期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
采用Si粉发泡氮化制备Si3N4纤维材料的抗氧化性研究
1
作者 杜鹏辉 王刚 +4 位作者 韩建燊 梁鹏鹏 张琪 袁波 李红霞 《耐火材料》 CAS 北大核心 2021年第1期7-12,共6页
采用发泡法将气孔引入Si坯体,使体积分别增加0、1、2、3倍,经原位氮化制备出显气孔率分别为49%、74%、81%和87%的Si3N4纤维材料,研究了氧化温度(1 150、1 350和1 550℃)和显气孔率对Si3N4纤维材料抗氧化性的影响。结果表明:1)温度是影响... 采用发泡法将气孔引入Si坯体,使体积分别增加0、1、2、3倍,经原位氮化制备出显气孔率分别为49%、74%、81%和87%的Si3N4纤维材料,研究了氧化温度(1 150、1 350和1 550℃)和显气孔率对Si3N4纤维材料抗氧化性的影响。结果表明:1)温度是影响Si3N4纤维材料抗氧化性的关键因素,随温度升高试样氧化后生成SiO2的量逐渐增多。孔中Si3N4纤维因具有较大的比表面积,1 550℃氧化后全部转化为串珠状SiO2结构,Si3N4纤维材料理想的使用温度应低于1 150℃;2)试样显气孔率由49%提高至87%,氧化后生成SiO2的量变化不大;3)发泡法引入的气孔可部分吸收孔壁上Si3N4氧化产生的体积效应,避免孔壁在氧化中产生裂纹。同时,Si3N4氧化产生的体积膨胀可使孔壁结构致密化,有利于提高材料强度。 展开更多
关键词 si3n4纤维 si 发泡法 抗氧化性
下载PDF
不同氮化条件对聚氨酯泡沫浸渍氮化制备Si3N4纤维材料的影响
2
作者 杜鹏辉 王刚 +4 位作者 韩建燊 梁鹏鹏 陈政龙 张琪 李红霞 《耐火材料》 CAS 北大核心 2020年第5期385-389,共5页
为了探究不同氮化条件对聚氨酯泡沫浸渍氮化制备Si3N4纤维材料的影响,明确影响Si3N4纤维材料制备的关键因素,以不同孔径(200、1000、5000μm)聚氨酯泡沫为模板,通过浸渍工艺制备Si多孔坯体,采取直接氮化和放置在坩埚中的两种氮化方式制... 为了探究不同氮化条件对聚氨酯泡沫浸渍氮化制备Si3N4纤维材料的影响,明确影响Si3N4纤维材料制备的关键因素,以不同孔径(200、1000、5000μm)聚氨酯泡沫为模板,通过浸渍工艺制备Si多孔坯体,采取直接氮化和放置在坩埚中的两种氮化方式制备了Si3N4纤维材料,重点研究了两种氮化条件对Si3N4纤维材料显微结构的影响。结果表明:1)Si3N4纤维的生成反应为SiO和N 2双气相控制反应,氮化过程中SiO与N 2发生反应生成Si3N4纤维,Si3N4纤维优先在Si3N4基材料上附着生长;2)SiO分压是影响Si3N4纤维材料制备的关键因素,将试样放置在坩埚中氮化可确保在坩埚内形成较高的SiO分压,有利于Si3N4纤维的制备;3)200μm孔径的聚氨酯泡沫因孔径较小,浸渍挂浆后易形成闭孔结构,可以抑制SiO从贯通孔中逸出,易在材料内部形成较高的SiO分压,有利于Si3N4纤维的生长。两种氮化条件对采用200μm孔径的聚氨酯泡沫浸渍氮化后生成Si3N4的量影响不大。 展开更多
关键词 浸渍 si3n4纤维 孔径 siO
下载PDF
聚碳硅烷氮化热解法制备Si_3N_4纤维 被引量:7
3
作者 兰琳 夏文丽 +3 位作者 陈剑铭 刘玲 丁绍楠 刘安华 《功能材料》 EI CAS CSCD 北大核心 2013年第20期2981-2984,共4页
将PCS电子束交联丝在氨气氛中氮化热解、脱碳氨化,继在氮气氛中高温热引发缩合/转氨基反应,生成硅氮烷并最终形成氮化硅(Si3N4)纤维。所制备的Si3N4纤维白色透明,横截面和表面均光滑致密,无明显缺陷和孔洞。还研究了氮化热解的反应机理... 将PCS电子束交联丝在氨气氛中氮化热解、脱碳氨化,继在氮气氛中高温热引发缩合/转氨基反应,生成硅氮烷并最终形成氮化硅(Si3N4)纤维。所制备的Si3N4纤维白色透明,横截面和表面均光滑致密,无明显缺陷和孔洞。还研究了氮化热解的反应机理以及热解工艺对氮化硅(Si3N4)纤维结构和性能的影响。红外光谱和元素分析的结果显示,氮化热解脱碳彻底,Si3N4纤维C含量<1%;烧结温度提高,N含量随之增加,O含量则先增后减;烧结温度不超过1500℃,纤维为无定型。力学性能结果分析表明,随热解温度的提高,纤维力学性能先提后降,1300℃时达到最大值。氮化热解过程是采用NH3进行脱碳氨化,并在N2气氛下高温热引发缩合/转氨基反应产生硅氮烷并最终形成Si3N4的过程。 展开更多
关键词 聚碳硅烷 先驱体转化法 氮化热解法 si3n4纤维
下载PDF
耐高温陶瓷透波纤维研究进展 被引量:4
4
作者 黄新松 李文钦 简科 《安全与电磁兼容》 2010年第2期53-56,共4页
陶瓷透波纤维是耐高温透波复合材料与天线罩研制的关键增强材料。详细介绍了Si3N4、BN、SiBN三种耐高温陶瓷透波纤维的研究进展,结果表明,连续SiBN陶瓷纤维结合了Si3N4纤维和BN纤维的优点,具有优异的耐高温性能、力学性能和介电性能,是... 陶瓷透波纤维是耐高温透波复合材料与天线罩研制的关键增强材料。详细介绍了Si3N4、BN、SiBN三种耐高温陶瓷透波纤维的研究进展,结果表明,连续SiBN陶瓷纤维结合了Si3N4纤维和BN纤维的优点,具有优异的耐高温性能、力学性能和介电性能,是一种理想的陶瓷基透波复合材料的增强纤维。 展开更多
关键词 透波 耐高温 si3n4纤维 Bn纤维 siBn纤维
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部