期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Interfacial nitrogen engineering of robust silicon/MXene anode toward high energy solid-state lithium-ion batteries 被引量:5
1
作者 Xiang Han Weijun Zhou +8 位作者 Minfeng Chen Jizhang Chen Guanwen Wang Bo Liu Linshan Luo Songyan Chen Qiaobao Zhang Siqi Shi Ching-Ping Wong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第4期727-735,共9页
Replacing the conventional carbonate electrolyte by solid-state electrolyte (SSE) will offer improved safety for lithium-ion batteries.To further improve the energy density,Silicon (Si) is attractive for next generati... Replacing the conventional carbonate electrolyte by solid-state electrolyte (SSE) will offer improved safety for lithium-ion batteries.To further improve the energy density,Silicon (Si) is attractive for next generation solid-state battery (SSB) because of its high specific capacity and low cost.High energy density and safe Si-based SSB,however,is plagued by large volume change that leads to poor mechanical stability and slow lithium ions transportation at the multiple interfaces between Si and SSE.Herein,we designed a self-integrated and monolithic Si/two dimensional layered T_(3)C_(2)T_(x)(MXene,T_(x) stands for terminal functional groups) electrode architecture with interfacial nitrogen engineering.During a heat treatment process,the polyacrylonitrile not only converts into amorphous carbon (a-C) that shells Si but also forms robust interfacial nitrogen chemical bonds that anchors Si and MXene.During repeated lithiation and delithiation processes,the robust interfacial engineered Si/MXene configuration enhances the mechanical adhesion between Si and MXene that improves the structure stability but also contributes to form stable solid-electrolyte interphase (SEI).In addition,the N-MXene provides fast lithium ions transportation pathways.Consequently,the Si/MXene with interfacial nitrogen engineering (denoted as Si-N-MXene) deliveres high-rate performance with a specific capacity of 1498 m Ah g^(-1) at a high current of 6.4 A g^(-1).A Si-N-MXene/NMC full cell exhibited a capacity retention of 80.5%after 200 cycles.The Si-N-MXene electrode is also applied to SSB and shows a relative stable cycling over 100 cycles,demonstrating the versatility of this concept. 展开更多
关键词 Solid-state lithium-ion battery Monolithic si/mxene anode Interfacial nitrogen engineering Lithium ions transportation
下载PDF
Si@C/MXene复合材料的合成及其储锂性能研究
2
作者 邢凯 查振龙 +2 位作者 田浩祥 惠学文 吴正颖 《当代化工研究》 2022年第18期67-70,共4页
锂离子电池因具有高能量密度、长循环寿命和低自放电等特点,被认为是最有前景的储能设备之一。硅(Si)负极材料因极高的理论可逆比容量成为锂离子电池负极材料的研究热点。但硅负极的导电率低且循环过程中易粉化等不足阻碍了其进一步发... 锂离子电池因具有高能量密度、长循环寿命和低自放电等特点,被认为是最有前景的储能设备之一。硅(Si)负极材料因极高的理论可逆比容量成为锂离子电池负极材料的研究热点。但硅负极的导电率低且循环过程中易粉化等不足阻碍了其进一步发展。本文以新型导电MXene材料Ti_(3)C_(2)为基体,在模板剂的导向下将硅源引入MXene层间并发生水解缩合生成二氧化硅(SiO_(2));接着通过热处理形成SiO_(2)/C/MXene复合物;随后采用高温镁热还原将SiO_(2)还原成纳米Si,成功获得Si@C/MXene材料。所得复合材料中含有12%(At.%)的硅纳米粒子,包裹C的Si纳米粒子均匀得生长在MXene材料的片层间,形成共组装结构。复合材料在用作锂离子负极材料时,表现出良好的充放电性能,首圈比容量达到851mAh·g^(-1)。并且,在不同电流密度下,Si@C/MXene材料均表现出比未还原的SiO_(2)/C/MXene材料更好的储锂性能。 展开更多
关键词 纳米硅 mxene 复合材料 储锂性能
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部