采用分子束外延(Molecular Beam Epitaxy,MBE)法制备了高质量的npn型中波/中波双色HgCdTe材料。利用傅里叶变换红外光谱仪(Fourier Transform Infrared Spectrometer,FTIR)、二次离子质谱(Secondary Ion Mass Spectroscopy,SIMS)、X射...采用分子束外延(Molecular Beam Epitaxy,MBE)法制备了高质量的npn型中波/中波双色HgCdTe材料。利用傅里叶变换红外光谱仪(Fourier Transform Infrared Spectrometer,FTIR)、二次离子质谱(Secondary Ion Mass Spectroscopy,SIMS)、X射线双晶衍射仪(X-Ray double-crystal Diffractometer,XRD)分别测试了材料组分、厚度、元素分布和平均半峰宽等参数。结果表明,材料底部n型吸收层的碲镉汞组分为0.318,厚度为7.15 m;p型层的组分为0.392,厚度为2.47 m;顶部n型吸收层的组分为0.292,厚度为4.71 m。As掺杂浓度约为3×10^(18)cm^(-3),In掺杂浓度为4×10^(15)cm^(-3),平均半峰宽约为95 arcsec,表明该材料具有良好的质量。利用聚焦离子束(Focused Ion Beam,FIB)、扫描电子显微镜(Scanning Electron Microscope,SEM)、X射线能谱仪(Energy-Dispersive X-ray spectrometer,EDX)测试表征了HgCdTe外延材料表面缺陷的形貌,确认缺陷主要受生长温度和Hg/Te束流比等生长参数的影响。展开更多
Recycling useful materials such as Ag, Al, Sn, Cu and Si from waste silicon solar cell chips is a sustainable project to slow down the ever-growing amount of waste crystalline-silicon photovoltaic panels. However, the...Recycling useful materials such as Ag, Al, Sn, Cu and Si from waste silicon solar cell chips is a sustainable project to slow down the ever-growing amount of waste crystalline-silicon photovoltaic panels. However, the recovery cost of the above-mentioned materials from silicon chips via acid-alkaline treatments outweights the gain economically.Herein, we propose a new proof-of-concept to fabricate Si-based anodes with waste silicon chips as raw materials.Nanoparticles from waste silicon chips were prepared with the high-energy ball milling followed by introducing carbon nanotubes and N-doped carbon into the nanoparticles, which amplifies the electrochemical properties. It is explored that Al and Ag elements influenced electrochemical performance respectively. The results showed that the Al metal in the composite possesses an adverse impact on the electrochemical performance. After removing Al, the composite was confirmed to possess a pronounced durable cycling property due to the presence of Ag, resulting in significantly more superior property than the composite having both Al and Ag removed.展开更多
Interdigitated back contact silicon hetero-junction(IBC-SHJ) solar cells exhibit excellent performance owing to the IBC and SHJ structures.The front surface field(FSF) layer composed of electric field passivation and ...Interdigitated back contact silicon hetero-junction(IBC-SHJ) solar cells exhibit excellent performance owing to the IBC and SHJ structures.The front surface field(FSF) layer composed of electric field passivation and chemical passivation has been proved to play an important role in IBC-SHJ solar cells.The electric field passivated layer n^+-a-Si: H, an n-type Si alloy with carbon or oxygen in amorphous phase, is simulated in this study to investigate its effect on IBC-SHJ.It is indicated that the n^+-a-Si: H layer with wider band gap can reduce the light absorption on the front side efficaciously,which hinders the surface recombination of photo-generated carriers and thus contributes to the improvement of the short circuit current density Jsc.The highly doped n^+-a-Si: H can result in the remakable energy band bending, which makes it outstanding in the field passivation, while it makes little contribution to the chemical passivation.It is noteworthy that when the electric field intensity exceeds 1.3 × 10^5 V/cm, the efficiency decrease caused by the inferior chemical passivation is only 0.16%.In this study, the IBC-SHJ solar cell with a front n^+-a-Si: H field passivation layer is simulated, which shows the high efficiency of 26% in spite of the inferior chemical passivation on the front surface.展开更多
Ferroelectric materials have many interesting physical properties such as ferroelectricity, pyroelectricity, piezoelectricity, and opto-electricity, and applying ferroelectric materials in the forms of thin and thick ...Ferroelectric materials have many interesting physical properties such as ferroelectricity, pyroelectricity, piezoelectricity, and opto-electricity, and applying ferroelectric materials in the forms of thin and thick films and integrating them on the silicon substrate as electronic and MEMS devices is a very attractive research area and challenging. In this paper, we report our research works on ferroelectric MEMS and ferroelectric films for electronic device applications. Pyroelectric thin film infrared sensors have been made, characterized, and a 32×32 array with its size of 1cm×1cm has been obtained on Si membrane. Ferroelectric thin films in amorphous phase have been applied to make silicon based hydrogen gas sensors with the metal/amorphous ferroelectric film/metal device structure, and its turn-on voltage of about 4.5V at ~1000 ppm in air is about 7 times of the best value reported in the literature. For the application of electron emission flat panel display, ferroelectric BST thin films with excess Ti concentrations have been coated on Si tips, the threshold voltage of those ferroelectric film coated tips has been reduced about one order from ~70 V/μm to 4~10 V/μm for different Ti concentrations, and however, the electron emission current density has been increased at least 3~4 order for those coated tips compared to that of the bare Si tips. To fulfill in the thickness gap between thin film of typical ~1 μm made by PVD/CVD and polished ceramic wafer of ~50 μm from the bulk, piezoelectric films with thickness in a range of 1~30 μm have been successfully deposited on Si substrate at a low temperature of 650oC by a novel hybridized deposition technique, and piezoelectric MEMS ultrasonic arrays have been very recently obtained with the sound pressure level up to ~120 dB. More detailed results will be presented and mechanisms will be discussed.展开更多
Si-based optoelectronics is becoming a very active research area due to its potential applications to optical communications.One of the major goals of this study is to realize all-Si optoelectronic integrated circuit....Si-based optoelectronics is becoming a very active research area due to its potential applications to optical communications.One of the major goals of this study is to realize all-Si optoelectronic integrated circuit.This is due to the fact that Si-based optoelectronic technology can be compatible with Si microelectronic technology.If Si-based optoelectronic devices and integrated circuits can be achieved,it will lead to a new informational technological revolution.In the article,the current developments of this exciting field are mainly reviewed in the recent years.The involved contents are the realization of various Si-based optoelectronic devices,such as light-emitting diodes,optical waveguides devices,Si photonic bandgap crystals,and Si laser,etc.Finally,the developed tendency of all-Si optoelectronic integrated technology are predicted in the near future.展开更多
Amorphous–microcrystalline MoS_(2)thin films are fabricated using the sol-gel method to produce MoS_(2)/Si-based solar cells. The generation mechanisms of the S-shaped current density–voltage(J–V) curves of the sol...Amorphous–microcrystalline MoS_(2)thin films are fabricated using the sol-gel method to produce MoS_(2)/Si-based solar cells. The generation mechanisms of the S-shaped current density–voltage(J–V) curves of the solar cells are analyzed. To improve the performance of the solar cells and address the problem of the S-shaped J–V curve, a MoS_(2)film and a p^(+) layer are introduced into the front and back interfaces of the solar cell, respectively, which leads to the formation of a p–n junction between the p-Si and the MoS_(2)film as well as ohmic contacts between the MoS_(2)film and the ITO, improving the S-shaped J–V curve. As a result of the high doping characteristics and the high work function of the p^(+) layer, a high–low junction is formed between the p;and p layers along with ohmic contacts between the p;layer and the Ag electrode. Consequently,the S-shaped J–V curve is eliminated, and a significantly higher current density is achieved at a high voltage. The device exhibits ideal p–n junction rectification characteristics and achieves a high power-conversion efficiency(CE) of 7.55%. The findings of this study may improve the application of MoS_(2)thin films in silicon-based solar cells, which are expected to be widely used in various silicon-based electronic and optical devices.展开更多
基金Project(51774343) supported by the National Natural Science Foundation of China。
文摘Recycling useful materials such as Ag, Al, Sn, Cu and Si from waste silicon solar cell chips is a sustainable project to slow down the ever-growing amount of waste crystalline-silicon photovoltaic panels. However, the recovery cost of the above-mentioned materials from silicon chips via acid-alkaline treatments outweights the gain economically.Herein, we propose a new proof-of-concept to fabricate Si-based anodes with waste silicon chips as raw materials.Nanoparticles from waste silicon chips were prepared with the high-energy ball milling followed by introducing carbon nanotubes and N-doped carbon into the nanoparticles, which amplifies the electrochemical properties. It is explored that Al and Ag elements influenced electrochemical performance respectively. The results showed that the Al metal in the composite possesses an adverse impact on the electrochemical performance. After removing Al, the composite was confirmed to possess a pronounced durable cycling property due to the presence of Ag, resulting in significantly more superior property than the composite having both Al and Ag removed.
基金Project supported by the National Key Research Program of China(Grant Nos.2018YFB1500500 and 2018YFB1500200)the National Natural Science Foundation of China(Grant Nos.51602340,51702355,and 61674167)JKW Project,China(Grant No.31512060106)
文摘Interdigitated back contact silicon hetero-junction(IBC-SHJ) solar cells exhibit excellent performance owing to the IBC and SHJ structures.The front surface field(FSF) layer composed of electric field passivation and chemical passivation has been proved to play an important role in IBC-SHJ solar cells.The electric field passivated layer n^+-a-Si: H, an n-type Si alloy with carbon or oxygen in amorphous phase, is simulated in this study to investigate its effect on IBC-SHJ.It is indicated that the n^+-a-Si: H layer with wider band gap can reduce the light absorption on the front side efficaciously,which hinders the surface recombination of photo-generated carriers and thus contributes to the improvement of the short circuit current density Jsc.The highly doped n^+-a-Si: H can result in the remakable energy band bending, which makes it outstanding in the field passivation, while it makes little contribution to the chemical passivation.It is noteworthy that when the electric field intensity exceeds 1.3 × 10^5 V/cm, the efficiency decrease caused by the inferior chemical passivation is only 0.16%.In this study, the IBC-SHJ solar cell with a front n^+-a-Si: H field passivation layer is simulated, which shows the high efficiency of 26% in spite of the inferior chemical passivation on the front surface.
文摘Ferroelectric materials have many interesting physical properties such as ferroelectricity, pyroelectricity, piezoelectricity, and opto-electricity, and applying ferroelectric materials in the forms of thin and thick films and integrating them on the silicon substrate as electronic and MEMS devices is a very attractive research area and challenging. In this paper, we report our research works on ferroelectric MEMS and ferroelectric films for electronic device applications. Pyroelectric thin film infrared sensors have been made, characterized, and a 32×32 array with its size of 1cm×1cm has been obtained on Si membrane. Ferroelectric thin films in amorphous phase have been applied to make silicon based hydrogen gas sensors with the metal/amorphous ferroelectric film/metal device structure, and its turn-on voltage of about 4.5V at ~1000 ppm in air is about 7 times of the best value reported in the literature. For the application of electron emission flat panel display, ferroelectric BST thin films with excess Ti concentrations have been coated on Si tips, the threshold voltage of those ferroelectric film coated tips has been reduced about one order from ~70 V/μm to 4~10 V/μm for different Ti concentrations, and however, the electron emission current density has been increased at least 3~4 order for those coated tips compared to that of the bare Si tips. To fulfill in the thickness gap between thin film of typical ~1 μm made by PVD/CVD and polished ceramic wafer of ~50 μm from the bulk, piezoelectric films with thickness in a range of 1~30 μm have been successfully deposited on Si substrate at a low temperature of 650oC by a novel hybridized deposition technique, and piezoelectric MEMS ultrasonic arrays have been very recently obtained with the sound pressure level up to ~120 dB. More detailed results will be presented and mechanisms will be discussed.
文摘Si-based optoelectronics is becoming a very active research area due to its potential applications to optical communications.One of the major goals of this study is to realize all-Si optoelectronic integrated circuit.This is due to the fact that Si-based optoelectronic technology can be compatible with Si microelectronic technology.If Si-based optoelectronic devices and integrated circuits can be achieved,it will lead to a new informational technological revolution.In the article,the current developments of this exciting field are mainly reviewed in the recent years.The involved contents are the realization of various Si-based optoelectronic devices,such as light-emitting diodes,optical waveguides devices,Si photonic bandgap crystals,and Si laser,etc.Finally,the developed tendency of all-Si optoelectronic integrated technology are predicted in the near future.
基金Project supported by the Science and Technology Research Project of Hebei Province Colleges and Universities (Grant No. QN2020113)Tangshan Applied Basic Research Project (Grant No. 19130227g)。
文摘Amorphous–microcrystalline MoS_(2)thin films are fabricated using the sol-gel method to produce MoS_(2)/Si-based solar cells. The generation mechanisms of the S-shaped current density–voltage(J–V) curves of the solar cells are analyzed. To improve the performance of the solar cells and address the problem of the S-shaped J–V curve, a MoS_(2)film and a p^(+) layer are introduced into the front and back interfaces of the solar cell, respectively, which leads to the formation of a p–n junction between the p-Si and the MoS_(2)film as well as ohmic contacts between the MoS_(2)film and the ITO, improving the S-shaped J–V curve. As a result of the high doping characteristics and the high work function of the p^(+) layer, a high–low junction is formed between the p;and p layers along with ohmic contacts between the p;layer and the Ag electrode. Consequently,the S-shaped J–V curve is eliminated, and a significantly higher current density is achieved at a high voltage. The device exhibits ideal p–n junction rectification characteristics and achieves a high power-conversion efficiency(CE) of 7.55%. The findings of this study may improve the application of MoS_(2)thin films in silicon-based solar cells, which are expected to be widely used in various silicon-based electronic and optical devices.