Hoppressed Si3N4/SiC platelet composites had been investigated with respect to their microstructure and mechanical properties. The results indicate that Vickers hardness, elastic modulus and fracture toughness of the ...Hoppressed Si3N4/SiC platelet composites had been investigated with respect to their microstructure and mechanical properties. The results indicate that Vickers hardness, elastic modulus and fracture toughness of the composites were increased by the addition of SiC platelet until the content up to 20 vol pct. A slight decrease in flexural Strength was measured at room temperature with increasing SiC platelet content. The high temperature flexural strength tests at 1150, 1250, and 1350℃ were conducted. It was found that the flexural strength at elevated temperature was degraded with the rising temperature, and the downward trend of flexural strength for the composite containing 10 vol. pct SiC platelet was less. The results indicate that SiC platelet had a positive influence on the high temperature strength. Effects of SiC platelet reinforcement were presented展开更多
In present work, the metal-ceramic interpenetrating composites (IPCs) as AlSi11/ Si3N4 are fabricated by infiltrating technique. IPCs exhibit special characterization of brittle ceramic reinforced phase introduced by ...In present work, the metal-ceramic interpenetrating composites (IPCs) as AlSi11/ Si3N4 are fabricated by infiltrating technique. IPCs exhibit special characterization of brittle ceramic reinforced phase introduced by ductile metal matrix phase. During the sliding wear processes, IPCs exhibit four wear mechanism such as initial adhesive wear, mixed adhesive and abrasive wear, adhesive wear and final abrasive wear. Reinforcements inhibit plastic flow and restrict propagation of wear cracks. Increase in the volume fraction of reinforcement leads to improvement in the wear resistance. Under higher load and lower round speed conditions, the friction coefficients are lower than that of relative conditions.展开更多
Si3N4-Si2N2O composites were fabricated with amorphous nano-sized silicon nitride powders by the liquid phase sintering ( LPS ). The Si2 N2O phase was generated by an in-situ reaction 2 Si3 N4 ( s ) + 1.5 02 ( g...Si3N4-Si2N2O composites were fabricated with amorphous nano-sized silicon nitride powders by the liquid phase sintering ( LPS ). The Si2 N2O phase was generated by an in-situ reaction 2 Si3 N4 ( s ) + 1.5 02 ( g ) = 3 Si2 N2O ( s ) + N2 ( g ) . The content of Si2 N2 O phase up to 60% in the volume was obtained at a sintering temperature of 1 650℃ and reduced when the sintering temperature increased or decreased, indicating the reaction is reversible. The mass loss, relative density and average grain size increased with increasing the sintering temperature. The average grain size was less than 500 nm when the sintering temperature was below 1 700 ℃. The sintering procedure contains a complex crystallization and a phase transition : amorphous silicon nitride→equiaxial α- Si3 N4→ equiaxial β- Si3 N4→ rod- like Si2 N2O→ needle- like β- Si3N4 . Small round-shaped β→ Si3 N4 particles were entrapped in the Si2 N2O grains and a high density of staking faults was situated in the middle of Si2 N2O grains at a sintering temperature of 1 650 ℃. The toughness inereased from 3.5 MPa·m^1/2 at 1 600 ℃ to 7.2 MPa· m^1/2 at 1 800 ℃ . The hardness was as high as 21.5 GPa (Vickers) at 1 600 ℃ .展开更多
Aiming at developing novel microwave-transparent ceramics with low dielectric loss, high thermal conductivity and high strength, Si3Na-AIN (30%, mass fraction) composite ceramics with La203 as sintering additive wer...Aiming at developing novel microwave-transparent ceramics with low dielectric loss, high thermal conductivity and high strength, Si3Na-AIN (30%, mass fraction) composite ceramics with La203 as sintering additive were prepared by hot-pressing at 1 800 ℃ and subsequently annealed at 1 450 ℃ and 1 850 ℃ for 2 h and 4 h, respectively. The materials were characterized by XRD and SEM. The effect of annealing process on the phase composition, sintering performance, microstructure, bending strength, dielectric loss and thermal conductivity of the materials was investigated. The results showed that both annealing at 1 850 ℃ and 1 450 ℃ promoted the phase transformation of α-Si3N4 to β-Si3N4. After annealing at 1 850 ℃, grain growth to a certain extent occurred in the materials. Especially, the elongated β-Si3N4 grains showed a slight increase in diameter from 0.2 μm to 0.6 μm approximately and a decrease in aspect ratio. As a result, as the annealing time increased to 4 h, the bending strength declined from 456 MPa to 390 MPa, whereas the dielectric loss decreased to 2.15× 10^-3 and the thermal conductivity increased to 16.3 W/(m.K) gradually. When annealed at 1 450 ℃, increasing the annealing time to 4 h significantly promoted the crystallization of glassy phase to La2Si6N803 phase in the materials, which led to the increase in bending strength to 619 MPa and thermal conductivity to 15.9 W/(m·K), respectively, and simultaneously the decrease in dielectric loss to 1.53× 10^-3.展开更多
A silicon dioxide fiber-reinforced silicon nitride matrix (SiOJSi3N4) composite used for radomes was prepared by chemical vapor infiltration (CVI) process using the SiCl4-NH3-H2 system. The effects of the process ...A silicon dioxide fiber-reinforced silicon nitride matrix (SiOJSi3N4) composite used for radomes was prepared by chemical vapor infiltration (CVI) process using the SiCl4-NH3-H2 system. The effects of the process conditions, including infiltration temperature, infiltration time, and gas flux were investigated. The energy dispersion spectra (EDS) result showed that the main elements of this composite contained Si, N, and O. The X-ray diffraction (XRD) results indicated that phases of the composite before and after treatment at 1350℃ were all amorphous. A little fiber pull-out was observed on the cross section of the composite by scan electron microscope (SEM). As a result, the composite exhibited good thermal stability, but an appropriate interface was necessary between the fiber and the matrix.展开更多
Two-dimension (2D) fused-silica fiber reinforced porous silicon nitride matrix composites were fabricated using slurry impregnation and cyclic infiltration with colloidal silica sol. The microstructure and fracture ...Two-dimension (2D) fused-silica fiber reinforced porous silicon nitride matrix composites were fabricated using slurry impregnation and cyclic infiltration with colloidal silica sol. The microstructure and fracture surface were characterized by SEM, the mechanical behavior was investigated by three-point bending test, and the dielectric constant was also measured by impedance analysis. The microstructure showed that the fiber and the matrix had a physical bonding, forming a clearance interface. The mechanical behavior suggested that the porous matrix acted as crack deflection, and the fracture surface had a lot of fiber pull-out. However, the interlaminar shear strength was not so good. The dielectric constant of the composites at room temperature was about 2.8-3.1. The relatively low dielectric constant and non-catastrophic failure indicated the potential application in the radome materials field. 2008 University of Science and Technology Beijing. All rights reserved.展开更多
The tribological behaviour of gravity die stir cast LM6alloy with graphite(Gr)and silicon nitride nanoparticles was investigated.Al?Gr?Si3N4hybrid composite,Al?Si3N4nanocomposite and Al?Gr nanocomposites were separate...The tribological behaviour of gravity die stir cast LM6alloy with graphite(Gr)and silicon nitride nanoparticles was investigated.Al?Gr?Si3N4hybrid composite,Al?Si3N4nanocomposite and Al?Gr nanocomposites were separately fabricated to investigate their frictional and wear characteristics under dry sliding conditions.EDS was used to ensure the uniform presence of nano Si3N4and graphite in the cast.L9orthogonal array method was chosen to conduct the experiments to study the effect of different applied loads(20,30and40N)and sliding distances(1,2and3km).The results showed that the respective wear rate and coefficient of friction(COF)decreased by25%and15%for hybrid composite when compared with those of Al?Si3N4nanocomposite whereas the wear rate and COF of Al?Gr was found to be very minimal.The micro Vickers hardness of the hybrid composite was14%more than that of the simple nanocomposite and there was not much notable variation for Al?Gr and Al?Si3N4nanocomposite materials.Scanning electron microscope was used to analyze the worn surface and subsurface,from which it was noted that the predominant wear mechanisms observed were abrasive for nanocomposite and both abrasive and adhesive mechanism for hybrid composite.Analysis of variance(ANOVA)and F-test were used to check the validity model and to determine the significant parameters affecting the wear rates.展开更多
The creep behaviour of β-Si3N4 whisker reinforced Al-8.5Fe-1.3V-1.7Si composite has been investigated at the temperature 773 and 823 K. The results are characterized by high stress exponent and high apparent creep ac...The creep behaviour of β-Si3N4 whisker reinforced Al-8.5Fe-1.3V-1.7Si composite has been investigated at the temperature 773 and 823 K. The results are characterized by high stress exponent and high apparent creep activation energy The creep data can be interpreted based on the incorporation of a threshold Stress and a load transfer coefficient into the power-law creep equation. A good correlation between the normalized creep rate and normalized effective stress is available which demonstrates that the creep behaviour of both the alloy and the composite is controlled by the matrix lattice self-diffusion in AI. EXamination on microstructure shows that edge dislocations exist at the interfaces between two adjacent whiskers and the intedeces emit edge dislocations in parallel paired-columns.展开更多
Si_(3)N_(4p)/2024Al composite was fabricated by squeeze casting method and treated by extrusion deformation.Microstructure analyses indicate that Si_(3)N_(4) particles in the composite are in cylindrical polyhedron sh...Si_(3)N_(4p)/2024Al composite was fabricated by squeeze casting method and treated by extrusion deformation.Microstructure analyses indicate that Si_(3)N_(4) particles in the composite are in cylindrical polyhedron shape.Extrusion deformation is beneficial to uniform distribution of Si_(3)N_(4) particles and improves the relative density of Si_(3)N_(4p)/2024Al composite.Tensile strength of Si_(3)N_(4p)/2024Al composite increases by 76.6%after T6 treatment,and after extrusion and T6 treatment it is by 57.6%more than T6 treatment only.Elastic modulus of Si_(3)N_(4p)/2024Al composite increases a little after T6 treatment but increases by 33.5%after extrusion deformation.展开更多
文摘Hoppressed Si3N4/SiC platelet composites had been investigated with respect to their microstructure and mechanical properties. The results indicate that Vickers hardness, elastic modulus and fracture toughness of the composites were increased by the addition of SiC platelet until the content up to 20 vol pct. A slight decrease in flexural Strength was measured at room temperature with increasing SiC platelet content. The high temperature flexural strength tests at 1150, 1250, and 1350℃ were conducted. It was found that the flexural strength at elevated temperature was degraded with the rising temperature, and the downward trend of flexural strength for the composite containing 10 vol. pct SiC platelet was less. The results indicate that SiC platelet had a positive influence on the high temperature strength. Effects of SiC platelet reinforcement were presented
文摘In present work, the metal-ceramic interpenetrating composites (IPCs) as AlSi11/ Si3N4 are fabricated by infiltrating technique. IPCs exhibit special characterization of brittle ceramic reinforced phase introduced by ductile metal matrix phase. During the sliding wear processes, IPCs exhibit four wear mechanism such as initial adhesive wear, mixed adhesive and abrasive wear, adhesive wear and final abrasive wear. Reinforcements inhibit plastic flow and restrict propagation of wear cracks. Increase in the volume fraction of reinforcement leads to improvement in the wear resistance. Under higher load and lower round speed conditions, the friction coefficients are lower than that of relative conditions.
基金Funded by the National Science Foundation of China ( No.50375037)
文摘Si3N4-Si2N2O composites were fabricated with amorphous nano-sized silicon nitride powders by the liquid phase sintering ( LPS ). The Si2 N2O phase was generated by an in-situ reaction 2 Si3 N4 ( s ) + 1.5 02 ( g ) = 3 Si2 N2O ( s ) + N2 ( g ) . The content of Si2 N2 O phase up to 60% in the volume was obtained at a sintering temperature of 1 650℃ and reduced when the sintering temperature increased or decreased, indicating the reaction is reversible. The mass loss, relative density and average grain size increased with increasing the sintering temperature. The average grain size was less than 500 nm when the sintering temperature was below 1 700 ℃. The sintering procedure contains a complex crystallization and a phase transition : amorphous silicon nitride→equiaxial α- Si3 N4→ equiaxial β- Si3 N4→ rod- like Si2 N2O→ needle- like β- Si3N4 . Small round-shaped β→ Si3 N4 particles were entrapped in the Si2 N2O grains and a high density of staking faults was situated in the middle of Si2 N2O grains at a sintering temperature of 1 650 ℃. The toughness inereased from 3.5 MPa·m^1/2 at 1 600 ℃ to 7.2 MPa· m^1/2 at 1 800 ℃ . The hardness was as high as 21.5 GPa (Vickers) at 1 600 ℃ .
基金Project(50872052) supported by the National Natural Science Foundation of ChinaProject(2009AA05Z313) supported by the National High Technology Research and Development Program of ChinaProject supported by the Commission of Science,Technology and Industry for National Defence,China
文摘Aiming at developing novel microwave-transparent ceramics with low dielectric loss, high thermal conductivity and high strength, Si3Na-AIN (30%, mass fraction) composite ceramics with La203 as sintering additive were prepared by hot-pressing at 1 800 ℃ and subsequently annealed at 1 450 ℃ and 1 850 ℃ for 2 h and 4 h, respectively. The materials were characterized by XRD and SEM. The effect of annealing process on the phase composition, sintering performance, microstructure, bending strength, dielectric loss and thermal conductivity of the materials was investigated. The results showed that both annealing at 1 850 ℃ and 1 450 ℃ promoted the phase transformation of α-Si3N4 to β-Si3N4. After annealing at 1 850 ℃, grain growth to a certain extent occurred in the materials. Especially, the elongated β-Si3N4 grains showed a slight increase in diameter from 0.2 μm to 0.6 μm approximately and a decrease in aspect ratio. As a result, as the annealing time increased to 4 h, the bending strength declined from 456 MPa to 390 MPa, whereas the dielectric loss decreased to 2.15× 10^-3 and the thermal conductivity increased to 16.3 W/(m.K) gradually. When annealed at 1 450 ℃, increasing the annealing time to 4 h significantly promoted the crystallization of glassy phase to La2Si6N803 phase in the materials, which led to the increase in bending strength to 619 MPa and thermal conductivity to 15.9 W/(m·K), respectively, and simultaneously the decrease in dielectric loss to 1.53× 10^-3.
基金This study was financially supported by the Key Foundation of National Science in China (No. 90405015), the National Elitist Youth Foundation of China (No. 50425208the Doctorate Foundation of Northwestern Polytechnical University (CX200505).
文摘A silicon dioxide fiber-reinforced silicon nitride matrix (SiOJSi3N4) composite used for radomes was prepared by chemical vapor infiltration (CVI) process using the SiCl4-NH3-H2 system. The effects of the process conditions, including infiltration temperature, infiltration time, and gas flux were investigated. The energy dispersion spectra (EDS) result showed that the main elements of this composite contained Si, N, and O. The X-ray diffraction (XRD) results indicated that phases of the composite before and after treatment at 1350℃ were all amorphous. A little fiber pull-out was observed on the cross section of the composite by scan electron microscope (SEM). As a result, the composite exhibited good thermal stability, but an appropriate interface was necessary between the fiber and the matrix.
基金the National Natural Science Foundation of China(No.90405015)the National Young Elitist Foundation(No.50425208).
文摘Two-dimension (2D) fused-silica fiber reinforced porous silicon nitride matrix composites were fabricated using slurry impregnation and cyclic infiltration with colloidal silica sol. The microstructure and fracture surface were characterized by SEM, the mechanical behavior was investigated by three-point bending test, and the dielectric constant was also measured by impedance analysis. The microstructure showed that the fiber and the matrix had a physical bonding, forming a clearance interface. The mechanical behavior suggested that the porous matrix acted as crack deflection, and the fracture surface had a lot of fiber pull-out. However, the interlaminar shear strength was not so good. The dielectric constant of the composites at room temperature was about 2.8-3.1. The relatively low dielectric constant and non-catastrophic failure indicated the potential application in the radome materials field. 2008 University of Science and Technology Beijing. All rights reserved.
文摘The tribological behaviour of gravity die stir cast LM6alloy with graphite(Gr)and silicon nitride nanoparticles was investigated.Al?Gr?Si3N4hybrid composite,Al?Si3N4nanocomposite and Al?Gr nanocomposites were separately fabricated to investigate their frictional and wear characteristics under dry sliding conditions.EDS was used to ensure the uniform presence of nano Si3N4and graphite in the cast.L9orthogonal array method was chosen to conduct the experiments to study the effect of different applied loads(20,30and40N)and sliding distances(1,2and3km).The results showed that the respective wear rate and coefficient of friction(COF)decreased by25%and15%for hybrid composite when compared with those of Al?Si3N4nanocomposite whereas the wear rate and COF of Al?Gr was found to be very minimal.The micro Vickers hardness of the hybrid composite was14%more than that of the simple nanocomposite and there was not much notable variation for Al?Gr and Al?Si3N4nanocomposite materials.Scanning electron microscope was used to analyze the worn surface and subsurface,from which it was noted that the predominant wear mechanisms observed were abrasive for nanocomposite and both abrasive and adhesive mechanism for hybrid composite.Analysis of variance(ANOVA)and F-test were used to check the validity model and to determine the significant parameters affecting the wear rates.
文摘The creep behaviour of β-Si3N4 whisker reinforced Al-8.5Fe-1.3V-1.7Si composite has been investigated at the temperature 773 and 823 K. The results are characterized by high stress exponent and high apparent creep activation energy The creep data can be interpreted based on the incorporation of a threshold Stress and a load transfer coefficient into the power-law creep equation. A good correlation between the normalized creep rate and normalized effective stress is available which demonstrates that the creep behaviour of both the alloy and the composite is controlled by the matrix lattice self-diffusion in AI. EXamination on microstructure shows that edge dislocations exist at the interfaces between two adjacent whiskers and the intedeces emit edge dislocations in parallel paired-columns.
基金Project(HITQNJS.2008.057)Supported by Development Program for Outstanding Young Teachers in Harbin Institute of Technology,China。
文摘Si_(3)N_(4p)/2024Al composite was fabricated by squeeze casting method and treated by extrusion deformation.Microstructure analyses indicate that Si_(3)N_(4) particles in the composite are in cylindrical polyhedron shape.Extrusion deformation is beneficial to uniform distribution of Si_(3)N_(4) particles and improves the relative density of Si_(3)N_(4p)/2024Al composite.Tensile strength of Si_(3)N_(4p)/2024Al composite increases by 76.6%after T6 treatment,and after extrusion and T6 treatment it is by 57.6%more than T6 treatment only.Elastic modulus of Si_(3)N_(4p)/2024Al composite increases a little after T6 treatment but increases by 33.5%after extrusion deformation.
基金Project(20092302120056)supported by Specialized Research Fund for the Doctoral Program of Higher Education of China(SRFDP)Project(LBH-Z08160)supported by Heilongjiang Postdoctoral Grant,China