Al-Si-Fe based alloys are attractive light-weight structural materials for automotive engine components because of their high wear resistance, low density and low thermal expansion. Al-17Si 5Fe-2Cu-lMg-lNi-lZr alloys ...Al-Si-Fe based alloys are attractive light-weight structural materials for automotive engine components because of their high wear resistance, low density and low thermal expansion. Al-17Si 5Fe-2Cu-lMg-lNi-lZr alloys were produced in compact form by a spark plasma sintering (SPS) technique using gas atomized powders. The mean grain size of the compact was 530 nm, and fine equiaxed grains and uniformly distributed precipitates were observed in the compact. The compressive deformation behavior of the SPSed materials was examined at various temperatures and strain rates. All the true stress-true strain curves showed steady state flow after reaching peak stress. The peak stress decreased with increasing test temperature and decreasing strain rate. In the deformed specimens, the equiaxed grain morphology and the dislocation microstructure within the equiaxed grains were observed. These facts strongly indicated the occurrence of dynamic recrystallization during high temperature deformation of the present alloy.展开更多
Scanning electron microscopy and X-ray energy dispersive spectrum analysis show that the clusters of intermetallic AlFeSi particle are distributed on or near the aluminum foil stock surfaces heterogeneously. 3D finite...Scanning electron microscopy and X-ray energy dispersive spectrum analysis show that the clusters of intermetallic AlFeSi particle are distributed on or near the aluminum foil stock surfaces heterogeneously. 3D finite element modeling shows that these clusters of hard particles induce the fracture of the nano-scale lubricant oil film at first and further lead to severe deformation in the nearby aluminum foil substrate along the rolling direction. Consequently, the optical property in this region differs from that in the surroundings, resulting in surface defects.展开更多
A thermodynamic assessment of the Al-Fe-Mn-Si quaternary system and its subsystems was performed by the Calphad method. First, the Al-Fe-Si ternary description was deeply revised by considering the most recent experim...A thermodynamic assessment of the Al-Fe-Mn-Si quaternary system and its subsystems was performed by the Calphad method. First, the Al-Fe-Si ternary description was deeply revised by considering the most recent experimental investigations and employing new models to ternary compounds. Significant improvements were made on the calculated liquidus projection over the entire compositional range, especially in the Al-rich corner. The Al-Mn-Si system was refined in the Al-rich region by adopting new models for the two ternary compounds, a-AlMnSi and β-AlMnSi. The extended solubility of the a-AlMnSi phase into the Al-Fe-Mn-Si quaternary system was modeled to reproduce the phase equilibria in the Al-rich region. Special cares were taken in order to prevent a-AlMnSi from becoming stable in the Al-Fe-Si ternary system. The obtained thermodynamic descriptions were then implemented into the TCAL database, and extensively validated with phase equilibrium calculations and solidification simulations against experimental data/information from commercial aluminum alloys. The updated TCAL database can reliably predict the phase formation in Al-Fe-Si- and Al-Fe-Mn-Si-based aluminum alloys.展开更多
The Fe-Si mechanical alloying and its transformation are investigated to evaluate whether mechanical alloying is a useful process for producing Fe-Si alloy. The mechanical alloying process of Fe-Si powders is studied ...The Fe-Si mechanical alloying and its transformation are investigated to evaluate whether mechanical alloying is a useful process for producing Fe-Si alloy. The mechanical alloying process of Fe-Si powders is studied by SEM( scanning electron microscopy), EDS(energy dispersive spectrometer)and XRD(X-ray diffraction). The results show that the ball milling process first makes tough Fe powder a lump structure and brittle Si powder a small particle, and then as the mill power increases, the tough powder of iron with a lamellar structure forms and the Si particles lies on or between the Fe lamellas. Finally, the Fe and Si powders are mechanically alloyed through atom diffusion. So the Fe and Si powders can be alloyed by 15 h ball milling at a speed of 400 r/min and with a ball-to-powder ratio of 40 : 1. After heating at 1 243 K for 1 h, the milled powders transform to α-FeSi2, and after heating at 1 243 K for 1 h, then cooling to 1 073 K for 1 h, the milled powders transform to β-FeSi2. Therefore, the monophase α-FeSi2 or β-FeSi2 can be obtained by heat treatment of mechanically alloyed Fe-Si powders.展开更多
Microstructural evolution of a cold-rolled Al-Mn-Fe-Si alloy during annealing was studied. Except the as-cast variant, two other different homogenizations were considered, one gave a high density of fine dispersiods p...Microstructural evolution of a cold-rolled Al-Mn-Fe-Si alloy during annealing was studied. Except the as-cast variant, two other different homogenizations were considered, one gave a high density of fine dispersiods providing a considerable Zener drag influencing the softening behavior while the other gave a lower density of coarser dispersoid structure providing a much smaller drag effect. The gradual microstructural evolutions during annealing for the three variants were captured by interrupting annealing at different time. Effects of microchemistry state on recrystallization kinetics, recrystallized grain structure and texture were characterized by EBSD. It is demonstrated that the actual softening kinetics, final microstructure and texture are a result of delicate balance between processing condition and microchemistry state. Strong concurrent precipitation takes place in the case with high concentration of Mn in solid solution, which suppresses nucleation and retards recrystallization and finally leads to grain structure of coarse elongated grains dominated by a P texture component together with a ND-rotated cube component. On the contrary, when solute content of Mn is low and pre-existing dispersoids are relatively coarser, faster recrystallization kinetics is exhibited together with an equiaxed grain structure with mainly cube texture.展开更多
Fe-C-Si-Mn alloy castings used as blades in hydroelectric generators are studied and found to contain network structures after some heat treatments. Castings after annealing and normalizing were analyzed by microscope...Fe-C-Si-Mn alloy castings used as blades in hydroelectric generators are studied and found to contain network structures after some heat treatments. Castings after annealing and normalizing were analyzed by microscope and transmission electron microscopy (TEM). The network formed during annealing was proved by TEM to be pearlite with very fine slices, while that formed during normalizing was proved by TEM and micro-hardness to be martensite or bainite. A theoretical analysis together with experimental studies has proved that the pearlite network is caused by carbon content increase in the interdendritic regions to which carbon atoms transfered from dendritic arms due to lower manganese content there during annealing, while the martensite or bainite network results from the higher hardenability of interdendritic regions where manganese content is higher. Experiments reveal that higher heating temperature or longer heating time enlarges the network size due to manganese homogenization. The network structure has a strengthening function like reinforcing rib, and the smaller the network size, the greater its strengthening capability.展开更多
3D microstructures of Fe–6.5%Si(mass fraction) alloys prepared under different cooling conditions were simulated via finite element-cellular automaton(CAFE) method. The simulated results were compared to experimental...3D microstructures of Fe–6.5%Si(mass fraction) alloys prepared under different cooling conditions were simulated via finite element-cellular automaton(CAFE) method. The simulated results were compared to experimental results and found to be in accordance. Variations in the temperature field and solid-liquid region, which plays important roles in determining solidification structures, were also examined under various cooling conditions. The proposed model was utilized to determine the effects of Gaussian distribution parameters to find that the lower the mean undercooling, the higher the equiaxed crystal zone ratio; also, the larger the maximum nucleation density, the smaller the grain size. The influence of superheat on solidification structure and columnar to equiaxed transition(CET) in the cast ingot was also investigated to find that decrease in superheat from 52 K to 20 K causes the equiaxed crystal zone ratio to increase from 58.13% to 65.6%, the mean gain radius to decrease from 2.102 mm to 1.871 mm, and the CET to occur ahead of schedule. To this effect, low superheat casting is beneficial to obtain finer equiaxed gains and higher equiaxed dendrite zone ratio in Fe–6.5%Si alloy cast ingots.展开更多
The stainless Fe-Mn-Si shape memory alloy(SMA) coating was prepared on the surface of AISI 304 stainless steel. The principal residual stress measured by the mechanical hole-drilling method indicates that the Fe-Mn-Si...The stainless Fe-Mn-Si shape memory alloy(SMA) coating was prepared on the surface of AISI 304 stainless steel. The principal residual stress measured by the mechanical hole-drilling method indicates that the Fe-Mn-Si SMA cladding specimen possesses a lower residual stress compared with the 304 stainless steel cladding specimen. The mean stress values of the former and the latter on 10-mm-thick substrate are 4.751 MPa and 7.399 MPa, respectively. What's more, their deformation values on 2-mm-thick substrate are about 0° and 15°, respectively. Meanwhile, the variation trend and the value of the residual stress simulated by the ANSYS finite element software consist with experimental results. The X-ray diffraction(XRD) pattern shows ε-martensite exists in Fe-Mn-Si SMA coating, which verifies the mechanism of low residual stress. That's the γ→ε martensite phase transformation, which relaxes the residual stress of the specimen and reduces its deformation in the laser cladding processing.展开更多
基金the financial supports of the Ministry of Knowledge Economy (Republic of Korea) through Grant No. 10033429Inha University Research Grant
文摘Al-Si-Fe based alloys are attractive light-weight structural materials for automotive engine components because of their high wear resistance, low density and low thermal expansion. Al-17Si 5Fe-2Cu-lMg-lNi-lZr alloys were produced in compact form by a spark plasma sintering (SPS) technique using gas atomized powders. The mean grain size of the compact was 530 nm, and fine equiaxed grains and uniformly distributed precipitates were observed in the compact. The compressive deformation behavior of the SPSed materials was examined at various temperatures and strain rates. All the true stress-true strain curves showed steady state flow after reaching peak stress. The peak stress decreased with increasing test temperature and decreasing strain rate. In the deformed specimens, the equiaxed grain morphology and the dislocation microstructure within the equiaxed grains were observed. These facts strongly indicated the occurrence of dynamic recrystallization during high temperature deformation of the present alloy.
基金Project(51074117)supported by the National Natural Science Foundation of ChinaProject(2009CDA044)supported by the Foundation for Distinguished Young Scientists of Hubei Province,ChinaProjects(201104493,20100471161)supported by the China Postdoctoral Science Foundation
文摘Scanning electron microscopy and X-ray energy dispersive spectrum analysis show that the clusters of intermetallic AlFeSi particle are distributed on or near the aluminum foil stock surfaces heterogeneously. 3D finite element modeling shows that these clusters of hard particles induce the fracture of the nano-scale lubricant oil film at first and further lead to severe deformation in the nearby aluminum foil substrate along the rolling direction. Consequently, the optical property in this region differs from that in the surroundings, resulting in surface defects.
文摘A thermodynamic assessment of the Al-Fe-Mn-Si quaternary system and its subsystems was performed by the Calphad method. First, the Al-Fe-Si ternary description was deeply revised by considering the most recent experimental investigations and employing new models to ternary compounds. Significant improvements were made on the calculated liquidus projection over the entire compositional range, especially in the Al-rich corner. The Al-Mn-Si system was refined in the Al-rich region by adopting new models for the two ternary compounds, a-AlMnSi and β-AlMnSi. The extended solubility of the a-AlMnSi phase into the Al-Fe-Mn-Si quaternary system was modeled to reproduce the phase equilibria in the Al-rich region. Special cares were taken in order to prevent a-AlMnSi from becoming stable in the Al-Fe-Si ternary system. The obtained thermodynamic descriptions were then implemented into the TCAL database, and extensively validated with phase equilibrium calculations and solidification simulations against experimental data/information from commercial aluminum alloys. The updated TCAL database can reliably predict the phase formation in Al-Fe-Si- and Al-Fe-Mn-Si-based aluminum alloys.
文摘The Fe-Si mechanical alloying and its transformation are investigated to evaluate whether mechanical alloying is a useful process for producing Fe-Si alloy. The mechanical alloying process of Fe-Si powders is studied by SEM( scanning electron microscopy), EDS(energy dispersive spectrometer)and XRD(X-ray diffraction). The results show that the ball milling process first makes tough Fe powder a lump structure and brittle Si powder a small particle, and then as the mill power increases, the tough powder of iron with a lamellar structure forms and the Si particles lies on or between the Fe lamellas. Finally, the Fe and Si powders are mechanically alloyed through atom diffusion. So the Fe and Si powders can be alloyed by 15 h ball milling at a speed of 400 r/min and with a ball-to-powder ratio of 40 : 1. After heating at 1 243 K for 1 h, the milled powders transform to α-FeSi2, and after heating at 1 243 K for 1 h, then cooling to 1 073 K for 1 h, the milled powders transform to β-FeSi2. Therefore, the monophase α-FeSi2 or β-FeSi2 can be obtained by heat treatment of mechanically alloyed Fe-Si powders.
基金supported by the KMB project (193179/I40) in NorwayThe financial support by the Research Council of Norway and the industrialpartners, Hydro Aluminium and Sapa Technology
文摘Microstructural evolution of a cold-rolled Al-Mn-Fe-Si alloy during annealing was studied. Except the as-cast variant, two other different homogenizations were considered, one gave a high density of fine dispersiods providing a considerable Zener drag influencing the softening behavior while the other gave a lower density of coarser dispersoid structure providing a much smaller drag effect. The gradual microstructural evolutions during annealing for the three variants were captured by interrupting annealing at different time. Effects of microchemistry state on recrystallization kinetics, recrystallized grain structure and texture were characterized by EBSD. It is demonstrated that the actual softening kinetics, final microstructure and texture are a result of delicate balance between processing condition and microchemistry state. Strong concurrent precipitation takes place in the case with high concentration of Mn in solid solution, which suppresses nucleation and retards recrystallization and finally leads to grain structure of coarse elongated grains dominated by a P texture component together with a ND-rotated cube component. On the contrary, when solute content of Mn is low and pre-existing dispersoids are relatively coarser, faster recrystallization kinetics is exhibited together with an equiaxed grain structure with mainly cube texture.
文摘Fe-C-Si-Mn alloy castings used as blades in hydroelectric generators are studied and found to contain network structures after some heat treatments. Castings after annealing and normalizing were analyzed by microscope and transmission electron microscopy (TEM). The network formed during annealing was proved by TEM to be pearlite with very fine slices, while that formed during normalizing was proved by TEM and micro-hardness to be martensite or bainite. A theoretical analysis together with experimental studies has proved that the pearlite network is caused by carbon content increase in the interdendritic regions to which carbon atoms transfered from dendritic arms due to lower manganese content there during annealing, while the martensite or bainite network results from the higher hardenability of interdendritic regions where manganese content is higher. Experiments reveal that higher heating temperature or longer heating time enlarges the network size due to manganese homogenization. The network structure has a strengthening function like reinforcing rib, and the smaller the network size, the greater its strengthening capability.
基金Project(2012AA03A505)supported by the High-Tech Research and Development Program of ChinaProject(51474023)supported by the National Natural Science Foundation of China
文摘3D microstructures of Fe–6.5%Si(mass fraction) alloys prepared under different cooling conditions were simulated via finite element-cellular automaton(CAFE) method. The simulated results were compared to experimental results and found to be in accordance. Variations in the temperature field and solid-liquid region, which plays important roles in determining solidification structures, were also examined under various cooling conditions. The proposed model was utilized to determine the effects of Gaussian distribution parameters to find that the lower the mean undercooling, the higher the equiaxed crystal zone ratio; also, the larger the maximum nucleation density, the smaller the grain size. The influence of superheat on solidification structure and columnar to equiaxed transition(CET) in the cast ingot was also investigated to find that decrease in superheat from 52 K to 20 K causes the equiaxed crystal zone ratio to increase from 58.13% to 65.6%, the mean gain radius to decrease from 2.102 mm to 1.871 mm, and the CET to occur ahead of schedule. To this effect, low superheat casting is beneficial to obtain finer equiaxed gains and higher equiaxed dendrite zone ratio in Fe–6.5%Si alloy cast ingots.
基金supported by the Fundamental Research Funds for the Central Universities of China(No.3132016354)
文摘The stainless Fe-Mn-Si shape memory alloy(SMA) coating was prepared on the surface of AISI 304 stainless steel. The principal residual stress measured by the mechanical hole-drilling method indicates that the Fe-Mn-Si SMA cladding specimen possesses a lower residual stress compared with the 304 stainless steel cladding specimen. The mean stress values of the former and the latter on 10-mm-thick substrate are 4.751 MPa and 7.399 MPa, respectively. What's more, their deformation values on 2-mm-thick substrate are about 0° and 15°, respectively. Meanwhile, the variation trend and the value of the residual stress simulated by the ANSYS finite element software consist with experimental results. The X-ray diffraction(XRD) pattern shows ε-martensite exists in Fe-Mn-Si SMA coating, which verifies the mechanism of low residual stress. That's the γ→ε martensite phase transformation, which relaxes the residual stress of the specimen and reduces its deformation in the laser cladding processing.