期刊文献+
共找到256篇文章
< 1 2 13 >
每页显示 20 50 100
Experimental Investigation of the Anisotropic Thermal Conductivity of C/SiC Composite Thin Slab
1
作者 毋克凡 张虎 唐桂华 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第3期48-60,共13页
Fiber-reinforced composites possess anisotropic mechanical and heat transfer properties due to their anisotropic fibers and structure distribution.In C/Si C composites,the out-of-plane thermal conductivity has mainly ... Fiber-reinforced composites possess anisotropic mechanical and heat transfer properties due to their anisotropic fibers and structure distribution.In C/Si C composites,the out-of-plane thermal conductivity has mainly been studied,whereas the in-plane thermal conductivity has received less attention due to their limited thickness. 展开更多
关键词 compositeS c/si ANISOTROPIc
下载PDF
Effect of Heat Treatment on Microstructure and Mechanical Properties of Multiscale SiC_p Hybrid Reinforced 6061 Aluminum Matrix Composites
2
作者 吴健铭 许晓静 +3 位作者 ZHANG Xu LUO Yuntian LI Shuaidi HUANG Lin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期174-181,共8页
The performance of solid solution aging treatment on aluminum matrix composites prepared by powder metallurgy and reinforced with 6061 aluminum alloy powder as matrix;meanwhile, nano silicon carbide particles(nm Si Cp... The performance of solid solution aging treatment on aluminum matrix composites prepared by powder metallurgy and reinforced with 6061 aluminum alloy powder as matrix;meanwhile, nano silicon carbide particles(nm Si Cp), submicron silicon carbide particles(1 μm Si Cp) and Ti particles were studied. The Al/Si Cp composite powder was prepared by high-energy ball milling, and then cold-pressed, sintered, hotextruded, and then heat-treated with different solution temperatures and aging times for the extruded composites. Optical microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy(EDS), X-ray diffractometer(XRD) and extrusion testing were used to analyze and test the microstructure and mechanical properties of aluminum matrix composites. The results show that after the multi-stage solid solution at 530 ℃×2 h+535 ℃×2 h+540 ℃×2 h, the particles are mainly equiaxed grains and uniformly distributed. There is no reinforcement agglomeration, and the surface is dense and the insoluble phase is basically dissolved. In the matrix, the strengthening effect is good, and the hardness and compressive strength are 179.43 HV and 680.42 MPa, respectively. Under this solution process, when the aluminum matrix composites are aged at 170 ℃ for 10 h, the hardness and compressive strength can reach their peaks and increase to 195.82 HV and 721.48 MPa, respectively. 展开更多
关键词 aluminum matrix composites si c particles multiscale hybrid enhancement heat treatment mechanical properties
下载PDF
Silicon/flake graphite/carbon anode materials prepared with different dispersants by spray-drying method for lithium ion batteries 被引量:3
3
作者 赖浚 郭华军 +5 位作者 李向群 王志兴 李新海 张晓萍 黄思林 甘雷 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第5期1413-1420,共8页
Silicon/flake graphite/carbon (Si/FG/C) composites were synthesized with different dispersants via spray drying and subsequent pyrolysis, and effects of dispersants on the characteristics of the composites were inve... Silicon/flake graphite/carbon (Si/FG/C) composites were synthesized with different dispersants via spray drying and subsequent pyrolysis, and effects of dispersants on the characteristics of the composites were investigated. The structure and properties of the composites were determined by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and electrochemical measurements. The results show that samples have silicon/flake graphite/amorphous carbon composite structure, good spherical appearances, and better electrochemical performance than pure nano-Si and FG/C composites. Compared with the Si/FG/C composite using washing powder as dispersant, the Si/FG/C composite using sodium dodecyl benzene sulfonate (SDBS) as dispersant has better electrochemical performance with a reversible capacity of 602.68 mA·h/g, and a capacity retention ratio of 91.58 % after 20 cycles. 展开更多
关键词 lithium ion battery si/c composite spray drying ANODE
下载PDF
Fabrication,characterization and electrochemical properties of porous coral-structured Si/C composite anode for lithium ion battery 被引量:1
4
作者 唐芬玲 雷建飞 +3 位作者 崔朝阳 欧阳剑 刘钢 赵灵智 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第12期4046-4053,共8页
A porous coral-structured Si/C composite as an anode material was fabricated by coating Si nanoparticles with a carbon layer from polyvinyl alcohol(PVA), erosion of hydrofluoric(HF) acid, and secondary coating wit... A porous coral-structured Si/C composite as an anode material was fabricated by coating Si nanoparticles with a carbon layer from polyvinyl alcohol(PVA), erosion of hydrofluoric(HF) acid, and secondary coating with pitch. Three samples with different pitch contents of 30%, 40% and 50% were synthesized. The composition and morphology of the composites were characterized by X-ray diffractometry(XRD) and scanning electron microscopy(SEM), respectively, and the properties were tested by electrochemical measurements. The results indicated that the composites showed obviously enhanced electrochemical performance compared with that without secondary carbon coating. The second discharge capacity of the composite was 773 m A·h/g at a current density of 100 m A/g, and still retained 669 m A·h/g after 60 cycles with a small capacity fade of less than 0.23%/cycle, while the content of secondary carbon source of pitch was set at 40%. Therefore, the cycle stability of the composite could be excellently improved by regulating carbon content of secondary coating. 展开更多
关键词 si/c composite secondary coating coral structure anode material Li-ion battery
下载PDF
Yolk-shell Si/C composites with multiple Si nanoparticles encapsulated into double carbon shells as lithium-ion battery anodes 被引量:11
5
作者 Le Hu Bin Luo +3 位作者 Chenghao Wu Pengfei Hu Lianzhou Wang Haijiao Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第5期124-130,共7页
The conceptual design of yolk-shell structured Si/C composites is considered to be an effective way to improve the recyclability and conductivity of Si-based anode materials. Herein, a new type of yolk-shell structure... The conceptual design of yolk-shell structured Si/C composites is considered to be an effective way to improve the recyclability and conductivity of Si-based anode materials. Herein, a new type of yolk-shell structured Si/C composite (denoted as TSC-PDA-B) has been intelligently designed by rational engineering and precise control. In the novel structure, the multiple Si nanoparticles with small size are successfully encapsulated into the porous carbon shells with double layers benefiting from the strong etching effect of HF. The TSC-PDA-B product prepared is evaluated as anode materials for lithium-ion batteries (LIBs). The TSC-PDA-B product exhibits an excellent lithium storage performance with a high initial capacity of 2108 mAh g^-1 at a current density of 100 mA g^-1 and superior cycling performance of 1113 mAh g^-1 over 200 cycles. The enhancement of lithium storage performance may be attributed to the construction of hybrid structure including small Si nanoparticles, high surface area, and double carbon shells, which can not only increase electrical conductiv让y and intimate electrical contact with Si nanoparticles, but also provide built-in buffer voids for Si nanoparticles to expand freely without damaging the carbon layer. The present findings can provide some scientific insights into the design and the application of advanced Si-based anode materials in energy storage fields. 展开更多
关键词 si/c compositeS Yolk-shell Multiple si nanoparticles Double cARBON SHELLS Energy storage
下载PDF
Mesophase formation of coal-tar pitches used for impregnant of C/C composites 被引量:2
6
作者 巩前明 黄启忠 +2 位作者 黄伯云 张福勤 陈腾飞 《中国有色金属学会会刊:英文版》 CSCD 2001年第4期483-487,共5页
By a polarized light optical microscopy with a hot stage, liquid phase nuclear magnetic resonance 13 C NMR and 1 H NMR, X ray diffractometry and scanning electron microscopy (SEM), the factors that affect the formatio... By a polarized light optical microscopy with a hot stage, liquid phase nuclear magnetic resonance 13 C NMR and 1 H NMR, X ray diffractometry and scanning electron microscopy (SEM), the factors that affect the formation of mesophase in C/C composites, such as pressure, quinoline insolubles (QI) and heterocylic compounds, were analyzed. Further, the graphitizability of the resultant carbon was discussed. The results indicate that to some degree, QI contents accelerate the formation of mesophase at atmospheric pressure; while at high pressure, the coalescence and growth of mesophase spherules are impeded and the resultant coke produced from higher QI content pitch is harder to be graphitized. This is in agreement with the transfer of microstructure from domain anisotropy to fine grained mosaics. 展开更多
关键词 c/c composites coal tar pitch MESOPHASE quinoline insolubles graphitIZATION
下载PDF
DIELECTRIC PROPERTIES OF NANO Si/C/N COMPOSITE POWDER AND NANO SiC POWDER AT HIGH FREQUENCIES AND MICROSTRUCTURE CHARACTERIZATION 被引量:2
7
作者 D.L.Zhao, H.S.Zhao and W.C.Zhou State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1999年第5期1136-1141,共6页
The dielectric properties of nano Si/C/N composite powder and nano SiC powder at high frequencies have been studied. The nano Si/C/N composite powder and nano SiC powder were synthesized from hexamethyldisilazane ((Me... The dielectric properties of nano Si/C/N composite powder and nano SiC powder at high frequencies have been studied. The nano Si/C/N composite powder and nano SiC powder were synthesized from hexamethyldisilazane ((Me 3Si) 2NH) (Me:CH 3) and SiH 4 C 2H 2 respectively by a laser induced gas phase reaction. The complex permittivities of the nano Si/C/N composite powder and nano SiC powder were measured between 8 2GHz and 12 4GHz. The real and imaginary parts of the complex permittivities of nano Si/C/N composite powder are much higher than those of nano SiC powder. The SiC microcrystalline in the nano Si/C/N composite powder dissolved a great deal of nitrogen. The local structure around Si atoms changed by introducing N into SiC. Carbon atoms around Si were substituted by N atoms. So charged defects and quasi free electrons moved in response to the electric field, diffusion or polarization current resulted from the field propagation. The high ε″and loss factor tgδ(ε″/ε′) of Si/C/N composite powder were due to the dielectric relaxation. 展开更多
关键词 nano si/c/N composite powder nano sic powder dielectric properties MIcROSTRUcTURE
下载PDF
Rapid chemical vapor infiltration of C/C composites 被引量:5
8
作者 张明瑜 王丽平 +1 位作者 黄启忠 柴立元 《中国有色金属学会会刊:英文版》 EI CSCD 2009年第6期1436-1439,共4页
With liquid petrol gas(LPG)as carbon source,carbon felt as porous perform and hydrogen as diluent,C/C composites were fast fabricated by using a multi-physics field chemical vapor infiltration(MFCVI)process in a self-... With liquid petrol gas(LPG)as carbon source,carbon felt as porous perform and hydrogen as diluent,C/C composites were fast fabricated by using a multi-physics field chemical vapor infiltration(MFCVI)process in a self-made furnace.A set of orthogonal experiments were carried out to optimize parameters in terms of indices of density and graphitization degree.The results show the optimal indices can be achieved under the conditions of temperature 650℃,LPGconcentration 80%,gas flux 60 mL/s, total pressure 20 kPa,infiltration time 15 h.The verification experiment proves the effectiveness of the orthogonal experiments. Under the optimal conditions,the graphitization degree of 75%and bulk density of 1.69 g/cm are achieved with a uniform density distribution.At the same time,a new structure is obtained. 展开更多
关键词 化学气相渗透 复合材料 石墨化程度 分布密度 正交试验 气体流量 实验证明 液体汽油
下载PDF
Raman spectroscopy investigation of structural and textural change in C/C composites during braking 被引量:1
9
作者 雷宝灵 易茂中 +3 位作者 徐惠娟 冉丽萍 葛毅成 彭可 《Journal of Central South University》 SCIE EI CAS 2011年第1期29-35,共7页
The microstructure and texture of C/C composites with a resin-derived carbon, a rough laminar (RL) pyrocarbon and a smooth laminar pyrocarbon, before and after braking tests, were investigated by Raman spectroscopy.... The microstructure and texture of C/C composites with a resin-derived carbon, a rough laminar (RL) pyrocarbon and a smooth laminar pyrocarbon, before and after braking tests, were investigated by Raman spectroscopy. The full width at half maximum (FWHM) of the D-band indicates the amount of defects in the in-plane lattice, while the G-to-D band intensity (peak area) ratios (lC/ID) is used to evaluate the degree of graphitization. The results show that the FWHM of D-band of sample with RL pyrocarbon changes greatly from 36 cm-1 to 168 cm 1 after braking tests, which indicates that a large number of lattice defects are produced on its wear surface. However, the graphitization degree of resin-derived carbon sample rises significantly, because the IC/1D increases from 0.427 to 0.928. Braking tests under normal loading conditions, involving high temperature and high pressure, produce a lot of lattice defects on the wear surface, and induce the graphitization of the surface. Sample with RL pyrocarbon having a low hardness is easy to deform, and has the most lattice defects on the wear surface after braking. While raw materials with resin-derived carbon have the lowest graphitization degree which rises greatly during braking. 展开更多
关键词 c/c composites Raman spectroscopy graphitization degree BRAKING
下载PDF
Microstructure and abrasive wear behaviour of anodizing composite films containing Si C nanoparticles on Ti6Al4V alloy 被引量:6
10
作者 李松梅 郁秀梅 +3 位作者 刘建华 于美 吴量 杨康 《Journal of Central South University》 SCIE EI CAS 2014年第12期4415-4423,共9页
Anodized composite films containing Si C nanoparticles were synthesized on Ti6Al4 V alloy by anodic oxidation procedure in C4O6H4Na2 electrolyte. Scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) ... Anodized composite films containing Si C nanoparticles were synthesized on Ti6Al4 V alloy by anodic oxidation procedure in C4O6H4Na2 electrolyte. Scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) and X-ray photoelectron spectroscopy(XPS) were employed to characterize the morphology and composition of the films fabricated in the electrolytes with and without addition of Si C nanoparticles. Results show that Si C particles can be successfully incorporated into the oxide film during the anodizing process and preferentially concentrate within internal cavities and micro-cracks. The ball-on-disk sliding tests indicate that Si C-containing oxide films register much lower wear rate than the oxide films without Si C under dry sliding condition. Si C particles are likely to melt and then are oxidized by frictional heat during sliding tests. Potentiodynamic polarization behavior reveals that the anodized alloy with Si C nanoparticles results in a reduction in passive current density to about 1.54×10-8 A/cm2, which is more than two times lower than that of the Ti O2 film(3.73×10-8 A/cm2). The synthesized composite film has good anti-wear and anti-corrosion properties and the growth mechanism of nanocomposite film is also discussed. 展开更多
关键词 Ti6Al4V alloy anodic oxidation si c nanoparticle composite film
下载PDF
Effect of infiltrating Si on friction properties of C/C composites 被引量:1
11
作者 马运柱 黄伯云 +4 位作者 熊翔 肖鹏 李江鸿 黄启忠 易茂忠 《Journal of Central South University of Technology》 2003年第3期173-176,共4页
In order to improve the friction-wear properties of the C/C composites for aircraft brake pairs, the fric-tion behavior of samples with infiltrating Si was investigated. The influence of Si smearing thickness on frict... In order to improve the friction-wear properties of the C/C composites for aircraft brake pairs, the fric-tion behavior of samples with infiltrating Si was investigated. The influence of Si smearing thickness on frictionproperties was studied in detail. The results show that with the increase of Si smearing thickness and β-SiC content,the friction coefficient reduces from 0.40 to 0.30; the linear wear of stators increases from 2.0 μm to 18.9 μm percycle, and that of rotors increases from 1.4 μm to 22.6 μm per cycle; mass wear of stators increases from 20.6 mgto 126.9 mg per cycle, and that of rotors increases from 13.7 mg to 166.2 mg per cycle. On the other hand, whena large number of inhomogeneous β-SiC particulates are performed, friction surfaces of the samples flake off layer bylayer and many nicks are observed. 展开更多
关键词 c/c composites infiltrating si modifying property friction mechanism
下载PDF
The mitigation of pitch-derived carbon with different structures on the volume expansion of silicon in Si/C composite anode 被引量:1
12
作者 Xin Xue Xiao Liu +5 位作者 Bin Lou Yuanxi Yang Nan Shi FuShan Wen Xiujie Yang Dong Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期292-302,共11页
The microstructures of carbon precursors significantly affect the electrochemical performance of Si/C composite anodes.However,the interaction between Si and carbon materials with different structures is still unclear... The microstructures of carbon precursors significantly affect the electrochemical performance of Si/C composite anodes.However,the interaction between Si and carbon materials with different structures is still unclear.Pitch-based materials undergoing different thermal treatments are superior sources for synthesizing carbons with different structures.Herein,different types of mesophase pitch(domain,flow-domain and mosaic structure) obtained from controllable thermal condensation are utilized to prepare Si/C composite materials and the corresponding models are established through finite element simulation to explore the correlation between the lithium storage properties of Si/C composites and the structures of carbon materials.The results indicate that the flow-domain texture pitch P2 has a better ability to buffer the volume expansion of silicon particles for its highly ordered arrangement of carbon crystallites inside could disperse the swelling stress uniformly alongside the particle surface.The sample Si@P2 exhibits the highest capacity of 1328 mA h/g after 200 cycles at a current density of 0.1 A/g as well as the best rate performance and stability.While sample Si@P3 in which the mosaic texture pitch P3 composed of random orientation of crystallites undergoes the fastest capacity decay.These findings suggest that highly ordered carbon materials are more suitable for the synthesis of Si/C composite anodes and provide insights for understanding the interaction between carbon and silicon during the charging/discharging process. 展开更多
关键词 si/c composite materials Mesophase pitch Finite element simulation Volume expansion
下载PDF
Cathode Erosion of Graphite and Cu/C Materials in Airarcs
13
作者 Zhang Chengyu Qiao Shengru +3 位作者 Liu Yiwen Yang Zhimao Wang Yaping Yong Guo 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第1期18-20,共3页
Cathode erosion of graphite and Cu/C was studied in direct current arcs, which were ignited between two electrodes comprised of two kinds of carbon materials and a tungsten anode in air. The arced zones on the cathode... Cathode erosion of graphite and Cu/C was studied in direct current arcs, which were ignited between two electrodes comprised of two kinds of carbon materials and a tungsten anode in air. The arced zones on the cathode surface were investigated by a scanning electron microscope. Also, the cathode erosion rates of the investigated materials were measured. The results show that two distinct zone can be seen on both cathodes. The eroded area was located at the zone just opposite to the anode and surrounded by a white zone. The arced surface on the Cu/C containing 9.3 % Cu is rougher than that of the pure graphite. Many particles with various sizes distributed on the Cu/C. The vaporization of Cu can lower the surface temperature and reduce the cathode erosion. Therefore, the cathode erosion rate of the Cu/C is lower than that of the pure graphite. 展开更多
关键词 cu/c composite graphite air arc cathode erosion
下载PDF
Optimization of friction and wear behaviour of Al-Si_3N_4 nano composite and Al-Gr-Si_3N_4 hybrid composite under dry sliding conditions
14
作者 R. AMBIGAI, S S. PRABHU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第5期986-997,共12页
The tribological behaviour of gravity die stir cast LM6alloy with graphite(Gr)and silicon nitride nanoparticles was investigated.Al?Gr?Si3N4hybrid composite,Al?Si3N4nanocomposite and Al?Gr nanocomposites were separate... The tribological behaviour of gravity die stir cast LM6alloy with graphite(Gr)and silicon nitride nanoparticles was investigated.Al?Gr?Si3N4hybrid composite,Al?Si3N4nanocomposite and Al?Gr nanocomposites were separately fabricated to investigate their frictional and wear characteristics under dry sliding conditions.EDS was used to ensure the uniform presence of nano Si3N4and graphite in the cast.L9orthogonal array method was chosen to conduct the experiments to study the effect of different applied loads(20,30and40N)and sliding distances(1,2and3km).The results showed that the respective wear rate and coefficient of friction(COF)decreased by25%and15%for hybrid composite when compared with those of Al?Si3N4nanocomposite whereas the wear rate and COF of Al?Gr was found to be very minimal.The micro Vickers hardness of the hybrid composite was14%more than that of the simple nanocomposite and there was not much notable variation for Al?Gr and Al?Si3N4nanocomposite materials.Scanning electron microscope was used to analyze the worn surface and subsurface,from which it was noted that the predominant wear mechanisms observed were abrasive for nanocomposite and both abrasive and adhesive mechanism for hybrid composite.Analysis of variance(ANOVA)and F-test were used to check the validity model and to determine the significant parameters affecting the wear rates. 展开更多
关键词 abrasive wear si3N4 graphite hybrid composite LOAD sliding distance ANOVA
下载PDF
High thermal stability of diamond-cBN-B_4C-Si composites
15
作者 Hong-Sheng Jia Pin-Wen Zhu +7 位作者 Hao Ye Bin Zuo Yuan-Long E Shi-Chong Xu Ji Li Hai-Bo Li Xiao-Peng Jia Hong-An Ma 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第1期521-525,共5页
Improving the thermal stability of diamond and other superhard materials has great significance in various applications. Here, we report the synthesis and characterization of bulk diamond–cBN–B4C–Si composites sint... Improving the thermal stability of diamond and other superhard materials has great significance in various applications. Here, we report the synthesis and characterization of bulk diamond–cBN–B4C–Si composites sintered at high pressure and high temperature(HPHT, 5.2 GPa, 1620–1680 K for 3–5 min). The results show that the diamond, cBN, B4C,BxSiC, SiO2 and amorphous carbon or a little surplus Si are present in the sintered samples. The onset oxidation temperature of 1673 K in the as-synthesized sample is much higher than that of diamond, cBN, and B4C. The high thermal stability is ascribed to the covalent bonds of B–C, C–N, and the solid-solution of BxSiC formed during the sintering process. The results obtained in this work may be useful in preparing superhard materials with high thermal stability. 展开更多
关键词 high pressure and high temperature diamond–cBN–B4csi compositeS high thermal stability
下载PDF
DISTRIBUTION OF Ce AND S IN Fe-C-Si ALLOY AND THEIR INFLUENCE ON MORPHOLOGY OF GRAPHITE
16
作者 DU Weixi HAN Qiyong JIANG Qing ZHANG Zhongzhi ZHONG Weizhen LIU Shaoshou Jilin University of Technology,Changchun,China in revised form 3 April 19871 Beijing University of Science and Technology 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1989年第8期87-93,共7页
Electrolytic extraction-radiometry and microradioautography techniques were used to study the distribution of nodulizing element Ce and anti-nodulizing element S in phases of high purity Fe-C-Si alloy.The results show... Electrolytic extraction-radiometry and microradioautography techniques were used to study the distribution of nodulizing element Ce and anti-nodulizing element S in phases of high purity Fe-C-Si alloy.The results show that,besides forming inclusions,most of Ce atoms concentrate in graphite firstly.As the Ce content increases,the concentration of Ce in graphite tends to saturate,relatively large amount of Ce dissolves in the alloy.Usually,the sulphur also concentrates in graphite.However,it may exist in the form of FeS at the eutectic colony boundaries,if the concentration of S is at a quite high level.Very little amount of S dissolves in the alloy.The morphology of graphite depends upon the degree of saturation of Ce.It appears as nodular when Ce was saturated and,as vermicular while it was semi-saturated. 展开更多
关键词 ce.S.Fe-c-si alloy graphite
下载PDF
THE EFFECT OF SILICON ADDITIVE ON THESTRUCTURE AND PROPERTIES OFC-B_4C-SiC COMPOSITE
17
作者 HUANG Qizhong YANG Qzaoqin and WU Lijun(Powder Metallurgy Research institute, Central Sonth University of Technology, Changsha 410083, China Materials Research and Test Center, Hnnan University, Changsha 410082, ChinaLab. of Atomic Imaging of Solids, Ins 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1996年第3期206-210,共5页
A Preliminary study of the effect of silicon additive on the structure and properites of C-B_4C-SiC composite was conducted. A liquid Phase has formed and the liquid Si reacts with C to form SiC at the grain boundary ... A Preliminary study of the effect of silicon additive on the structure and properites of C-B_4C-SiC composite was conducted. A liquid Phase has formed and the liquid Si reacts with C to form SiC at the grain boundary when sintering, which accelerates the sintering process and retards the grain growth. Consequently, the density and strength of the composite increase markedly. And the increase in the density increases the oxidation resistance and decreases the specific resistance of the composite. Furthermore,the C-B_4 C-SiC composite has good heat-shock resistance. The phenomena may be dueto the strengthening and toughening of microcracks. 展开更多
关键词 si additive c-B_4c-sic composite structure and property
下载PDF
SiC纳米线对大气等离子喷涂硅涂层性能的影响
18
作者 王博 庄辛鹏 +4 位作者 李归 王宇龙 李媛琪 施伟 李佳艳 《耐火材料》 CAS 北大核心 2024年第5期369-375,共7页
为提升C/SiC复合材料表面Si涂层的韧性及其与C/SiC复合材料的结合强度,首先以10 mm×10 mm×10 mm的C/SiC复合材料作为基体,在基体表面生成约20μm厚的SiC纳米线(SiCnws)多孔层;再用大气等离子体喷涂法分别将生长SiCnws的基体... 为提升C/SiC复合材料表面Si涂层的韧性及其与C/SiC复合材料的结合强度,首先以10 mm×10 mm×10 mm的C/SiC复合材料作为基体,在基体表面生成约20μm厚的SiC纳米线(SiCnws)多孔层;再用大气等离子体喷涂法分别将生长SiCnws的基体和未生长SiCnws的基体喷涂约30、60、90μm厚的Si涂层。研究SiCnws对涂层试样的结合强度和抗氧化性的影响,并借助XRD、SEM、TEM和EDS对所制备的SiCnws和SiCnws/Si涂层进行物相组成、显微结构的分析。结果表明:1)制备的SiCnws形状平直,表面光滑,取向随机,直径为100~200 nm,是沿[111]晶向择优生长的β-SiC;2)SiCnws引入到Si涂层后,SiCnws/Si涂层试样的结合强度均比相应的Si涂层试样的高,说明SiCnws增强了Si涂层与C/SiC复合材料的结合;3)从室温至1400℃经历12次热震循环后,SiCnws/Si涂层试样的质量损失率比相应Si涂层试样的低20.7%~37.2%,说明SiCnws能有效缓解热应力,抑制裂纹的形成和扩展,降低裂纹尺寸和数量,提高涂层的抗氧化性。 展开更多
关键词 c/sic复合材料 sic纳米线 si涂层 抗氧化性能 结合强度
下载PDF
Si-O-C骨架支撑型高循环性能锂离子电池硅基负极材料(英文) 被引量:10
19
作者 王建涛 王耀 +3 位作者 黄斌 杨娟玉 谭翱 卢世刚 《物理化学学报》 SCIE CAS CSCD 北大核心 2014年第2期305-310,共6页
通过经济有效的方法制备得到一种具有长循环寿命的高效稳定性硅/硅氧碳/无定形碳的复合负极材料结构.在这种结构中,以具有稳定化学性能的硅氧碳结构作为骨架,来支撑和隔离硅纳米颗粒结构.材料中包含的无定形碳组分可提高硅/硅氧碳结构... 通过经济有效的方法制备得到一种具有长循环寿命的高效稳定性硅/硅氧碳/无定形碳的复合负极材料结构.在这种结构中,以具有稳定化学性能的硅氧碳结构作为骨架,来支撑和隔离硅纳米颗粒结构.材料中包含的无定形碳组分可提高硅/硅氧碳结构的电导性能.这种复合负极结构在0.3C电流充放电情况下,不仅能发挥出637.3 mAh·g-1的比容量,而且在经过100周的充放电循环后,其容量保持率也达到86%.这种新型硅基负极材料的设计为其他功能材料的设计提供了一种潜在可能的方法. 展开更多
关键词 硅氧碳 复合材料 锂离子电池 负极 长循环寿命
下载PDF
锂离子电池Si/C/石墨复合负极材料的电化学性能 被引量:8
20
作者 彭鹏 刘宇 温兆银 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2013年第11期1195-1199,共5页
采用热裂解方法,热解分散于聚偏二氟乙烯溶液中的硅和石墨,得到了具有稳定电化学循环性能的Si/C/石墨复合负极材料。透射电子显微镜观察发现,复合材料形貌为无定型碳包裹硅颗粒的核壳结构。通过系统研究不同Si粒径和石墨含量对电极电化... 采用热裂解方法,热解分散于聚偏二氟乙烯溶液中的硅和石墨,得到了具有稳定电化学循环性能的Si/C/石墨复合负极材料。透射电子显微镜观察发现,复合材料形貌为无定型碳包裹硅颗粒的核壳结构。通过系统研究不同Si粒径和石墨含量对电极电化学性能的影响,发现Si颗粒粒径越小复合材料电化学循环稳定性能越优越,适当的降低石墨含量有利于电极材料剩余比容量的提高。当Si粒径为50 nm,Si与石墨质量比1:1时,电极材料具有1741.6 mAh/g的首次放电比容量和72.5%的首次库仑效率,60次循环后,可逆比容量保持在820 mAh/g。热解有机物形成碳包覆的结构能有效地改善硅基类负极材料的电化学循环性能。 展开更多
关键词 si c 石墨复合材料 负极材料 热解 锂离子电池
下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部