When the film is excited by a very low excitation energy, thespontaneous Raman scattering emerges. The intensity of Ramanscattering is proportional to the Excitation power below thethreshold excitation. When the excit...When the film is excited by a very low excitation energy, thespontaneous Raman scattering emerges. The intensity of Ramanscattering is proportional to the Excitation power below thethreshold excitation. When the excited power reaches the Excitationthreshold, the intensity of Stokes light strongly increases.Meanwhile an anti- Stokes light at 495 nm and multiple order butsmall Stokes peaks occur. The intensity of Stokes light is muchlarger than that of anti-Stokes.展开更多
SiC films were prepared by heating polystyrene/Si(111) in normal pressure argon atmosphere at different temperatures. The films were investigated by X-ray diffraction, scanning electron microscopy, X-ray photoelectr...SiC films were prepared by heating polystyrene/Si(111) in normal pressure argon atmosphere at different temperatures. The films were investigated by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and Fourier transform infrared absorption measurements. The thicknesses of SiC films were calculated from FTIR spectra. The growth kinetics of the growth process of SiC films were investigated as well. The thicknesses of the SiC films grown for 1 h with increasing growth temperatures have different trends in the three temperature ranges: increasing slowly (1200-1250 ℃), increasing quickly (1250- 12.70 ℃), and decreasing (1270-1300 ℃). The apparent activation energies of the growth process of SiC films in the three ranges were calculated to be 122.5,522.5, and -127.5 J/mol respectively. Mechanisms of the different growth processes were discussed. The relation between film thicknesses and growth temperatures indicated that the growth process was a 2D mechanism in the first range and 3D mechanism in the second range. In the third range, the thicknesses of SiC films were decreased by the volatility of Si and C atoms.展开更多
The present work focused on corrosion inhibition of AA6063 type Al-Mg-Si alloy in sodium chloride (NaCI) solution with a silicon carbide inhibitor, using the potentiodynamic electrochemical method. The aluminium all...The present work focused on corrosion inhibition of AA6063 type Al-Mg-Si alloy in sodium chloride (NaCI) solution with a silicon carbide inhibitor, using the potentiodynamic electrochemical method. The aluminium alloy surface morphology was examined, in the as-received and as-corroded in the un-inhibited state, with scanning electron microscopy equipped with energy dispersive spectroscopy (SEM-EDS). The results obtained via linear polarization indicated a high corrosion potential for the unprotected as-received alloy. Equally, inhibition efficiency as high as 98.82% at 10.0 g/v silicon carbide addition was obtained with increased polarization resistance fRy), while the current density reduced significantly for inhibited samples compared to the un-inhibited aluminium alloy. The adsorption mechanism of the inhibitor aluminium alloy follows the Langmuir adsorption isotherm. This shows that the corrosion rate of aluminium alloy with silicon carbide in NaCI environment decreased significantly with addition of the inhibitor.展开更多
SiC films were prepared by modified heating polystyrene/silica bilayer method on Si(111) substrate in normal pressure flowing Ar ambient at 1300℃ . The films were investigated by Fourier transform infrared absorpti...SiC films were prepared by modified heating polystyrene/silica bilayer method on Si(111) substrate in normal pressure flowing Ar ambient at 1300℃ . The films were investigated by Fourier transform infrared absorption, X-ray diffraction, and scanning electron microscopy measurements. The chemical thermodynamics process is discussed. The whole reaction can be separated into four steps. The carburizing of SiO is the key step of whole reaction. The main reaction-sequence is figured out based on Gibbs free energy and equilibrium constant. Flowing Ar is necessary to continue the progress of whole reaction by means of carrying out accumulating gaseous resultants. The film is very useful for application in a variety of MOS-based devices for its silica/SiC/Si(111) structure, in which the silica layer can be removed thoroughly by the standard RCA cleaning process.展开更多
In a traditional hot-filament chemical vapor deposition (HF-CVD) system, highly (111)-textured diamond film was deposited on Si (111) substrate treated by diamond powder ultrasonic scratching or other methods. The rel...In a traditional hot-filament chemical vapor deposition (HF-CVD) system, highly (111)-textured diamond film was deposited on Si (111) substrate treated by diamond powder ultrasonic scratching or other methods. The relationship between the (111)-textured diamond film growth and the nucleation density has been discussed. The morphologies and structures of the films were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy.展开更多
文摘When the film is excited by a very low excitation energy, thespontaneous Raman scattering emerges. The intensity of Ramanscattering is proportional to the Excitation power below thethreshold excitation. When the excited power reaches the Excitationthreshold, the intensity of Stokes light strongly increases.Meanwhile an anti- Stokes light at 495 nm and multiple order butsmall Stokes peaks occur. The intensity of Stokes light is muchlarger than that of anti-Stokes.
基金ACKNOWLEDGMENT This work was supported by the National Natural Science Foundation of China (No.50672095).
文摘SiC films were prepared by heating polystyrene/Si(111) in normal pressure argon atmosphere at different temperatures. The films were investigated by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and Fourier transform infrared absorption measurements. The thicknesses of SiC films were calculated from FTIR spectra. The growth kinetics of the growth process of SiC films were investigated as well. The thicknesses of the SiC films grown for 1 h with increasing growth temperatures have different trends in the three temperature ranges: increasing slowly (1200-1250 ℃), increasing quickly (1250- 12.70 ℃), and decreasing (1270-1300 ℃). The apparent activation energies of the growth process of SiC films in the three ranges were calculated to be 122.5,522.5, and -127.5 J/mol respectively. Mechanisms of the different growth processes were discussed. The relation between film thicknesses and growth temperatures indicated that the growth process was a 2D mechanism in the first range and 3D mechanism in the second range. In the third range, the thicknesses of SiC films were decreased by the volatility of Si and C atoms.
基金Supported by the National Research Foundation for the Department of Chemical,Metallurgical and Materials Engineering,Tshwane University of Technology,Pretoria with respect to equipment and funding
文摘The present work focused on corrosion inhibition of AA6063 type Al-Mg-Si alloy in sodium chloride (NaCI) solution with a silicon carbide inhibitor, using the potentiodynamic electrochemical method. The aluminium alloy surface morphology was examined, in the as-received and as-corroded in the un-inhibited state, with scanning electron microscopy equipped with energy dispersive spectroscopy (SEM-EDS). The results obtained via linear polarization indicated a high corrosion potential for the unprotected as-received alloy. Equally, inhibition efficiency as high as 98.82% at 10.0 g/v silicon carbide addition was obtained with increased polarization resistance fRy), while the current density reduced significantly for inhibited samples compared to the un-inhibited aluminium alloy. The adsorption mechanism of the inhibitor aluminium alloy follows the Langmuir adsorption isotherm. This shows that the corrosion rate of aluminium alloy with silicon carbide in NaCI environment decreased significantly with addition of the inhibitor.
基金This work was supported by the National Natural Science Foundation of China (No.50172044).
文摘SiC films were prepared by modified heating polystyrene/silica bilayer method on Si(111) substrate in normal pressure flowing Ar ambient at 1300℃ . The films were investigated by Fourier transform infrared absorption, X-ray diffraction, and scanning electron microscopy measurements. The chemical thermodynamics process is discussed. The whole reaction can be separated into four steps. The carburizing of SiO is the key step of whole reaction. The main reaction-sequence is figured out based on Gibbs free energy and equilibrium constant. Flowing Ar is necessary to continue the progress of whole reaction by means of carrying out accumulating gaseous resultants. The film is very useful for application in a variety of MOS-based devices for its silica/SiC/Si(111) structure, in which the silica layer can be removed thoroughly by the standard RCA cleaning process.
基金Sthe Key Project of Chinese Academy of Sciences Knowledge Innovation Program (Grant No. KJCX3. SYW. N10)
文摘In a traditional hot-filament chemical vapor deposition (HF-CVD) system, highly (111)-textured diamond film was deposited on Si (111) substrate treated by diamond powder ultrasonic scratching or other methods. The relationship between the (111)-textured diamond film growth and the nucleation density has been discussed. The morphologies and structures of the films were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy.