnetron sputtering.The surface composition,phase structure and morphology of NdFeB(S-Si)specimens were characterized by an X-ray diffractometer,an X-ray photoelectron spectrometer and a field emission scanning electron microscope,respectively.The corrosion resistance of bare NdFeB(S-Si)was analyzed by static full immersion corrosion test and electrochemical experiments.Effects of sputtering and thermal diffusion on the microstructure and corrosion resistance of the surface layer were studied.Results show that surface alloying layer can effectively improve the corrosion resistance of bare NdFeB with the optimized static total immersion corrosion test time in NdFeB(1S-Si)-800 of 36 h,which is much longer than that of the pristine NdFeB(less than 0.5 h).The E_(corr)of NdFeB(1S-Si)-800 positively shifts from-1.05 to-0.92 V,indicating that the corrosion tendency is obviously lower.The J_(corr)is1.45×10^(-6)A/cm^(2)which is 2 orders of magnitude lower than that of the pristine NdFeB(5.25×10^(-4)A/cm^(2)).The intergranular composite oxides existing in Nd-rich phase contribute to the enhancement of corrosion resistance of Si-surface-alloying NdFeB.展开更多
基金supported by the National Natural Science Foundation of China (No.20173032).
文摘The structure of eight-carbon monolayers on the H-terminated Si(III) surface was investigated by molecular simulation method. The best substitution percent 50% for octene or octyne-derived monolayer can be obtained using molecular mechanics calculation. And the densely packed, well-ordered monolayer on Si(III) surface can be shown through energy minimization in the suitable-size simulation cell.
基金supported by the National Natural Science Foundation of China(21203027)Fuzhou University(2012-XQ-11)
文摘The adsorptions of a series of alkali metal (AM) atoms, Li, Na, K, Rb and Cs, on a Si(001)-2 × 2 surface at 0.25 monolayer coverage have been investigated systematically by means of density functional theory calculations. The effects of the size of AM atoms on the Si(001) surface are focused in the present work by examining the most stable adsorption site, diffusion path, band structure, charge transfer, and the change of work function for different adsorbates. Our results suggest that, when the interactions among AM atoms are neglectable, these AM atoms can be divided into three classes. For Li and Na atoms, they show unique site preferences, and correspond to the strongest and weakest AM-Si interactions, respectively. In particular, the band structure calculation indicates that the nature of Li-Si interaction differs significantly from others. For the adsorptions of other AM atoms with larger size (namely, K, Rb and Cs), the similarities in the atomic and electronic structures are observed, implying that the atom size has little influence on the adsorption behavior for these large AM atoms on the Si(001) surface.
基金Supported by the National Natural Science Foundation of China under Grant No 51177134
文摘First-principles calculations are carried out to study the relaxation of 6H-SiC (0001) surface and chemisorption models of Si adatoms on four high-symmetry adsorption sites. The surface results show that Si-termination is the preferred termination of the 6H-SiC(0001) polar surface and is more stable than the C-terminated 61-1- SiC(0001) polar surface over a wide range of allowed chemical potentials. Four stable atomic configurations (top, bridge, hcp and fcc) are considered, and the adsorption energies and geometries, Mulliken charge population, and partial density of state (PDOS) properties are analyzed. Adsorption energy results show that the top site is the most stable site. The structural properties of Si adsorption on the SiC (0001) surface shows that increasing stability means decreasing bond lengths. Charge populations analysis and PDOS results imply that there is strong interaction between Si adatoms and 6H-SiC (0001) surface.
基金Supported by the National Key Research and Development Program of China under Grant No 2016YFB0400200
文摘We investigate the influence of A1 preflow time on surface morphology and quality of AIN and GaN. The AIN and GaN layers are grown on a Si (111) substrate by metal organic chemical vapor deposition. Scanning electron microscopy, atomic force microscopy, x-ray diffraction and optical microscopy are used for analysis. Consequently, we find significant differences in the epitaxial properties of AlN buffer and the GaN layer, which are dependent on the AI preflow time. A1 preflow layers act as nucleation sites in the case of AiN growth. Compact and uniform AIN nucleation sites are observed with optimizing A1 preflow at an early nucleation stage, which will lead to a smooth AIN surface. Trenches and AlN grain clusters appear on the AIN surface while meltoback etching occurs on the GaN surface with excessive A1 preflow. The GaN quality variation keeps a similar trend with the AIN quality, which is influenced by AI preflow. With an optimized duration orAl preflow, crystal quality and surface morphology of AIN and GaN could be improved.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 90406022 and 10674159).
文摘We report the formation and local electronic structure of Ge clusters on the Si(111)-7×7 surface studied by using variable temperature scanning tunnelling microscopy (VT-STM) and low-temperature scanning tunnelling spectroscopy (STS). Atom-resolved STM images reveal that the Ce atoms are prone to forming clusters with 1.0 nm in diameter for coverage up to 0.12 ML. Such Ce clusters preferentially nucleate at the centre of the faulted-half unit cells, leading to the 'dark sites' of Si centre adatoms from the surrounding three unfaulted-half unit cells in filled-state images. Biasdependent STM images show the charge transfer from the neighbouring Si adatoms to Ce clusters. Low-temperature STS of the Ce clusters reveals that there is a band gap on the Ce cluster and the large voltage threshold is about 0.9 V.
基金Supported by the National Natural Science Foundation of China under Grant No 11374058
文摘Current-voltage electrical characteristics of Er silicide/Si(001) nanocontacts are measured in situ in a scanning tunneling microscopy system. Introduced as a new technique to suppress surface leakage conduction on Si(001),a silver wetting layer is evaporated onto the substrate surface kept at room temperature with Er Si2 nanoislands already existing. The effects of the silver layer on the current-voltage characteristics of nanocontacts are discussed.Our experimental results reveal that the silver layer at coverage of 0.4–0.7 monolayer can suppress effectively the current contribution from the surface conduction path. After the surface leakage path of nanocontacts is obstructed, the ideality factor and the Schottky barrier height are determined using the thermionic emission theory, about 2 and 0.5 eV, respectively. The approach adopted here could shed light on the intrinsic transport properties of metal-semiconductor nanocontacts.
文摘Within the framework of the density functional theory and the pseudopotential method,the electronic structure calculations of the“metal-Si(100)”systems with Li,Be and Al as metal coverings of one to four monolayers(ML)thickness,were carried out.Calculations showed that band gaps of 1.02 eV,0.98 eV and 0.5 eV,respectively,appear in the densities of electronic states when the thickness of Li,Be and Al coverings is one ML.These gaps disappear with increasing thickness of the metal layers:first in the Li-Si system(for two ML),then in the Al-Si system(for three ML)and then in the Be-Si system(for four ML).This behavior of the band gap can be explained by the passivation of the substrate surface states and the peculiarities of the electronic structure of the adsorbed metals.In common the results can be interpreted as describing the possibility of the formation of a two-dimensional silicide with semiconducting properties in Li-Si(100),Be-Si(100)and Al-Si(100)systems.
基金Funded by the National Natural Science Foundation of China(Nos.51275490,and 51475346)Specialized Research Fund for the Doctoral Program of Higher Education of China(20131420120002)Shanxi Province Science Foundation(2013011025-1)
文摘The selection of milling tools for Si C14Cu4Mg0.5Si based on Aluminium matrix 2A14 was analyzed, and the factors that affect the efficiency of the milling were discussed. The Si C14Cu4Mg0.5Si was designed for use on the moon landing vehicle or missile wings, but the hardness of aluminium-silicon carbide composite material was very high, much higher than the general hardness of cemented carbide, which will bring many difficulties in the aluminium-silicon carbide composite material processing. The chemical compositions of Si C14Cu4Mg0.5Si were analyzed. A new selected indexable cutter was designed to mill Si C14Cu4Mg0.5Si. The structure design of milling cutter was different from the conventional milling cutter, breaking the previous limitations to a certain extent, pioneering the idea. The tool material wear was detected by experiments. The mechanical and physical properties of Si C14Cu4Mg0.5Si were also tested. Si C14Cu4Mg0.5Si exhibited different surface quality characteristics under different milling tools.
文摘FT IR, Raman microscopy, XRD, 29 Si and 27 Al MAS NMR, were used to investigate changes in surface properties of a natural illite sample after acid base potentiometric titration. The characteristic XRD lines indicated the presence of surface Al Si complexes, preferable to Al(OH) 3 precipitates. In the microscopic Raman spectra, the vibration peaks of Si O and Al O bonds diminished as a result of treatment with acid, then increased after hydroxide back titration. The varied ratio of signal intensity between IV Al and VI Al species in 27 Al MAS NMR spectra, together with the stable BET surface area after acidimetric titration, suggested that edge faces and basal planes in the layer structure of illite participated in dissolution of structural components. The combined spectroscopic evidence demonstrated that the reactions between illite surfaces and acid leaching silicic acid and aluminum ions should be considered in the model description of surface acid base properties of the aqueous illite.
基金supported by Hefei Municipal Natural Science Foundation(2021026)the Key Research and Development Project of Anhui Province(202004a05020048,202004a05020051)the Fundamental Research Funds for the Central Universities(PA2020GDJQ0026)。
文摘Si alloying in the surface layer of NdFeB magnets was realized by thermal diffusion combined with magnetron sputtering.The surface composition,phase structure and morphology of NdFeB(S-Si)specimens were characterized by an X-ray diffractometer,an X-ray photoelectron spectrometer and a field emission scanning electron microscope,respectively.The corrosion resistance of bare NdFeB(S-Si)was analyzed by static full immersion corrosion test and electrochemical experiments.Effects of sputtering and thermal diffusion on the microstructure and corrosion resistance of the surface layer were studied.Results show that surface alloying layer can effectively improve the corrosion resistance of bare NdFeB with the optimized static total immersion corrosion test time in NdFeB(1S-Si)-800 of 36 h,which is much longer than that of the pristine NdFeB(less than 0.5 h).The E_(corr)of NdFeB(1S-Si)-800 positively shifts from-1.05 to-0.92 V,indicating that the corrosion tendency is obviously lower.The J_(corr)is1.45×10^(-6)A/cm^(2)which is 2 orders of magnitude lower than that of the pristine NdFeB(5.25×10^(-4)A/cm^(2)).The intergranular composite oxides existing in Nd-rich phase contribute to the enhancement of corrosion resistance of Si-surface-alloying NdFeB.