The crystallization behaviour of the laser synthesized nanometric amorphous Si3N4 powders with the particle size of 15 nm in diameter has been studied between 1200° and 1700℃ by XRD,TEM and FTIR techniques. A sm...The crystallization behaviour of the laser synthesized nanometric amorphous Si3N4 powders with the particle size of 15 nm in diameter has been studied between 1200° and 1700℃ by XRD,TEM and FTIR techniques. A small amount of β-Si3N4 formed at 1250℃ and increased slowly until the α- β transformation happened at 1700℃, whereas α-Si3N4 appeared at 1300℃ andincreased rapidly between 1500-1600℃. The formation of β phase at the lower temperature was caused by the nitridation of free Si due to the preexisted β-nuclei in the Si3N4 particles, whereasthe α phase was formed by solid crystallization from the amorphous matrix. There were α and β SiC formed at 1700℃ due to the presence of Sio and Co gases in the system. FTIR analysis shows that two new IR absorption at 1356 and 1420 cm-1, and an overall strong absorption in wide wavenumber range resulted from the powders annealed at 1600 and 1700℃ respectively展开更多
The sintering additives such as Al2O3 and/or Y2O3 were coated on the surfaces of Si3N4 particles via heterogeneous nucleation processing using a buffered pH solution as the precipitation reagent. They nucleated and gr...The sintering additives such as Al2O3 and/or Y2O3 were coated on the surfaces of Si3N4 particles via heterogeneous nucleation processing using a buffered pH solution as the precipitation reagent. They nucleated and grew only on the surfaces of Si3N4 and did not form sol particles in solution by TEM observation. The isoelectric point (IEP) of coated Si3N4 was different from that of as-received Si3N4. The IEP of AI(OH)3-coated Si3N4 occurred at pH8.4, which is close to that of alumina. When AI(OH)3-coated Si3N4 particles were coated with Y(OH)3, the IEP of coated Si3N4 powder shifted from pH8.4 to pH9.2, similar to that of yttria. In addition, the rheological data showed that Al2O3 and/or Y2O3 coated Si3N4 suspension is nearly Newtonian and that added Si3N4 suspension shows a shear rate thinning behavior.展开更多
文摘The crystallization behaviour of the laser synthesized nanometric amorphous Si3N4 powders with the particle size of 15 nm in diameter has been studied between 1200° and 1700℃ by XRD,TEM and FTIR techniques. A small amount of β-Si3N4 formed at 1250℃ and increased slowly until the α- β transformation happened at 1700℃, whereas α-Si3N4 appeared at 1300℃ andincreased rapidly between 1500-1600℃. The formation of β phase at the lower temperature was caused by the nitridation of free Si due to the preexisted β-nuclei in the Si3N4 particles, whereasthe α phase was formed by solid crystallization from the amorphous matrix. There were α and β SiC formed at 1700℃ due to the presence of Sio and Co gases in the system. FTIR analysis shows that two new IR absorption at 1356 and 1420 cm-1, and an overall strong absorption in wide wavenumber range resulted from the powders annealed at 1600 and 1700℃ respectively
文摘The sintering additives such as Al2O3 and/or Y2O3 were coated on the surfaces of Si3N4 particles via heterogeneous nucleation processing using a buffered pH solution as the precipitation reagent. They nucleated and grew only on the surfaces of Si3N4 and did not form sol particles in solution by TEM observation. The isoelectric point (IEP) of coated Si3N4 was different from that of as-received Si3N4. The IEP of AI(OH)3-coated Si3N4 occurred at pH8.4, which is close to that of alumina. When AI(OH)3-coated Si3N4 particles were coated with Y(OH)3, the IEP of coated Si3N4 powder shifted from pH8.4 to pH9.2, similar to that of yttria. In addition, the rheological data showed that Al2O3 and/or Y2O3 coated Si3N4 suspension is nearly Newtonian and that added Si3N4 suspension shows a shear rate thinning behavior.