Si-based hydrolysis material system can be used in mobile/portable hydrogen source applications connected to fuel cells but is limited by alkaline solutions.In the present research,we reported an acid/alkaline free hy...Si-based hydrolysis material system can be used in mobile/portable hydrogen source applications connected to fuel cells but is limited by alkaline solutions.In the present research,we reported an acid/alkaline free hydrolysis systemcombining siliconwith NaBH4.Sampleswith different ratios between Si and NaBH4 are prepared via high energy ball milling and hydrolyzed in deionized water at different temperatures.Synergetic effect between silicon and NaBH4was found in the hydrolysis process.2Si-NaBH4 sample displays the best hydrolysis performances with the hydrogen yield of 1594 ml·g^(−1) in deionized water at 70℃.Thereafter,AlCl3 is added into the 2Si-NaBH4 sample to further improve its comprehensive properties.The effect of AlCl3 content and promotion mechanism of the reaction are explored.2Si-NaBH4-5 wt% AlCl3 sample shows a significant improvement with a high hydrogen yield of 1689 ml·g^(−1) in deionized water at 70℃ and a corresponding conversion rate of 95.8%,indicating that the Si-NaBH4-AlCl3 composite is promising to be a hydrogen source in applications of mobile/portable fuelcell-powered facilities.展开更多
基金financially supported by National Key R&D Program of China(No.2018YFB1502101)the International/Hongkong,Macao&Taiwan Scientific and Technological Innovation Cooperation Project(2019YFH0148)。
文摘Si-based hydrolysis material system can be used in mobile/portable hydrogen source applications connected to fuel cells but is limited by alkaline solutions.In the present research,we reported an acid/alkaline free hydrolysis systemcombining siliconwith NaBH4.Sampleswith different ratios between Si and NaBH4 are prepared via high energy ball milling and hydrolyzed in deionized water at different temperatures.Synergetic effect between silicon and NaBH4was found in the hydrolysis process.2Si-NaBH4 sample displays the best hydrolysis performances with the hydrogen yield of 1594 ml·g^(−1) in deionized water at 70℃.Thereafter,AlCl3 is added into the 2Si-NaBH4 sample to further improve its comprehensive properties.The effect of AlCl3 content and promotion mechanism of the reaction are explored.2Si-NaBH4-5 wt% AlCl3 sample shows a significant improvement with a high hydrogen yield of 1689 ml·g^(−1) in deionized water at 70℃ and a corresponding conversion rate of 95.8%,indicating that the Si-NaBH4-AlCl3 composite is promising to be a hydrogen source in applications of mobile/portable fuelcell-powered facilities.