The effect of deposition temperature on the morphology and optoelectronic performance of Ge/Si QDs grown by magnetron sputtering under low Ge deposition(~4 nm)was investigated by atomic force microscopy,Raman spectros...The effect of deposition temperature on the morphology and optoelectronic performance of Ge/Si QDs grown by magnetron sputtering under low Ge deposition(~4 nm)was investigated by atomic force microscopy,Raman spectroscopy,and photoluminescence(PL)tests.The experimental results indicate that temperatures higher than 750℃effectively increase the crystallization rate and surface smoothness of the Si buffer layer,and temperatures higher than 600℃significantly enhance the migration ability of Ge atoms,thus increasing the probability of Ge atoms meeting and nucleating to form QDs on Si buffer layer,but an excessively high temperature will cause the QDs to undergo an Ostwald ripening process and thus develop into super large islands.In addition,some PL peaks were observed in samples containing small-sized,high-density Ge QDs,the photoelectric properties reflected by these peaks were in good agreement with the corresponding structural characteristics of the grown QDs.Our results demonstrate the viability of preparing high-quality QDs by magnetron sputtering at high deposition rate,and the temperature effect is expected to work in conjunction with other controllable factors to further regulate QD growth,which paves an effective way for the industrial production of QDs that can be used in future devices.展开更多
The single event effect(SEE) sensitivity of silicon–germanium heterojunction bipolar transistor(Si Ge HBT) irradiated by 100-Me V proton is investigated. The simulation results indicate that the most sensitive positi...The single event effect(SEE) sensitivity of silicon–germanium heterojunction bipolar transistor(Si Ge HBT) irradiated by 100-Me V proton is investigated. The simulation results indicate that the most sensitive position of the Si Ge HBT device is the emitter center, where the protons pass through the larger collector-substrate(CS) junction. Furthermore, in this work the experimental studies are also carried out by using 100-Me V proton. In order to consider the influence of temperature on SEE, both simulation and experiment are conducted at a temperature of 93 K. At a cryogenic temperature, the carrier mobility increases, which leads to higher transient current peaks, but the duration of the current decreases significantly.Notably, at the same proton flux, there is only one single event transient(SET) that occurs at 93 K. Thus, the radiation hard ability of the device increases at cryogenic temperatures. The simulation results are found to be qualitatively consistent with the experimental results of 100-Me V protons. To further evaluate the tolerance of the device, the influence of proton on Si Ge HBT after gamma-ray(^(60)Coγ) irradiation is investigated. As a result, as the cumulative dose increases, the introduction of traps results in a significant reduction in both the peak value and duration of the transient currents.展开更多
Lithium metal batteries represent promising candidates for high-energy-density batteries, however, many challenges must still be overcome,e.g., interface instability and dendrite growth. In this work, nano silica aero...Lithium metal batteries represent promising candidates for high-energy-density batteries, however, many challenges must still be overcome,e.g., interface instability and dendrite growth. In this work, nano silica aerogel was employed to generate a hybrid film with high lithium ion conductivity(0.6 mS cm^(-1)at room temperature) via an in situ crosslinking reaction. TOF-SIMS profile analysis has revealed conversion mechanism of hybrid film to Li–Si alloy/Li F biphasic interface layer, suggesting that the Li–Si alloy and Li F-rich interface layer promoted rapid Li+transport and shielded the Li anodes from corrosive reactions with electrolyte-derived products. When coupled with nickel-cobalt-manganese-based cathodes, the batteries achieve outstanding capacity retention over 1000 cycles at 1 C. Additionally the developed film coated on Li enabled high coulombic efficiency(99.5%) after long-term cycling when coupled with S cathodes. Overall, the results presented herein confirm an effective strategy for the development of high-energy batteries.展开更多
TiO2deposited at extremely low temperature of 120°C by atomic layer deposition is inserted between metal and n-Ge to relieve the Fermi level pinning. X-ray photoelectron spectroscopy and cross-sectional transmiss...TiO2deposited at extremely low temperature of 120°C by atomic layer deposition is inserted between metal and n-Ge to relieve the Fermi level pinning. X-ray photoelectron spectroscopy and cross-sectional transmission electron microscopy indicate that the lower deposition temperature tends to effectively eliminate the formation of GeOxto reduce the tunneling resistance. Compared with TiO2deposited at higher temperature of 250°C,there are more oxygen vacancies in lower-temperature-deposited TiO2, which will dope TiO2contributing to the lower tunneling resistance. Al/TiO2/n-Ge metal-insulator-semiconductor diodes with 2 nm 120°C deposited TiO2achieves 2496 times of current density at-0.1 V compared with the device without the TiO2interface layer case, and is 8.85 times larger than that with 250°C deposited TiO2. Thus inserting extremely low temperature deposited TiO2to depin the Fermi level for n-Ge may be a better choice.展开更多
Silicon is emerging as a promising next-generation lithium-ion battery anode because of its high theoretical capacity and low cost.However,the poor cyclability and inferior rate performance hinder its largescale appli...Silicon is emerging as a promising next-generation lithium-ion battery anode because of its high theoretical capacity and low cost.However,the poor cyclability and inferior rate performance hinder its largescale applications.Here,hollow silicon/germanium(H-SiGe)nanospheres with a binary-active component and heterogeneous structure combined with porous carbon(pC)reinforcing are synthesized as lithium-ion battery anodes.Experimental studies demonstrate that the H-SiGe/pC anodes possess tiny volume expansion,high ion/electron conductivity,and stable electrode interface.Theoretical calculations confirm that through the replacement of Si using Ge with rational component control,the diffusion energy barrier of lithium will be reduced and lithium storage ability can be improved because of the slight charge polarization.Benefiting from these unique merits,the H-SiGe/pC anodes display a high initial specific capacity of 2922.2 mA h g^(-1)at 0.1 A g^(-1),superior rate capability(59.4%capacity retention from 0.5 to 8 A g^(-1)),and excellent cycling stability(81%retention after 700 cycles at 5 A g^(-1)at 1.0–1.2 mg cm^(-2)).An outstanding stability is preserved even at a high loading of 3.2 mg cm^(-2)with an improved reversible capacity of 429.1 mA h g^(-1)after 500 cycles at 4 A g^(-1).Furthermore,the full-cell with the prelithiated H-SiGe/pC anode and LiFePO4cathode exhibits an impressive capacity performance.展开更多
Novel models (2× 1) of Si(001)-SiO2 interface structure have been established. The method of the first-principle General Gradient Approximation (GGA) is employed to structurally optimize the established the...Novel models (2× 1) of Si(001)-SiO2 interface structure have been established. The method of the first-principle General Gradient Approximation (GGA) is employed to structurally optimize the established theoretical models under the K-point space of periodic boundary condition. The structures after optimization have been analyzed, and the results show that the interfaces present in disordered state and both Si-O-Si and Si=O structures exist. Meanwhile, the bonding of surface structure is analyzed via the graphics of electron localization function(ELF).展开更多
The microstructure of primary Mg_(2)Si and the interface of Mg_(2)Si/α-Mg modified by Sn and Sb elements in an as-cast Mg-5Sn-2Si-1.5Al-1Zn-0.8Sb(wt.%) alloy were investigated.In the primary Mg_(2)Si phase not only t...The microstructure of primary Mg_(2)Si and the interface of Mg_(2)Si/α-Mg modified by Sn and Sb elements in an as-cast Mg-5Sn-2Si-1.5Al-1Zn-0.8Sb(wt.%) alloy were investigated.In the primary Mg_(2)Si phase not only the Si atoms but also the Mg atoms could be substituted by Sn and Sb atoms,resulting in the slightly reduced lattice constant a of 0.627 nm.An OR of Mg_(2)Si phase and α-Mg in the form of[001]Mg_(2)Si‖[01■1]α,(220)Mg_(2)Si‖(0■12)αwas discovered.Between primary Mg_(2)Si phase and α-Mg matrix two transitional nano-particle layers were formed.In the rim region of primary Mg_(2)Si particle,Mg_(2)Sn precipitates sizing from 5 nm to 50 nm were observed.Adjacent to the boundary of primary Mg_(2)Si particle,luxuriant columnar crystals of primary Mg_(2)Sn phase with width of about 25 nm and length of about100 nm were distributed on the α-Mg matrix.The lattice constant of the Mg_(2)Sn precipitate in primary Mg_(2)Si particle was about 0.756 nm.Three ORs between Mg_(2)Sn and Mg_(2)Si were found,in which the Mg_(2)Sn precipitates had strong bonding interfaces with Mg_(2)Si phase.Three new minor ORs between Mg_(2)Sn phase and α-Mg were found.The lattice constant of primary Mg_(2)Sn phase was enlarged to 0.813 nm owing to the solution of Sn and Sb atoms.Primary Mg_(2)Sn had edge-to-edge interfaces with α-Mg.Therefore,the primary Mg_(2)Si particle and α-Mg were united and the interfacial adhesion was improved by the two nano-particles layers of Mg_(2)Sn phase.展开更多
The Ge metal-oxide-semiconductor (MOS) capacitors were fabricated with HfO2 as gate dielectric.AlON,NdON,and NdAlON were deposited between the gate dielectric and the Ge substrate as the interfacial passivation layer ...The Ge metal-oxide-semiconductor (MOS) capacitors were fabricated with HfO2 as gate dielectric.AlON,NdON,and NdAlON were deposited between the gate dielectric and the Ge substrate as the interfacial passivation layer (IPL).The electrical properties (such as capacitance-voltage (C-V) and gate leakage current density versus gate voltage (J_(g)-V_(g))) were measured by HP4284A precision LCR meter and HP4156A semiconductor parameter analyzer.The chemical states and interfacial quality of the high-k/Ge interface were investigated by X-ray photoelectron spectroscopy (XPS).The experimental results show that the sample with the NdAlON as IPL exhibits the excellent interfacial and electrical properties.These should be attributed to an effective suppression of the Ge suboxide and HfGeOx interlayer,and an enhanced blocking role against inter-diffusion of the elements during annealing by the NdAlON IPL.展开更多
This paper presents a two-agent framework to build a natural langua g e query interface for IC information system, focusing more on scope queries in a single English sentence. The first agent, parsing agent, syntact...This paper presents a two-agent framework to build a natural langua g e query interface for IC information system, focusing more on scope queries in a single English sentence. The first agent, parsing agent, syntactically p rocesses and semantically interprets natural language sentence to construct a fu zzy structured query language (SQL) statement. The second agent, defuzzif ying agent, defuzzifies the imprecise part of the fuzzy SQL statement into its e quivalent executable precise SQL statement based on fuzzy rules. The first agent can also actively ask the user some necessary questions when it manages to disa mbiguate the vague retrieval requirements. The adaptive defuzzification approach employed in the defuzzifying agent is discussed in detail. A prototype interface has been implemented to demonstrate the effectiveness.展开更多
The electron transport behavior across the interface plays an important role in determining the performance of op- toelectronic devices based on heterojunctions. Here through growing CdS thin film on silicon nanoporou...The electron transport behavior across the interface plays an important role in determining the performance of op- toelectronic devices based on heterojunctions. Here through growing CdS thin film on silicon nanoporous pillar array, an untraditional, nonplanar, and multi-interface CdS/Si nanoheterojunction is prepared. The current density versus voltage curve is measured and an obvious rectification effect is observed. Based on the fitting results and model analyses on the forward and reverse conduction characteristics, the electron transport mechanism under low forward bias, high forward bias, and reverse bias are attributed to the Ohmic regime, space-charge-limited current regime, and modified Poole-Frenkel regime respectively. The forward and reverse electrical behaviors are found to be highly related to the distribution of inter- facial trap states and the existence of localized electric field respectively. These results might be helpful for optimizing the preparing procedures to realize high-performance silicon-based CdS optoelectronic devices.展开更多
The holes induced by ionizing radiation or carrier injection can depassivate saturated interface defects.The depassivation of these defects suggests that the deep levels associated with the defects are reactivated,aff...The holes induced by ionizing radiation or carrier injection can depassivate saturated interface defects.The depassivation of these defects suggests that the deep levels associated with the defects are reactivated,affecting the performance of devices.This work simulates the depassivation reactions between holes and passivated amorphous-SiO_(2)/Si interface defects(HP_(b)+h→P_(b)+H^(+)).The climbing image nudged elastic band method is used to calculate the reaction curves and the barriers.In addition,the atomic charges of the initial and final structures are analyzed by the Bader charge method.It is shown that more than one hole is trapped by the defects,which is implied by the reduction in the total number of valence electrons on the active atoms.The results indicate that the depassivation of the defects by the holes actually occurs in three steps.In the first step,a hole is captured by the passivated defect,resulting in the stretching of the Si-H bond.In the second step,the defect captures one more hole,which may contribute to the breaking of the Si-H bond.The H atom is released as a proton and the Si atom is three-coordinated and positively charged.In the third step,an electron is captured by the Si atom,and the Si atom becomes neutral.In this step,a Pb-type defect is reactivated.展开更多
It is well known that in the process of thermal oxidation of silicon,there are P_(b)-type defects at amorphous silicon dioxide/silicon(a-SiO_(2)/Si)interface due to strain.These defects have a very important impact on...It is well known that in the process of thermal oxidation of silicon,there are P_(b)-type defects at amorphous silicon dioxide/silicon(a-SiO_(2)/Si)interface due to strain.These defects have a very important impact on the performance and reliability of semiconductor devices.In the process of passivation,hydrogen is usually used to inactivate P_(b)-type defects by the reaction P_(b)+H_(2)→P_(b)H+H.At the same time,P_(b)H centers dissociate according to the chemical reaction P_(b)H→P_(b)+H.Therefore,it is of great significance to study the balance of the passivation and dissociation.In this work,the reaction mechanisms of passivation and dissociation of the P_(b)-type defects are investigated by first-principles calculations.The reaction rates of the passivation and dissociation are calculated by the climbing image-nudged elastic band(CI-NEB)method and harmonic transition state theory(HTST).By coupling the rate equations of the passivation and dissociation reactions,the equilibrium density ratio of the saturated interfacial dangling bonds and interfacial defects(P_(b),P_(b)0,and P_(b)1)at different temperatures is calculated.展开更多
By using newly developed CuNi5~25Ti16~28 B rapldly solidifled brazing filler the joining of Si3 N4/1.25Cr-0.5Mo steel has been carried out with interlayer method. If employing the interlayer structure of steel (0.2 mm...By using newly developed CuNi5~25Ti16~28 B rapldly solidifled brazing filler the joining of Si3 N4/1.25Cr-0.5Mo steel has been carried out with interlayer method. If employing the interlayer structure of steel (0.2 mm)/W (2.0 mm)/Ni(0.2 mm), the joint strength can be increased greatly compared with employing that of Ni/W/Ni, and the three point bend strength of the Joint shows the value of 261 MPa. The metallurgical behaviour at the interface between Si3N4 and the interlayer has been studied. It is found that Fe participated in the interfacial reactions between Si3N4 and the brazing filler at the Si3N4/steel (0.2 mm) interface and the compound Fe5Si3 was produced. However, since the reactions of Fe with the active Ti are weaker than those of Ni with Ti, the normal inter facial reactions were still assured at the interface of Si3N4/steel (0.2 mm) instead of Si3N4/Ni (0.2 mm), resulting in the improvement of the joint strength. The mechanism of the formation of Fe5Si3 is also discussed. Finally, some ideas to further ameliorate and simplify the interlayer structure are put forward.展开更多
On the basis of thermodynamic and kinetic consideration of Ge-O system,high-pressure oxidation(HPO)on Ge was proposed to suppress the GeO desorption during the thermal oxidation and significant improvements of Ge/GeO2...On the basis of thermodynamic and kinetic consideration of Ge-O system,high-pressure oxidation(HPO)on Ge was proposed to suppress the GeO desorption during the thermal oxidation and significant improvements of Ge/GeO2-based gate stacks have been achieved.It is found that the post oxidation annealing at lower temperatures is helpful to passivate the interface defects at the Ge/GeO2 stack generated by the conventional thermal oxidation,while the high-quality GeO2 bulk properties can only be achieved by HPO that grows GeO2 film at high temperatures without the GeO desorption.This paper reviews the advantage of HPO on the formation of Ge/GeO2 stacks in terms of Ge/GeO2 interface and GeO2 bulk properties.展开更多
Interaction behaviors between Al-Si, Zn-Al alloys and Al2O)3p)/6061Al composite at different heating temperatures were investigated. It is found that Al2O)3p)/6061Al composite can be wetted well by AlSi-1, AlSi-4 and ...Interaction behaviors between Al-Si, Zn-Al alloys and Al2O)3p)/6061Al composite at different heating temperatures were investigated. It is found that Al2O)3p)/6061Al composite can be wetted well by AlSi-1, AlSi-4 and Zn-Al alloys and an interaction layer forms between the alloy and composite during interaction. Little Al-Si alloys remain on the surface when they fully wet the composite and Si element in Al-Si alloy diffuses into composite entirely and assembles in the composite near the interface of Al-Si alloy/composite to form a Si-rich zone. The microstructure in interaction layer with Si penetration is still dense. Much more residual Zn-Al alloy exists on the surface of composite when it wets the composite, and porosities appear at the interface of Zn-Al alloy/composite. The penetration of elements Zn, Cu of Zn-Al alloy into composite leads to the generation of shrinkage cavities in the interaction layer and makes the microstructure of Al2O)3p)/6061Al composite loose.展开更多
基金Founded by the National Key Research and Development Program(No.2021YFB3802400)the National Natural Science Foundation of China(No.52161037)the Basic Research Project of Yunnan Province(No.202001AU070112)。
文摘The effect of deposition temperature on the morphology and optoelectronic performance of Ge/Si QDs grown by magnetron sputtering under low Ge deposition(~4 nm)was investigated by atomic force microscopy,Raman spectroscopy,and photoluminescence(PL)tests.The experimental results indicate that temperatures higher than 750℃effectively increase the crystallization rate and surface smoothness of the Si buffer layer,and temperatures higher than 600℃significantly enhance the migration ability of Ge atoms,thus increasing the probability of Ge atoms meeting and nucleating to form QDs on Si buffer layer,but an excessively high temperature will cause the QDs to undergo an Ostwald ripening process and thus develop into super large islands.In addition,some PL peaks were observed in samples containing small-sized,high-density Ge QDs,the photoelectric properties reflected by these peaks were in good agreement with the corresponding structural characteristics of the grown QDs.Our results demonstrate the viability of preparing high-quality QDs by magnetron sputtering at high deposition rate,and the temperature effect is expected to work in conjunction with other controllable factors to further regulate QD growth,which paves an effective way for the industrial production of QDs that can be used in future devices.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.61574171,61704127,11875229,51872251,and 12027813)。
文摘The single event effect(SEE) sensitivity of silicon–germanium heterojunction bipolar transistor(Si Ge HBT) irradiated by 100-Me V proton is investigated. The simulation results indicate that the most sensitive position of the Si Ge HBT device is the emitter center, where the protons pass through the larger collector-substrate(CS) junction. Furthermore, in this work the experimental studies are also carried out by using 100-Me V proton. In order to consider the influence of temperature on SEE, both simulation and experiment are conducted at a temperature of 93 K. At a cryogenic temperature, the carrier mobility increases, which leads to higher transient current peaks, but the duration of the current decreases significantly.Notably, at the same proton flux, there is only one single event transient(SET) that occurs at 93 K. Thus, the radiation hard ability of the device increases at cryogenic temperatures. The simulation results are found to be qualitatively consistent with the experimental results of 100-Me V protons. To further evaluate the tolerance of the device, the influence of proton on Si Ge HBT after gamma-ray(^(60)Coγ) irradiation is investigated. As a result, as the cumulative dose increases, the introduction of traps results in a significant reduction in both the peak value and duration of the transient currents.
基金the support from National Natural Science Foundation of China (22179006)International Science & Technology Cooperation Program of China under Contract No.2019YFE0100200+3 种基金National Natural Science Foundation of China (52072036)NSAF (No.U1930113)Guangdong Key Laboratory of Battery Safety,China (No.2019B121203008)China Postdoctoral Science Foundation (No.2021TQ0034)。
文摘Lithium metal batteries represent promising candidates for high-energy-density batteries, however, many challenges must still be overcome,e.g., interface instability and dendrite growth. In this work, nano silica aerogel was employed to generate a hybrid film with high lithium ion conductivity(0.6 mS cm^(-1)at room temperature) via an in situ crosslinking reaction. TOF-SIMS profile analysis has revealed conversion mechanism of hybrid film to Li–Si alloy/Li F biphasic interface layer, suggesting that the Li–Si alloy and Li F-rich interface layer promoted rapid Li+transport and shielded the Li anodes from corrosive reactions with electrolyte-derived products. When coupled with nickel-cobalt-manganese-based cathodes, the batteries achieve outstanding capacity retention over 1000 cycles at 1 C. Additionally the developed film coated on Li enabled high coulombic efficiency(99.5%) after long-term cycling when coupled with S cathodes. Overall, the results presented herein confirm an effective strategy for the development of high-energy batteries.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61534004,61604112 and 61622405
文摘TiO2deposited at extremely low temperature of 120°C by atomic layer deposition is inserted between metal and n-Ge to relieve the Fermi level pinning. X-ray photoelectron spectroscopy and cross-sectional transmission electron microscopy indicate that the lower deposition temperature tends to effectively eliminate the formation of GeOxto reduce the tunneling resistance. Compared with TiO2deposited at higher temperature of 250°C,there are more oxygen vacancies in lower-temperature-deposited TiO2, which will dope TiO2contributing to the lower tunneling resistance. Al/TiO2/n-Ge metal-insulator-semiconductor diodes with 2 nm 120°C deposited TiO2achieves 2496 times of current density at-0.1 V compared with the device without the TiO2interface layer case, and is 8.85 times larger than that with 250°C deposited TiO2. Thus inserting extremely low temperature deposited TiO2to depin the Fermi level for n-Ge may be a better choice.
基金supported by the National Natural Science Foundation of China programs(52007110,22078179,21901146)the Natural Science Foundation of Shandong Province(ZR2020QB048)the Taishan Scholar Foundation(tsqn201812063)。
文摘Silicon is emerging as a promising next-generation lithium-ion battery anode because of its high theoretical capacity and low cost.However,the poor cyclability and inferior rate performance hinder its largescale applications.Here,hollow silicon/germanium(H-SiGe)nanospheres with a binary-active component and heterogeneous structure combined with porous carbon(pC)reinforcing are synthesized as lithium-ion battery anodes.Experimental studies demonstrate that the H-SiGe/pC anodes possess tiny volume expansion,high ion/electron conductivity,and stable electrode interface.Theoretical calculations confirm that through the replacement of Si using Ge with rational component control,the diffusion energy barrier of lithium will be reduced and lithium storage ability can be improved because of the slight charge polarization.Benefiting from these unique merits,the H-SiGe/pC anodes display a high initial specific capacity of 2922.2 mA h g^(-1)at 0.1 A g^(-1),superior rate capability(59.4%capacity retention from 0.5 to 8 A g^(-1)),and excellent cycling stability(81%retention after 700 cycles at 5 A g^(-1)at 1.0–1.2 mg cm^(-2)).An outstanding stability is preserved even at a high loading of 3.2 mg cm^(-2)with an improved reversible capacity of 429.1 mA h g^(-1)after 500 cycles at 4 A g^(-1).Furthermore,the full-cell with the prelithiated H-SiGe/pC anode and LiFePO4cathode exhibits an impressive capacity performance.
基金Supported by the National Grand Fundamental Research 973 Program of China (No. 51310Z07-3) and the Research Program of Application of Sichuan Department of Science and Technology (No. 02GY029-006)
文摘Novel models (2× 1) of Si(001)-SiO2 interface structure have been established. The method of the first-principle General Gradient Approximation (GGA) is employed to structurally optimize the established theoretical models under the K-point space of periodic boundary condition. The structures after optimization have been analyzed, and the results show that the interfaces present in disordered state and both Si-O-Si and Si=O structures exist. Meanwhile, the bonding of surface structure is analyzed via the graphics of electron localization function(ELF).
基金supported by the National Natural Science Foundation of China [51571086]Research Fund for Doctoral Program of Henan Polytechnic University [B2015-14]。
文摘The microstructure of primary Mg_(2)Si and the interface of Mg_(2)Si/α-Mg modified by Sn and Sb elements in an as-cast Mg-5Sn-2Si-1.5Al-1Zn-0.8Sb(wt.%) alloy were investigated.In the primary Mg_(2)Si phase not only the Si atoms but also the Mg atoms could be substituted by Sn and Sb atoms,resulting in the slightly reduced lattice constant a of 0.627 nm.An OR of Mg_(2)Si phase and α-Mg in the form of[001]Mg_(2)Si‖[01■1]α,(220)Mg_(2)Si‖(0■12)αwas discovered.Between primary Mg_(2)Si phase and α-Mg matrix two transitional nano-particle layers were formed.In the rim region of primary Mg_(2)Si particle,Mg_(2)Sn precipitates sizing from 5 nm to 50 nm were observed.Adjacent to the boundary of primary Mg_(2)Si particle,luxuriant columnar crystals of primary Mg_(2)Sn phase with width of about 25 nm and length of about100 nm were distributed on the α-Mg matrix.The lattice constant of the Mg_(2)Sn precipitate in primary Mg_(2)Si particle was about 0.756 nm.Three ORs between Mg_(2)Sn and Mg_(2)Si were found,in which the Mg_(2)Sn precipitates had strong bonding interfaces with Mg_(2)Si phase.Three new minor ORs between Mg_(2)Sn phase and α-Mg were found.The lattice constant of primary Mg_(2)Sn phase was enlarged to 0.813 nm owing to the solution of Sn and Sb atoms.Primary Mg_(2)Sn had edge-to-edge interfaces with α-Mg.Therefore,the primary Mg_(2)Si particle and α-Mg were united and the interfacial adhesion was improved by the two nano-particles layers of Mg_(2)Sn phase.
基金Funded by the National Natural Science Foundation of China (No. 61704113)the Higher Vocational Brand Mayer in Guangdong Province (No.610103)the Educational Science Planning Project of Guangdong Province (Higher Education Special)。
文摘The Ge metal-oxide-semiconductor (MOS) capacitors were fabricated with HfO2 as gate dielectric.AlON,NdON,and NdAlON were deposited between the gate dielectric and the Ge substrate as the interfacial passivation layer (IPL).The electrical properties (such as capacitance-voltage (C-V) and gate leakage current density versus gate voltage (J_(g)-V_(g))) were measured by HP4284A precision LCR meter and HP4156A semiconductor parameter analyzer.The chemical states and interfacial quality of the high-k/Ge interface were investigated by X-ray photoelectron spectroscopy (XPS).The experimental results show that the sample with the NdAlON as IPL exhibits the excellent interfacial and electrical properties.These should be attributed to an effective suppression of the Ge suboxide and HfGeOx interlayer,and an enhanced blocking role against inter-diffusion of the elements during annealing by the NdAlON IPL.
文摘This paper presents a two-agent framework to build a natural langua g e query interface for IC information system, focusing more on scope queries in a single English sentence. The first agent, parsing agent, syntactically p rocesses and semantically interprets natural language sentence to construct a fu zzy structured query language (SQL) statement. The second agent, defuzzif ying agent, defuzzifies the imprecise part of the fuzzy SQL statement into its e quivalent executable precise SQL statement based on fuzzy rules. The first agent can also actively ask the user some necessary questions when it manages to disa mbiguate the vague retrieval requirements. The adaptive defuzzification approach employed in the defuzzifying agent is discussed in detail. A prototype interface has been implemented to demonstrate the effectiveness.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61176044 and 11074224)the Science and Technology Project for Innovative Scientist of Henan Province,China(Grant No.1142002510017)the Science and Technology Project on Key Problems of Henan Province,China(Grant No.082101510007)
文摘The electron transport behavior across the interface plays an important role in determining the performance of op- toelectronic devices based on heterojunctions. Here through growing CdS thin film on silicon nanoporous pillar array, an untraditional, nonplanar, and multi-interface CdS/Si nanoheterojunction is prepared. The current density versus voltage curve is measured and an obvious rectification effect is observed. Based on the fitting results and model analyses on the forward and reverse conduction characteristics, the electron transport mechanism under low forward bias, high forward bias, and reverse bias are attributed to the Ohmic regime, space-charge-limited current regime, and modified Poole-Frenkel regime respectively. The forward and reverse electrical behaviors are found to be highly related to the distribution of inter- facial trap states and the existence of localized electric field respectively. These results might be helpful for optimizing the preparing procedures to realize high-performance silicon-based CdS optoelectronic devices.
基金Project supported by the Science Challenge Project(Grant No.TZ2016003-1-105)Tianjin Natural Science Foundation,China(Grant No.20JCZDJC00750)the Fundamental Research Funds for the Central Universities—Nankai University(Grant Nos.63211107 and 63201182)。
文摘The holes induced by ionizing radiation or carrier injection can depassivate saturated interface defects.The depassivation of these defects suggests that the deep levels associated with the defects are reactivated,affecting the performance of devices.This work simulates the depassivation reactions between holes and passivated amorphous-SiO_(2)/Si interface defects(HP_(b)+h→P_(b)+H^(+)).The climbing image nudged elastic band method is used to calculate the reaction curves and the barriers.In addition,the atomic charges of the initial and final structures are analyzed by the Bader charge method.It is shown that more than one hole is trapped by the defects,which is implied by the reduction in the total number of valence electrons on the active atoms.The results indicate that the depassivation of the defects by the holes actually occurs in three steps.In the first step,a hole is captured by the passivated defect,resulting in the stretching of the Si-H bond.In the second step,the defect captures one more hole,which may contribute to the breaking of the Si-H bond.The H atom is released as a proton and the Si atom is three-coordinated and positively charged.In the third step,an electron is captured by the Si atom,and the Si atom becomes neutral.In this step,a Pb-type defect is reactivated.
基金Project supported by the Science Challenge Project,China(Grant No.TZ2016003-1-105)the Tianjin Natural Science Foundation,China(Grant No.20JCZDJC00750)the Fundamental Research Funds for the Central Universities,Nankai University(Grant Nos.63211107 and 63201182).
文摘It is well known that in the process of thermal oxidation of silicon,there are P_(b)-type defects at amorphous silicon dioxide/silicon(a-SiO_(2)/Si)interface due to strain.These defects have a very important impact on the performance and reliability of semiconductor devices.In the process of passivation,hydrogen is usually used to inactivate P_(b)-type defects by the reaction P_(b)+H_(2)→P_(b)H+H.At the same time,P_(b)H centers dissociate according to the chemical reaction P_(b)H→P_(b)+H.Therefore,it is of great significance to study the balance of the passivation and dissociation.In this work,the reaction mechanisms of passivation and dissociation of the P_(b)-type defects are investigated by first-principles calculations.The reaction rates of the passivation and dissociation are calculated by the climbing image-nudged elastic band(CI-NEB)method and harmonic transition state theory(HTST).By coupling the rate equations of the passivation and dissociation reactions,the equilibrium density ratio of the saturated interfacial dangling bonds and interfacial defects(P_(b),P_(b)0,and P_(b)1)at different temperatures is calculated.
文摘By using newly developed CuNi5~25Ti16~28 B rapldly solidifled brazing filler the joining of Si3 N4/1.25Cr-0.5Mo steel has been carried out with interlayer method. If employing the interlayer structure of steel (0.2 mm)/W (2.0 mm)/Ni(0.2 mm), the joint strength can be increased greatly compared with employing that of Ni/W/Ni, and the three point bend strength of the Joint shows the value of 261 MPa. The metallurgical behaviour at the interface between Si3N4 and the interlayer has been studied. It is found that Fe participated in the interfacial reactions between Si3N4 and the brazing filler at the Si3N4/steel (0.2 mm) interface and the compound Fe5Si3 was produced. However, since the reactions of Fe with the active Ti are weaker than those of Ni with Ti, the normal inter facial reactions were still assured at the interface of Si3N4/steel (0.2 mm) instead of Si3N4/Ni (0.2 mm), resulting in the improvement of the joint strength. The mechanism of the formation of Fe5Si3 is also discussed. Finally, some ideas to further ameliorate and simplify the interlayer structure are put forward.
基金The author would like to thank Prof.Akira Toriumi,Prof.Kita Koji,Prof.Kosuke Nagashio,and Dr.Tomonori Nishimura at the University of Tokyo for their continuous support and encouragement,which induced the main results reviewed in this paper.
文摘On the basis of thermodynamic and kinetic consideration of Ge-O system,high-pressure oxidation(HPO)on Ge was proposed to suppress the GeO desorption during the thermal oxidation and significant improvements of Ge/GeO2-based gate stacks have been achieved.It is found that the post oxidation annealing at lower temperatures is helpful to passivate the interface defects at the Ge/GeO2 stack generated by the conventional thermal oxidation,while the high-quality GeO2 bulk properties can only be achieved by HPO that grows GeO2 film at high temperatures without the GeO desorption.This paper reviews the advantage of HPO on the formation of Ge/GeO2 stacks in terms of Ge/GeO2 interface and GeO2 bulk properties.
文摘Interaction behaviors between Al-Si, Zn-Al alloys and Al2O)3p)/6061Al composite at different heating temperatures were investigated. It is found that Al2O)3p)/6061Al composite can be wetted well by AlSi-1, AlSi-4 and Zn-Al alloys and an interaction layer forms between the alloy and composite during interaction. Little Al-Si alloys remain on the surface when they fully wet the composite and Si element in Al-Si alloy diffuses into composite entirely and assembles in the composite near the interface of Al-Si alloy/composite to form a Si-rich zone. The microstructure in interaction layer with Si penetration is still dense. Much more residual Zn-Al alloy exists on the surface of composite when it wets the composite, and porosities appear at the interface of Zn-Al alloy/composite. The penetration of elements Zn, Cu of Zn-Al alloy into composite leads to the generation of shrinkage cavities in the interaction layer and makes the microstructure of Al2O)3p)/6061Al composite loose.