Largescale vaporsolid synthesis of ultralong silicon nitride (Si3N4) nanowires was achieved by using simple thermal evaporation of mixture powders of active carbon and monoxide silicon. The products were charac teri...Largescale vaporsolid synthesis of ultralong silicon nitride (Si3N4) nanowires was achieved by using simple thermal evaporation of mixture powders of active carbon and monoxide silicon. The products were charac terized by Xray diffraction, scanning electron microscopy, energydispersive Xray spectroscopy, and transmission electron microscopy. The results suggest that the silicon nitride nanowires have a smooth surface, with lengths of up to several hundreds of microns and diameters of 100300 nm. A detailed study of both the chemical and structural composition was performed. Such ultralong sil icon nitride nanowires demonstrate potential applications as materials for constructing nanoscale devices and as reinforcement in advanced composites.展开更多
基金supported by the Key Program of the National Natural Science Foundation of China(No.19934003)the Grand Program of Natural Science Research of Anhui Education Department(No.ZD2007003-1)+1 种基金the Natural Science Research Program of Universities and Colleges of Anhui Province(No.KJ2008A19ZC)the Opening Program of Cultivating Baseof Anhui Key Laboratory of Spintronics and Nano-materials(No.2012YKF10)
文摘Largescale vaporsolid synthesis of ultralong silicon nitride (Si3N4) nanowires was achieved by using simple thermal evaporation of mixture powders of active carbon and monoxide silicon. The products were charac terized by Xray diffraction, scanning electron microscopy, energydispersive Xray spectroscopy, and transmission electron microscopy. The results suggest that the silicon nitride nanowires have a smooth surface, with lengths of up to several hundreds of microns and diameters of 100300 nm. A detailed study of both the chemical and structural composition was performed. Such ultralong sil icon nitride nanowires demonstrate potential applications as materials for constructing nanoscale devices and as reinforcement in advanced composites.