The first operation of an electrically pumped 1.3μm InAs/GaAs quantum-dot laser was previously reported epitaxially grown on Si (100) substrate. Here the direct epitaxial growth condition of 1.3μm InAs/OaAs quantu...The first operation of an electrically pumped 1.3μm InAs/GaAs quantum-dot laser was previously reported epitaxially grown on Si (100) substrate. Here the direct epitaxial growth condition of 1.3μm InAs/OaAs quantum on a Si substrate is further investigated using atomic force microscopy, etch pit density and temperature-dependent photoluminescence (PL) measurements. The PL for Si-based InAs/GaAs quantum dots appears to be very sensitive to the initial OaAs nucleation temperature and thickness with strongest room-temperature emission at 40000 (17Onto nucleation layer thickness), due to the lower density of defects generated under this growth condition, and stronger carrier confinement within the quantum dots.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 11434010,11574356 and 11504415the Funds from the Royal Society,the Defense Science Technology Laboratory and UK Engineering and Physics Research Council
文摘The first operation of an electrically pumped 1.3μm InAs/GaAs quantum-dot laser was previously reported epitaxially grown on Si (100) substrate. Here the direct epitaxial growth condition of 1.3μm InAs/OaAs quantum on a Si substrate is further investigated using atomic force microscopy, etch pit density and temperature-dependent photoluminescence (PL) measurements. The PL for Si-based InAs/GaAs quantum dots appears to be very sensitive to the initial OaAs nucleation temperature and thickness with strongest room-temperature emission at 40000 (17Onto nucleation layer thickness), due to the lower density of defects generated under this growth condition, and stronger carrier confinement within the quantum dots.