采用磁控溅射的方法制备了Si_3N_4/FePd/Si_3N_4三层膜,研究了非磁性材料Si_3N_4作为插入层对磁记录FePd薄膜结构与磁性能的影响。结果表明,热处理后Si_3N_4分布在FePd纳米颗粒之间,抑制了FePd晶粒的生长,与纯FePd薄膜相比,Si_3N_4/FePd...采用磁控溅射的方法制备了Si_3N_4/FePd/Si_3N_4三层膜,研究了非磁性材料Si_3N_4作为插入层对磁记录FePd薄膜结构与磁性能的影响。结果表明,热处理后Si_3N_4分布在FePd纳米颗粒之间,抑制了FePd晶粒的生长,与纯FePd薄膜相比,Si_3N_4/FePd/Si_3N_4薄膜的颗粒明显得到细化;通过添加Si_3N_4层,FePd薄膜的晶体学参数c/a从0.960减小到0.946,表明Si_3N_4可以有效促进FePd薄膜的有序化进程,同时提升了矫顽力和剩磁比,分别提高到249 k A/m、0.86;随着600℃退火时间的进一步延长,添加Si_3N_4的薄膜磁性没有迅速下降,在较宽的热处理时间范围内磁性能保持在比较高的水平,提高了抗热影响的能力。Si_3N_4作为插入层对FePd薄膜的磁性能具有较大的提升作用,这对磁记录薄膜的发展具有重要意义。展开更多
文摘采用磁控溅射的方法制备了Si_3N_4/FePd/Si_3N_4三层膜,研究了非磁性材料Si_3N_4作为插入层对磁记录FePd薄膜结构与磁性能的影响。结果表明,热处理后Si_3N_4分布在FePd纳米颗粒之间,抑制了FePd晶粒的生长,与纯FePd薄膜相比,Si_3N_4/FePd/Si_3N_4薄膜的颗粒明显得到细化;通过添加Si_3N_4层,FePd薄膜的晶体学参数c/a从0.960减小到0.946,表明Si_3N_4可以有效促进FePd薄膜的有序化进程,同时提升了矫顽力和剩磁比,分别提高到249 k A/m、0.86;随着600℃退火时间的进一步延长,添加Si_3N_4的薄膜磁性没有迅速下降,在较宽的热处理时间范围内磁性能保持在比较高的水平,提高了抗热影响的能力。Si_3N_4作为插入层对FePd薄膜的磁性能具有较大的提升作用,这对磁记录薄膜的发展具有重要意义。