The feature of conduction band (CB) of Tensile-Strained Si(TS-Si) on a relaxed Si1-xGex substrate is systematically investigated, including the number of equivalent CB edge energy extrema, CB energy minima, the po...The feature of conduction band (CB) of Tensile-Strained Si(TS-Si) on a relaxed Si1-xGex substrate is systematically investigated, including the number of equivalent CB edge energy extrema, CB energy minima, the position of the extremal point, and effective mass. Based on an analysis of symmetry under strain, the number of equivalent CB edge energy extrema is presented; Using the K.P method with the help of perturbation theory, dispersion relation near minima of CB bottom energy, derived from the linear deformation potential theory, is determined, from which the parameters, namely, the position of the extremal point, and the longitudinal and transverse masses (m1^* and mt^*)are obtained.展开更多
In this paper, a p-i-n heterojunction based on strain-compensated Si/Si1-xGex/Si multiple quantum wells on relaxed Si1-yGey is proposed for photodetection applications. The Si1-yGey/Si/Si1-xGex/Si/Si1-yGey stack consi...In this paper, a p-i-n heterojunction based on strain-compensated Si/Si1-xGex/Si multiple quantum wells on relaxed Si1-yGey is proposed for photodetection applications. The Si1-yGey/Si/Si1-xGex/Si/Si1-yGey stack consists in a W-like potential profile strain-compensated in the two low absorption windows of silica fibers infrared (IR) photodetectors. These computations have been used for the study of p-i-n infrared photodetectors operating at room temperature (RT) in the range 1.3 - 1.55 μm. The electron transport in the Si/Si1-xGex/Si multi-quantum wells-based p-i-n structure was analyzed and numerically simulated taking into account tunneling process and thermally activated transfer through the barriers mainly. These processes were modeled with a system of Schrodinger and kinetic equations self-consistently resolved with the Poisson equation. Temperature dependence of zero-bias resistance area product (RoA) and bias-dependent dynamic resistance of the diode have been analyzed in details to investigate the contribution of dark current mechanisms which reduce the electrical performances of the diode.展开更多
文摘The feature of conduction band (CB) of Tensile-Strained Si(TS-Si) on a relaxed Si1-xGex substrate is systematically investigated, including the number of equivalent CB edge energy extrema, CB energy minima, the position of the extremal point, and effective mass. Based on an analysis of symmetry under strain, the number of equivalent CB edge energy extrema is presented; Using the K.P method with the help of perturbation theory, dispersion relation near minima of CB bottom energy, derived from the linear deformation potential theory, is determined, from which the parameters, namely, the position of the extremal point, and the longitudinal and transverse masses (m1^* and mt^*)are obtained.
文摘In this paper, a p-i-n heterojunction based on strain-compensated Si/Si1-xGex/Si multiple quantum wells on relaxed Si1-yGey is proposed for photodetection applications. The Si1-yGey/Si/Si1-xGex/Si/Si1-yGey stack consists in a W-like potential profile strain-compensated in the two low absorption windows of silica fibers infrared (IR) photodetectors. These computations have been used for the study of p-i-n infrared photodetectors operating at room temperature (RT) in the range 1.3 - 1.55 μm. The electron transport in the Si/Si1-xGex/Si multi-quantum wells-based p-i-n structure was analyzed and numerically simulated taking into account tunneling process and thermally activated transfer through the barriers mainly. These processes were modeled with a system of Schrodinger and kinetic equations self-consistently resolved with the Poisson equation. Temperature dependence of zero-bias resistance area product (RoA) and bias-dependent dynamic resistance of the diode have been analyzed in details to investigate the contribution of dark current mechanisms which reduce the electrical performances of the diode.