期刊文献+
共找到79篇文章
< 1 2 4 >
每页显示 20 50 100
Light-emitting devices based on atomically thin MoSe_(2)
1
作者 Xinyu Zhang Xuewen Zhang +7 位作者 Hanwei Hu Vanessa Li Zhang Weidong Xiao Guangchao Shi Jingyuan Qiao Nan Huang Ting Yu Jingzhi Shang 《Journal of Semiconductors》 EI CAS CSCD 2024年第4期19-35,共17页
Atomically thin MoSe_(2) layers,as a core member of the transition metal dichalcogenides(TMDs)family,benefit from their appealing properties,including tunable band gaps,high exciton binding energies,and giant oscillat... Atomically thin MoSe_(2) layers,as a core member of the transition metal dichalcogenides(TMDs)family,benefit from their appealing properties,including tunable band gaps,high exciton binding energies,and giant oscillator strengths,thus pro-viding an intriguing platform for optoelectronic applications of light-emitting diodes(LEDs),field-effect transistors(FETs),sin-gle-photon emitters(SPEs),and coherent light sources(CLSs).Moreover,these MoSe_(2) layers can realize strong excitonic emis-sion in the near-infrared wavelengths,which can be combined with the silicon-based integration technologies and further encourage the development of the new generation technologies of on-chip optical interconnection,quantum computing,and quantum information processing.Herein,we overview the state-of-the-art applications of light-emitting devices based on two-dimensional MoSe_(2) layers.Firstly,we introduce recent developments in excitonic emission features from atomically thin MoSe_(2) and their dependences on typical physical fields.Next,we focus on the exciton-polaritons and plasmon-exciton polaritons in MoSe_(2) coupled to the diverse forms of optical microcavities.Then,we highlight the promising applications of LEDs,SPEs,and CLSs based on MoSe_(2) and their heterostructures.Finally,we summarize the challenges and opportunities for high-quality emis-sion of MoSe_(2) and high-performance light-emitting devices. 展开更多
关键词 MoSe_(2) light-matter interaction EXCITON POLARITON light-emitting device
下载PDF
Improving Efficiency by Doping PtOEP into Spiro Light-Emitting Devices
2
作者 赵俊卿 乔士柱 +3 位作者 许福运 张宁玉 庞岩涛 陈莹 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2008年第3期418-422,共5页
To investigate effective means of improving the efficiency of organic light-emitting devices (OLEDs) by making full use of ,triplet emission, a phosphorescent material Pt (II) Octaethylporphine (PtOEP) is doped ... To investigate effective means of improving the efficiency of organic light-emitting devices (OLEDs) by making full use of ,triplet emission, a phosphorescent material Pt (II) Octaethylporphine (PtOEP) is doped into polymer host polyspirobifluorene (Spiro) to allow radiative recombination of triplet excitons. The current and brightness characteristics of the devices are tested and the electroluminescent spectra are described. Both fluorescence and phosphorescence are ob- served,and an obvious increase in external quantum efficiency is realized compared to undoped devices when different phosphorescent dopant concentrations are tried. Thus,the phosphorescent emission from triplet excited states might be an effective way to increase the efficiency of OLEDs when the concentration of the phosphorescent dopant is properiy controlled. 展开更多
关键词 external quantum efficiency TRIPLET organic light-emitting device
下载PDF
Air-Stable Ultrabright Inverted Organic Light-Emitting Devices with Metal Ion-Chelated Polymer Injection Layer 被引量:5
3
作者 Shihao Liu Chunxiu Zang +6 位作者 Jiaming Zhang Shuang Tian Yan Wu Dong Shen Letian Zhang Wenfa Xie Chun-Sing Lee 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第1期239-249,共11页
Here,this work presents an air-stable ultrabright inverted organic lightemitting device(OLED)by using zinc ionchelated polyethylenimine(PEI)as electron injection layer.The zinc chelation is demonstrated to increase th... Here,this work presents an air-stable ultrabright inverted organic lightemitting device(OLED)by using zinc ionchelated polyethylenimine(PEI)as electron injection layer.The zinc chelation is demonstrated to increase the conductivity of the PEI by three orders of magnitude and passivate the polar amine groups.With these physicochemical properties,the inverted OLED shows a record-high external quantum efficiency of 10.0% at a high brightness of 45,610 cd m^(-2) and can deliver a maximum brightness of 121,865 cd m^(-2).Besides,the inverted OLED is also demonstrated to possess an excellent air stability(humidity,35%)with a half-brightness operating time of 541 h@1000 cd m^(-2) without any protection nor encapsulation. 展开更多
关键词 Air stability Ultrabright Electron injection Metal ion chelation Inverted organic light-emitting device
下载PDF
Improving efficiency of organic light-emitting devices by optimizing the LiF interlayer in the hole transport layer 被引量:2
4
作者 焦志强 吴晓明 +4 位作者 华玉林 董木森 苏跃举 申利莹 印寿根 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第10期426-429,共4页
The efficiency of organic light-emitting devices (OLEDs) based on N,N'-bis(1-naphthyl)-N,N'-diphenyl-N,1'- biphenyl-4,4'-diamine (NPB) (the hole transport layer) and tris(8-hydroxyquinoline) aluminum (A... The efficiency of organic light-emitting devices (OLEDs) based on N,N'-bis(1-naphthyl)-N,N'-diphenyl-N,1'- biphenyl-4,4'-diamine (NPB) (the hole transport layer) and tris(8-hydroxyquinoline) aluminum (Alq3) (both emission and electron transport layers) is improved remarkably by inserting a LiF interlayer into the hole transport layer. This thin LiF interlayer can effectively influence electrical performance and significantly improve the current efficiency of the device. A device with an optimum LiF layer thickness at the optimum position in NPB exhibits a maximum current efficiency of 5.96 cd/A at 215.79 mA/cm2, which is about 86% higher than that of an ordinary device (without a LiF interlayer, 3.2 cd/A). An explanation can be put forward that LiF in the NPB layer can block holes and balance the recombination of holes and electrons. The results may provide some valuable references for improving OLED current efficiency. 展开更多
关键词 organic light-emitting devices LIF INTERLAYER EFFICIENCY
下载PDF
Dependence of Performance of Organic Light-emitting Devices on Sheet Resistance of Indium-tin-oxide Anodes 被引量:2
5
作者 ZHOU Liang ZHANG Hong-jie YU Jiang-bo MENG Qing-guo PENG Chun-yun LIU Feng-yi DENG Rui-ping PENG Ze-ping LI Zhe-feng 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2006年第4期427-431,共5页
The dependence of the performance of organic light-emitting devices(OLEDs) on the sheet resistance of indiumtin-oxide(ITO) anodes was investigated by measuring the steady state current density brightness voltage c... The dependence of the performance of organic light-emitting devices(OLEDs) on the sheet resistance of indiumtin-oxide(ITO) anodes was investigated by measuring the steady state current density brightness voltage characteristics and the electroluminescent spectra. The device with a higher sheet resistance anode shows a lower current density, a lower brightness level, and a higher operation voltage. The electroluminescence(EL) efficiencies of the devices with the same structure but different ITO anodes show more complicated differences. Furthermore, the shift of the light-emitting zone toward the anode was found when an anode with a higher sheet resistance was used. These performance differences are discussed and attributed to the reduction of hole injection and the increase in voltage drop over ITO anode with the increase in sheet resistance. 展开更多
关键词 Organic light-emitting device(OLED) Indium-tin-oxide(ITO) Sheet resistance Balance of holes and electrons
下载PDF
Highly efficient polymer phosphorescent light-emitting devices based on a new polyfluorene derivative as host 被引量:1
6
作者 王保争 刘杰 +3 位作者 吴宏滨 张斌 文尚胜 杨伟 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第8期491-494,共4页
Several highly efficient iridium-complex polymer light-emitting devices (PLEDs) are fabricated, with a newly synthesized blue conjugated polymer, poly[(9,9-bis(4-(2-ethylhexyloxy)phenyl)-fluorene)-co-(3,7-dib... Several highly efficient iridium-complex polymer light-emitting devices (PLEDs) are fabricated, with a newly synthesized blue conjugated polymer, poly[(9,9-bis(4-(2-ethylhexyloxy)phenyl)-fluorene)-co-(3,7-dibenziothiene-S,S- dioxide15)] (PPF-3,TSO15), chosen as host. High luminous efficiencies of 7.4 cd.A-1 and 27.4 cd.A-1 are achieved in red and green PLEDs, respectively, by optimizing the doping concentrations of red phosphorescent dye iridium bis(1- phenylisoquinoline) (acetylacetonate) (Ir(piq)) and green phosphorescent dye iridium tris(2-(4-tolyl)pyridinato-N, C2') (Ir(mppy)3).Furthermore, highly efficient white PLEDs (WPLEDs) with the Commission Internationale de l'Eclairage (CIE) coordinates of (0.35, 0.38) are successfully produced by carefully controlling the doping concentration of the irid- ium complex. The obtained WPLEDs show maximal efficiencies of 14.4 cd.A-1 and 10.1 lm.W-1, which are comparable to those of incandescent bulbs. Moreover, the electroluminescent spectrum of the white device with an initial luminance of about 1000 cd.m-2 is stable, subject to constant applied current stress, indicating that good device stability can be obtained in this system. 展开更多
关键词 PHOSPHORESCENT polymer light-emitting devices HOST WHITE
下载PDF
Numerical model of multilayer organic light-emitting devices 被引量:1
7
作者 胡玥 饶海波 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第4期1627-1630,共4页
A numerical model of multilayer organic light-emitting devices is presented in this article. This model is based on the drift-diffusion equations which include charge injection, transport, space charge effects, trappi... A numerical model of multilayer organic light-emitting devices is presented in this article. This model is based on the drift-diffusion equations which include charge injection, transport, space charge effects, trapping, heterojunction interface and recombination process. The device structure in the simulation is ITO/CuPc (20 nm)/NPD (40 nm)/Alq3 (60 nm)/LiF/Al. There are two heterojunctions which should be dealt with in the simulation. The I-V characteristics, carrier distribution and recombination rate of a device are calculated. The simulation results and measured data are in good agreement. 展开更多
关键词 organic light-emitting devices MULTILAYER SIMULATION
下载PDF
Negative capacitance in doped bi-layer organic light-emitting devices 被引量:1
8
作者 李诺 高歆栋 +3 位作者 谢作提 孙正义 丁训民 侯晓远 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第2期465-470,共6页
This paper reports that the doped bi-layer organic light-emitting devices are fabricated by doping in different regions of the light-emitting layer, the admittance and luminance spectra to characterize the capacitance... This paper reports that the doped bi-layer organic light-emitting devices are fabricated by doping in different regions of the light-emitting layer, the admittance and luminance spectra to characterize the capacitance and luminance of the device are measured. Negative capacitance (NC) appeared at low frequencies when the doped devices are biased with high voltages. The measured phase difference between AC voltage applied across the device and AC current flowing through the device show that the device is inductive when NC appears. 展开更多
关键词 negative capacitance doping in different regions organic light-emitting device
下载PDF
Enhancement of Frster energy transfer from thermally activated delayed fluorophores layer to ultrathin phosphor layer for high color stability in non-doped hybrid white organic light-emitting devices 被引量:1
9
作者 王子君 赵娟 +2 位作者 周畅 祁一歌 于军胜 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第4期404-410,共7页
Fluorescence/phosphorescence hybrid white organic light-emitting devices(WOLEDs) based on double emitting layers(EMLs) with high color stability are fabricated.The simplified EMLs consist of a non-doped blue therm... Fluorescence/phosphorescence hybrid white organic light-emitting devices(WOLEDs) based on double emitting layers(EMLs) with high color stability are fabricated.The simplified EMLs consist of a non-doped blue thermally activated delayed fluorescence(TADF) layer using 9,9-dimethyl-9,10-dihydroacridine-diphenylsulfone(DMAC-DPS) and an ultrathin non-doped yellow phosphorescence layer employing bis[2-(4-tertbutylphenyl)benzothiazolato-N,C2']iridium(acetylacetonate)((tbt)_2Ir(acac)).Two kinds of materials of 4,7-diphenyl-1,10-phenanthroline(Bphen) and 1,3,5-tris(2-Nphenylbenzimidazolyl) benzene(TPBi) are selected as the electron transporting layer(ETL),and the thickness of yellow EML is adjusted to optimize device performance.The device based on a 0.3-nm-thick yellow EML and Bphen exhibits high color stability with a slight Commission International de l'Eclairage(CIE) coordinates variation of(0.017,0.009) at a luminance ranging from 52 cd/m^2 to 6998 cd/m^2.The TPBi-based device yields a high efficiency with a maximum external quantum efficiency(EQE),current efficiency,and power efficiency of 10%,21.1 cd/A,and 21.3 lm/W,respectively.The ultrathin yellow EML suppresses hole trapping and short-radius Dexter energy transfer,so that Forster energy transfer(FRET)from DMAC-DPS to(tbt)_2Ir(acac) is dominant,which is beneficial to keep the color stable.The employment of TPBi with higher triplet excited state effectively alleviates the triplet exciton quenching by ETL to improve device efficiency. 展开更多
关键词 white organic light-emitting devices non-doped emitting layers thermally activated delayed fluo-rescence color stability
下载PDF
Optimization of a poly (p-phenylene benzobisoxazole)-based light-emitting device with a complex cathode structure
10
作者 张晓晋 何志群 +5 位作者 汪璟 穆林平 赵瓛 梁春军 庄启昕 韩哲文 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第11期607-611,共5页
In this work, we report the preparation of a series of electroluminescent (EL) devices based on a high-performance polymer, poly(p-phenylene benzobisoxazole) (PBO), and their optoelectronic properties, which hav... In this work, we report the preparation of a series of electroluminescent (EL) devices based on a high-performance polymer, poly(p-phenylene benzobisoxazole) (PBO), and their optoelectronic properties, which have been rarely explored. The device structure is optimised using a complex cathode structure of tris-(8-hydoxyquinoline) aluminium (Alq3)/LiF/Al. By tuning the thickness of the Alq3 layer, we improve the device efficiency dramatically in an optimized condition. Further analysis reveals that the Alq3 layer in the complex cathode structure acts as a hole blocker in addition to its electron-injection role. A green light emission with a maximum brightness of 8.7×103 cd/m2 and a moderate current efficiency of 4.8 cd/A is obtained. These values are the highest ever reported for PBO devices. The high operational stability demonstrated by the present device makes it a promising tool for display and lighting applications. A new material is added to the selection of polymers used in this field up to now. 展开更多
关键词 ELECTROLUMINESCENCE organic semiconductors light-emitting devices electronic transport phe-nomena
下载PDF
Bright hybrid white light-emitting quantum dot device with direct charge injection into quantum dot
11
作者 曹进 谢婧薇 +4 位作者 魏翔 周洁 陈超平 王子兴 田哲圭 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第12期514-519,共6页
A bright white quantum dot light-emitting device (white-QLED) with 4-[4-(1-phenyl-lH-benzo[d]imidazol-2- yl)phenyl]-2- [3-(tri-phenylen-2-yl)phen-3-yl]quinazoline deposited on a thin film of mixed green/red-QDs ... A bright white quantum dot light-emitting device (white-QLED) with 4-[4-(1-phenyl-lH-benzo[d]imidazol-2- yl)phenyl]-2- [3-(tri-phenylen-2-yl)phen-3-yl]quinazoline deposited on a thin film of mixed green/red-QDs as a bilayer emitter is fabricated. The optimized white-QLED exhibits a turn-on voltage of 3.2 V and a maximum brightness of 3660 cd/m2 @8 V with the Commission Internationale de l'Eclairage (CIE) chromaticity in the region of white light. The ultra-thin layer of QDs is proved to be critical for the white light generation in the devices. Excitation mechanism in the white-QLEDs is investigated by the detailed analyses of electroluminescence (EL) spectral and the fluorescence lifetime of QDs. The results show that charge injection is a dominant mechanism of excitation in the white-QLED. 展开更多
关键词 quantum dot light-emitting devices WHITE ultra-thin film charge injection
下载PDF
High-contrast top-emitting organic light-emitting devices
12
作者 陈淑芬 陈春燕 +4 位作者 杨洋 谢军 黄维 石弘颖 程凡 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第10期527-532,共6页
In this paper we report on a high-contrast top-emitting organic light-emitting device utilizing a moderate-reflection contrast-enhancement stack and a high refractive index anti-reflection layer.The contrast-enhanceme... In this paper we report on a high-contrast top-emitting organic light-emitting device utilizing a moderate-reflection contrast-enhancement stack and a high refractive index anti-reflection layer.The contrast-enhancement stack consists of a thin metal anode layer,a dielectric bilayer,and a thick metal underlayer.The resulting device,with the optimized contrast-enhancement stack thicknesses of Ni(30 nm)/MgF 2(62 nm)/ZnS(16 nm)/Ni(20 nm) and the 25-nm-thick ZnS anti-reflection layer,achieves a luminous reflectance of 4.01% in the visible region and a maximum current efficiency of 0.99 cd/A(at 62.3 mA/cm 2) together with a very stable chromaticity.The contrast ratio reaches 561:1 at an on-state brightness of 1000 cd/m^2 under an ambient illumination of 140 lx.In addition,the anti-reflection layer can also enhance the transmissivity of the cathode and improve light out-coupling by the effective restraint of microcavity effects. 展开更多
关键词 top-emitting organic light-emitting device contrast-enhancement stack ANTI-REFLECTION
下载PDF
Luminescent Enhancement of Heterostructure Organic Light-Emitting Devices Based on Aluminum Quinolines 被引量:1
13
作者 Jun-Sheng Yu Lu Li Ya-Dong Jiang Xing-Qiao Ji Tao Wang 《Journal of Electronic Science and Technology of China》 2007年第2期183-186,共4页
High performance organic light-emitting devices (OLEDs) have been investigated by using fluorescent bis (2-methyl-8-quinolinolato)(para-phenylphenolato)aluminum(BAlq) as an emissive layer on the performance of... High performance organic light-emitting devices (OLEDs) have been investigated by using fluorescent bis (2-methyl-8-quinolinolato)(para-phenylphenolato)aluminum(BAlq) as an emissive layer on the performance of multicolor devices consisting of N, N'-bis-(1-naphthyl)-N,N'diphenyl- 1,1'-biphenyl-4,4'- diamine (NPB) as hole transport layer. The results show that the performance of heterostructure blue light-emitting device composed of 8-hydroxyquinoline aluminum (Alq3) as an electron transport layer has been dramatically enhanced. In the case of high performance heterostructure devices, the electroluminescent spectra has been perceived to vary strongly with the thickness of the organic layers due to the different recombination region, which indicates that various color devices composed of identical components could be implemented by changing the film thickness of different functional layers. 展开更多
关键词 Aluminum quinolines blue emission heterostructure organic light-emitting devices (OLEDs).
下载PDF
Performance and stability-enhanced inorganic perovskite light-emitting devices by employing triton X-100
14
作者 Ao Chen Peng Wang +4 位作者 Tao Lin Ran Liu Bo Liu Quan-Jun Li Bing-Bing Liu 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第4期629-632,共4页
Significantly enhanced electroluminescence performance and stability of all-inorganic perovskite light-emitting devices(PeLEDs) have been achieved by adding triton X-100 into the perovskite precursors.The small perovs... Significantly enhanced electroluminescence performance and stability of all-inorganic perovskite light-emitting devices(PeLEDs) have been achieved by adding triton X-100 into the perovskite precursors.The small perovskite grains arranged tightly and formed large grains as the triton X-100 were introduced.Thus the nonradiative defects originated from Pb atoms at the grain boundaries were highly passivated by triton X-100 and resulted in the promotion of PeLED performance,including a turn-on voltage of 3.2 V,a brightness of 63500 cd/m^(2),a current efficiency of 17.4 cd/A,and a prolonged lifetime of 2 h in air. 展开更多
关键词 electroluminescence performance STABILITY perovskite light-emitting devices(Pe LEDs) triton X-100
下载PDF
High-Efficiency Green Phosphorescent Organic Light-Emitting Diode Based on Simplified Device Structures
15
作者 张宏梅 王丹蓓 +1 位作者 曾文进 闫敏楠 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第9期140-144,共5页
A high-efficiency green phosphorescent organic light emitting diode with a simplified structure is achieved that is free of a hole transport layer. The design of this kind of device structure not only saves the consum... A high-efficiency green phosphorescent organic light emitting diode with a simplified structure is achieved that is free of a hole transport layer. The design of this kind of device structure not only saves the consumption of organic materials but also greatly reduces the structural heterogeneities and effectively facilitates the charge injection into the emissive layer. The resulting green phosphorescent organic light-emitting diodes (PHOLEDs) exhibit higher electroluminescent efficiency. The maximum external quantum efficiency and current efficiency reach 23.7% and 88 cd/A, respectively. Moreover the device demonstrates satisfactory stability, keeping 23.7% and 88cd/A, 22% and 82cd/A, respectively, at a luminance of 100 and 1000cd/m2. The working mechanism for achieving high efficiency based on such a simple device structure is discussed correspondingly. The improved charge carrier injection and transport balance are proved to prominently contribute to achieve the high efficiency and great stability at high luminance in the green PHOLEDs. 展开更多
关键词 HTL NPB High-Efficiency Green Phosphorescent Organic light-emitting Diode Based on Simplified device Structures OLEDS PEDOT
下载PDF
Review of My Research Work on Ferroelectric Films and Si-Based Device Applications: Opportunity and Challenge
16
作者 ZHU Wei-guang (Microelectronics Center, School of Electrical & Electronic Engineering, Nanyang Technological University,Singapore 639798) 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第S1期9-,共1页
Ferroelectric materials have many interesting physical properties such as ferroelectricity, pyroelectricity, piezoelectricity, and opto-electricity, and applying ferroelectric materials in the forms of thin and thick ... Ferroelectric materials have many interesting physical properties such as ferroelectricity, pyroelectricity, piezoelectricity, and opto-electricity, and applying ferroelectric materials in the forms of thin and thick films and integrating them on the silicon substrate as electronic and MEMS devices is a very attractive research area and challenging. In this paper, we report our research works on ferroelectric MEMS and ferroelectric films for electronic device applications. Pyroelectric thin film infrared sensors have been made, characterized, and a 32×32 array with its size of 1cm×1cm has been obtained on Si membrane. Ferroelectric thin films in amorphous phase have been applied to make silicon based hydrogen gas sensors with the metal/amorphous ferroelectric film/metal device structure, and its turn-on voltage of about 4.5V at ~1000 ppm in air is about 7 times of the best value reported in the literature. For the application of electron emission flat panel display, ferroelectric BST thin films with excess Ti concentrations have been coated on Si tips, the threshold voltage of those ferroelectric film coated tips has been reduced about one order from ~70 V/μm to 4~10 V/μm for different Ti concentrations, and however, the electron emission current density has been increased at least 3~4 order for those coated tips compared to that of the bare Si tips. To fulfill in the thickness gap between thin film of typical ~1 μm made by PVD/CVD and polished ceramic wafer of ~50 μm from the bulk, piezoelectric films with thickness in a range of 1~30 μm have been successfully deposited on Si substrate at a low temperature of 650oC by a novel hybridized deposition technique, and piezoelectric MEMS ultrasonic arrays have been very recently obtained with the sound pressure level up to ~120 dB. More detailed results will be presented and mechanisms will be discussed. 展开更多
关键词 WORK Opportunity and Challenge Review of My Research Work on Ferroelectric Films and si-based device Applications SI
下载PDF
ZnO-based deep-ultraviolet light-emitting devices
17
作者 卢英杰 史志锋 +1 位作者 单崇新 申德振 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第4期50-58,共9页
Deep-ultraviolet(DUV) light-emitting devices(LEDs) have a variety of potential applications.Zinc-oxide-based materials,which have wide bandgap and large exciton binding energy,have potential applications in high-p... Deep-ultraviolet(DUV) light-emitting devices(LEDs) have a variety of potential applications.Zinc-oxide-based materials,which have wide bandgap and large exciton binding energy,have potential applications in high-performance DUV LEDs.To realize such optoelectronic devices,the modulation of the bandgap is required.This has been demonstrated by the developments of Mg_xZn_(1-x)O and Be_xZn_(1-x)O alloys for the larger bandgap materials.Many efforts have been made to obtain DUV LEDs,and promising successes have been achieved continuously.In this article,we review the recent progress of and problems encountered in the research of ZnO-based DUV LEDs. 展开更多
关键词 ZNO deep-ultraviolet light-emitting devices Mg_xZn_(1-x)O Be_xZn_(1-x)O
下载PDF
Progress of Si-based Optoelectronic Devices
18
作者 PENGYing-cai FUGuang-sheng +1 位作者 WANGYing-long SHANGYong 《Semiconductor Photonics and Technology》 CAS 2004年第3期158-163,共6页
Si-based optoelectronics is becoming a very active research area due to its potential applications to optical communications.One of the major goals of this study is to realize all-Si optoelectronic integrated circuit.... Si-based optoelectronics is becoming a very active research area due to its potential applications to optical communications.One of the major goals of this study is to realize all-Si optoelectronic integrated circuit.This is due to the fact that Si-based optoelectronic technology can be compatible with Si microelectronic technology.If Si-based optoelectronic devices and integrated circuits can be achieved,it will lead to a new informational technological revolution.In the article,the current developments of this exciting field are mainly reviewed in the recent years.The involved contents are the realization of various Si-based optoelectronic devices,such as light-emitting diodes,optical waveguides devices,Si photonic bandgap crystals,and Si laser,etc.Finally,the developed tendency of all-Si optoelectronic integrated technology are predicted in the near future. 展开更多
关键词 Nanocrystalline materials si-based luminescent devices All-Si optoelectronic integrated technology
下载PDF
Recombination Efficiency and Width in Bilayer Organic Light-emitting Devices
19
作者 PAN Yan-zhi LI Hong-jian +3 位作者 DAI Xiao-yu FANG An-le LI jia ZHU Ru-hui 《Semiconductor Photonics and Technology》 CAS 2006年第1期5-9,共5页
A bilayer model with ohmic anode contact and injection limited cathode contact has been proposed to calculate the recombination efficiency and recombination zone width of the device. The effects of the thickness of ho... A bilayer model with ohmic anode contact and injection limited cathode contact has been proposed to calculate the recombination efficiency and recombination zone width of the device. The effects of the thickness of hole transport layer and the barriers of organic/organic interface on the combination efficiency and recombination width have been discussed. It is found that: (1) When the electrons are blocked fully and the holes are not blocked significantly at the organic/organic interface, for a given Lh/L, the recombination efficiency increases with increasing the applied voltage, but at a higher applied voltage, the recombination efficiency decreases with increasing Lh/L; (2) The recombination efficiency increases with increasing applied voltage and Hh', and when applied voltage and Hh' exceed some value, the recombination efficiency appears as a plateau; (3) The recombination width decreases with increasing the applied voltage and Lh/L. This model might explain the relative experiment phenomena. 展开更多
关键词 Organic light-emitting devices Hole transport layer Recombination efficiency Recombination width
下载PDF
Green Light-Emitting Organic Electroluminescent Device with a New Fluorescent Dye Dispersed in Poly(N-vinylcarbazole) Emitter Layer
20
作者 Yong QIU De Qiang ZHANG +1 位作者 Zhi Liang XIE Xiao Xuan LIU(Department of Chemistry Tsinghua University, Beijing 100084) 《Chinese Chemical Letters》 SCIE CAS CSCD 1997年第1期79-80,共2页
Double-layer organic electroluminescent devices have been constructed. A new fluorescent dye, 9,10-bis(phenylethynyl)anthracence, was chosen as the dopant which was molecularly dispersed in the polymer film, and green... Double-layer organic electroluminescent devices have been constructed. A new fluorescent dye, 9,10-bis(phenylethynyl)anthracence, was chosen as the dopant which was molecularly dispersed in the polymer film, and green light was observed from the device with luminance of 130cd/m(2) at 17V. 展开更多
关键词 Green light-emitting Organic Electroluminescent device with a New Fluorescent Dye Dispersed in Poly N-VINYLCARBAZOLE Emitter Layer
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部