目的提高F92耐热钢基体在600、630℃下的高温耐磨性能。方法采用超音速火焰喷涂方法(High velocity oxy-fuel,HVOF)在F92表面制备CoCrWSi、Stellite-6两种涂层,利用扫描电子显微镜(Scanning electron microscope,SEM)和X射线衍射仪(X-ra...目的提高F92耐热钢基体在600、630℃下的高温耐磨性能。方法采用超音速火焰喷涂方法(High velocity oxy-fuel,HVOF)在F92表面制备CoCrWSi、Stellite-6两种涂层,利用扫描电子显微镜(Scanning electron microscope,SEM)和X射线衍射仪(X-ray diffraction,XRD)分析涂层的表面、截面形貌和物相组成,通过显微维氏硬度计(HV-1000STA)、高温摩擦磨损试验机(UMT-TRIBOLAB)、二维轮廓仪(TencorD-100)测定其显微硬度、高温摩擦学性能和磨痕体积。结果采用超音速火焰喷涂技术制备的CoCrWSi、Stellite-6两种涂层表面较平整,与基体结合紧密,内部组织均匀无裂纹,涂层的厚度约为200μm。XRD分析表明,CoCrWSi、Stellite-6涂层在室温下的物相都由γ(Co)、Cr_(7)C_(3)、CrSi_(2)组成。硬度及耐磨性能测试显示,CoCrWSi、Stellite-6涂层的维氏硬度相较于F92基体分别提高了3.12、2.68倍,F92耐热钢在600、630℃时的平均摩擦因数分别为0.87、0.86,体积磨损率分别为0.49×10^(-4)、1.11×10^(-4)mm^(3)/(N·m),其磨损机理主要为疲劳磨损、黏着磨损、氧化磨损。相较于基体,CoCrWSi涂层在2种温度下的平均摩擦因数分别降低了68%、71%,约为0.28、0.25,体积磨损率分别降低了约95%、97%,为0.20×10^(-5)、0.30×10^(-5)mm^(3)/(N·m),这主要归功于内部的Cr2O3、γ(Co)、Co_(3)O_(4)相在高温摩擦过程中具有良好的润滑效果。Stellite-6涂层也能在一定程度上改善基体的高温耐磨性能,其平均摩擦因数为0.85、0.71,体积磨损率为0.32×10^(-4)、0.57×10^(-4)mm^(3)/(N·m)。2种涂层的主要磨损机理均为磨粒磨损和黏着磨损。结论采用超音速火焰喷涂制备的CoCrWSi、Stellite-6涂层可以改善F92耐热钢在600、630℃下的耐高温滑动磨损性能,且CoCrWSi涂层的防护效果更佳。展开更多
Although metal oxide compounds are considered as desirable anode materials for potassium-ion batteries(PIBs)due to their high theoretical capacity,the large volume variation remains a key issue in realizing metal oxid...Although metal oxide compounds are considered as desirable anode materials for potassium-ion batteries(PIBs)due to their high theoretical capacity,the large volume variation remains a key issue in realizing metal oxide anodes with long cycle life and excellent rate property.In this study,polypyrroleencapsulated Sb_(2)WO_(6)(denoted Sb_(2)WO_(6)@PPy)microflowers are synthesized by a one-step hydrothermal method followed by in-situ polymerization and coating by pyrrole.Leveraging the nanosheet-stacked Sb_(2)WO_(6)microflower structure,the improved electronic conductivity,and the architectural protection offered by the PPy coating,Sb_(2)WO_(6)@PPy exhibits boosted potassium storage properties,thereby demonstrating an outstanding rate property of 110.3 m A h g^(-1)at 5 A g^(-1)and delivering a long-period cycling stability with a reversible capacity of 197.2 m A h g^(-1)after 500 cycles at 1 A g^(-1).In addition,the conversion and alloying processes of Sb_(2)WO_(6)@PPy in PIBs with the generation of intermediates,K_(2)WO_(4)and K_(3)Sb,is determined by X-ray photoelectron spectroscopy,transmission electron microscopy,and exsitu X-ray diffraction during potassiation/depotassiation.Density functional theory calculations demonstrate that the robust coupling between PPy and Sb_(2)WO_(6)endues it with a much stronger total density of states and a built-in electric field,thereby increasing the electronic conductivity,and thus effectively reduces the K^(+)diffusion barrier.展开更多
All-solid-state lithium metal batteries(ASSLMBs)featuring sulfide solid electrolytes(SEs)are recognized as the most promising next-generation energy storage technology because of their exceptional safety and much-impr...All-solid-state lithium metal batteries(ASSLMBs)featuring sulfide solid electrolytes(SEs)are recognized as the most promising next-generation energy storage technology because of their exceptional safety and much-improved energy density.However,lithium dendrite growth in sulfide SEs and their poor air stability have posed significant obstacles to the advancement of sulfide-based ASSLMBs.Here,a thin layer(approximately 5 nm)of g-C_(3)N_(4)is coated on the surface of a sulfide SE(Li_(6)PS_(5)Cl),which not only lowers the electronic conductivity of Li_(6)PS_(5)Cl but also achieves remarkable interface stability by facilitating the in situ formation of ion-conductive Li3N at the Li/Li_(6)PS_(5)Cl interface.Additionally,the g-C_(3)N_(4)coating on the surface can substantially reduce the formation of H_(2)S when Li_(6)PS_(5)Cl is exposed to humid air.As a result,Li-Li symmetrical cells using g-C_(3)N_(4)-coated Li_(6)PS_(5)Cl stably cycle for 1000 h with a current density of 0.2 mA cm^(-2).ASSLMBs paired with LiNbO_(3)-coated LiNi_(0.6)Mn_(0.2)Co_(0.2)O_(2)exhibit a capacity of 132.8 mAh g^(-1)at 0.1 C and a high-capacity retention of 99.1%after 200 cycles.Furthermore,g-C_(3)N_(4)-coated Li_(6)PS_(5)Cl effectively mitigates the self-discharge behavior observed in ASSLMBs.This surface-coating approach for sulfide solid electrolytes opens the door to the practical implementation of sulfide-based ASSLMBs.展开更多
In order to improve the hardness and tribological performance of Ti6Al4V alloy,NiCoCrAlY-B_(4)C composite coatings with B_(4)C of 5%,10%and 15%(mass fraction)were fabricated on its surface by laser cladding(LC).The mo...In order to improve the hardness and tribological performance of Ti6Al4V alloy,NiCoCrAlY-B_(4)C composite coatings with B_(4)C of 5%,10%and 15%(mass fraction)were fabricated on its surface by laser cladding(LC).The morphologies,chemical compositions and phases of obtained coatings were analyzed using scanning electronic microscope(SEM),energy dispersive spectrometer(EDS),and X-ray diffraction(XRD),respectively.The effects of B_(4)C mass fraction on the coefficient of friction(COF)and wear rate of NiCoCrAlY-B_(4)C coatings were investigated using a ball-on-disc wear tester.The results show that the NiCoCrAlY-B_(4)C coatings with different B_(4)C mass fractions are mainly composed of NiTi,NiTi_(2),α-Ti,CoO,AlB_(2),TiC,TiB and TiB_(2)phases.The COFs and wear rates of NiCoCrAlY-B_(4)C coatings decrease with the increase of B_(4)C content,which are contributed to the improvement of coating hardness by the B_(4)C addition.The wear mechanisms of NiCoCrAlY-B_(4)C coatings are changed from adhesive wear and oxidation wear to fatigue wear with the increase of B_(4)C content.展开更多
The tribology behaviors of Ti6Al7Nb,its alloy with N-ion implantation,and its alloy with diamond-like carbon(DLC)coating were investigated in artificial saliva.Fretting wear tests of untreated,N-ion implanted and DLC ...The tribology behaviors of Ti6Al7Nb,its alloy with N-ion implantation,and its alloy with diamond-like carbon(DLC)coating were investigated in artificial saliva.Fretting wear tests of untreated,N-ion implanted and DLC coated Ti6Al7Nb alloys plate against a Si3N4ball were carried out on a reciprocating sliding fretting wear test rig.Based on the analysis of X-ray diffraction,Raman spectroscopy,3-D profiler,SEM morphologies and frictional kinetics behavior analysis,the damage behavior of surface modification layer was discussed in detail.The results indicated that the fretting wear behavior of Ti6Al7Nb alloy with N-ion implantation was increased with the dose increase of the implanted nitrogen ions.Moreover,the DLC-coated Ti6Al7Nb alloy with low ion implantation could improve the fretting wear behavior greatly.In addition,the Ti6Al7Nb with DLC coating had better ncorrosion resistance due to the special compact structure.All results suggested that the Ti6Al7Nb with DLC coating had better wear resistance than that with N-ion implantation in artificial saliva.展开更多
Compound ceramic coatings on Ti-6Al-4V alloy were prepared for different time by pulsed bi-polar micro-plasma oxidation (MPO) in NaAlO2 solution. The phase composition was studied by XRD. And the electrochemical imped...Compound ceramic coatings on Ti-6Al-4V alloy were prepared for different time by pulsed bi-polar micro-plasma oxidation (MPO) in NaAlO2 solution. The phase composition was studied by XRD. And the electrochemical impedance spectra (EIS) of the coatings were measured to study the structure of the coatings, combined with the surface morphology. Using the proper EIS interpreting software, the "equivalent circuit" of the coatings was established, and meanwhile fitting values of equivalent element were obtained. The results show that the coating is composed of Al2 TiO5, α-Al2O3 and rutile TiO2, of which Al2 TiO5 is the main crystalline. Increasing the MPO time, the contents of Al2TiO5, rutile TiO2 and α-Al2O3 in the surface of the coating increase. And the EIS analysis and the surface morphology of the coatings illustrates the double-layer structure of the coatings, and the outer layer is loosen and the inner layer is compact. With the increase of the oxidizing time, the surface coarse degree of the coatings and the porosity of the outer layer of the coating are increased while the compactness of the inner layer of the coating is improved.展开更多
Al-FeCoNiCrAl high entropy alloy(HEA) composite coatings were prepared on Ti-6Al-4V via highenergy mechanical alloying(MA). The microstructures and phase composition of the coatings were studied. A continuous and dens...Al-FeCoNiCrAl high entropy alloy(HEA) composite coatings were prepared on Ti-6Al-4V via highenergy mechanical alloying(MA). The microstructures and phase composition of the coatings were studied. A continuous and dense coating could be fabricated at a ratio of 35%(weight fraction)Al-FeCoNiCrAl after 4 h milling.The results showed that the thickness of the composite coatings increased first and then decreased with the increase of milling time. And the hardness of coating increased with the increase of milling time. The phase changed during the annealing process. Part of the initial body-centered cubic(BCC)phase of the composite coatings changed into the L12 phase,(Ni,Co)3Al4 and σ phase after annealing above 550 ℃. Ordered BCC was found in the coatings after annealing above 750 ℃. Only BCC and ordered BCC appeared in coatings after annealing above 1 050 ℃. The hardness of the coatings after annealing at 550 ℃ and 750 ℃ was higher than before because of spinodal decomposition and high hardness σ phase. The hardness of the coatings after annealing at 1 050 ℃ decreased because residual stress released.展开更多
A NiCrAlY coating was deposited on the TC6 titanium substrate by arc ion plating (ALP). The structure and morphologies of the NiCrAlY coating were characterized by X-ray diffraction (XRD) and scanning electron mic...A NiCrAlY coating was deposited on the TC6 titanium substrate by arc ion plating (ALP). The structure and morphologies of the NiCrAlY coating were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), and the influence of vacuum heat treatment on the element diffusion behavior was studied. The results showed that the y'-Ni3Al phase was precipitated on the NiCrAlY coating after heat treatment. The Ni3(AI,Ti), TiNi, and Ti2Ni intermetallic layers appeared at the interface from the outside to the inside at 700℃, and the thickness of the intermetallic layers increased with the increase in temperature. At 700℃ Ti and Ni were the major diffusion elements, and the diffusion of Cr was observed when the heat treatment temperature increased up to 870℃. The violent inward diffusion of Ni at 950℃ resulted in the degradation of the NiCrAlY coating.展开更多
Ti6Al4V substrates were anodized in a 0.5 mol/L H_2SO_4 solution at applied voltages of 90-140 V.A hydroxyapatite-titanium oxide(HA-TiO2)coating was then deposited on the anodized Ti6Al4 V substrates via a hydrother...Ti6Al4V substrates were anodized in a 0.5 mol/L H_2SO_4 solution at applied voltages of 90-140 V.A hydroxyapatite-titanium oxide(HA-TiO2)coating was then deposited on the anodized Ti6Al4 V substrates via a hydrothermal-electrochemicalmethod at a constant current.The obtained films and coatings were characterized by X-ray diffraction,scanning electron microscopy,energy-dispersive X-ray spectroscopy,and Fourier-transform infrared spectrometry.The microstructures of the porous films on the Ti6Al4 V substrates were studied to investigate the effect of the anodizing voltage on the phase and morphology of the HATiO_2 coating.The results indicated that both the phase composition and the morphology of the coatings were significantly influenced by changes in the anodizing voltage.HA-TiO_2 was directly precipitated onto the surface of the substrate when the applied voltage was between 110 and 140 V.The coatings had a gradient structure and the HA exhibited both needle-like and cotton-like structures.The amount of cotton-like HA structures decreased with an increase in voltage from 90 to 120 V,and then increased slightly when the voltage was higher than 120 V.The orientation index of the(002)plane of the coating was at a minimum when the Ti6Al4 V substrate was pretreated at 120 V.展开更多
The aluminide coating process of Ti-6Al-4V alloys with different fillers(100wt.% Al_2O_3,50wt% Y_2O_3+50wt.% Al_2O_3 and 100wt.% Y_2O_3) for improvement of the oxidation resistance were investigated.The results show t...The aluminide coating process of Ti-6Al-4V alloys with different fillers(100wt.% Al_2O_3,50wt% Y_2O_3+50wt.% Al_2O_3 and 100wt.% Y_2O_3) for improvement of the oxidation resistance were investigated.The results show that the filler does not only participate in the aluminizing process,but also has much effect on the coating composition.The XRD analysis reveals that the aluminide coating with filler Al_2O_3 is predominant with TiAl_3 and TiAl phases;while the aluminide coatings with filler Y_2O_3+Al_2O_3 are predominant with Ti_3Al phase.The oxidation kinetics shows that different fillers affect greatly the oxidation resistance of aluminide coating,and the oxidation resistance of aluminized specimens with pack aluminizing filler Al_2O_3 are about 5-8 times than that of the aluminized specimens with other pack aluminizing fillers.展开更多
Oxidation and hot corrosion behaviors of Ni3Al-Mo (IC6) alloy were studied. Surface protective coatings were also developed for the engineering application of the alloy. The sputtered NiCrAlY coating may greatly impro...Oxidation and hot corrosion behaviors of Ni3Al-Mo (IC6) alloy were studied. Surface protective coatings were also developed for the engineering application of the alloy. The sputtered NiCrAlY coating may greatly improve the oxidation and hot corrosion resistance of IC6 alloy by forming a protective Al2O3 scale, and the coating shows little effect on the mechanical properties of IC6 alloy.展开更多
SrLi_(2)Ti_(6)O_(14)(SLTO)coated with different amount of ZrO_(2)was successfully prepared.The as-obtained composites are stacked by a series of particles with a pure phase structure and a good crystallinity.Furthermo...SrLi_(2)Ti_(6)O_(14)(SLTO)coated with different amount of ZrO_(2)was successfully prepared.The as-obtained composites are stacked by a series of particles with a pure phase structure and a good crystallinity.Furthermore,ZrO_(2)coating not only enhances the structural stability of the materials but also facilitates the diffusion of lithium through the SEI film.As a result,the redox polarization was reduced,and the reversibility of the electrochemical reaction was enhanced.Particularly,SLTO-ZrO_(2)-2 sample delivers a high initial lithiation capacity of 283.6 mA h g^(-1),and the values maintain at 251.7,228.0,207.4,175.3,and 147.7 mA h g^(-1)at the current densities of 0.13,0.26,0.54,1.31,and 2.62 A g^(-1),respectively.Our experiment also confirmed that SLTO materials coated with ZrO_(2)are suitable for high power density applications,and the lithiation specific energy efficiency of SLTO-ZrO_(2)-2 is 200%as high as that of pure SLTO at a power density of 1257 W kg^(-1).展开更多
基金supported by the National Natural Science Foundation of China(22075147 and 22179063)。
文摘Although metal oxide compounds are considered as desirable anode materials for potassium-ion batteries(PIBs)due to their high theoretical capacity,the large volume variation remains a key issue in realizing metal oxide anodes with long cycle life and excellent rate property.In this study,polypyrroleencapsulated Sb_(2)WO_(6)(denoted Sb_(2)WO_(6)@PPy)microflowers are synthesized by a one-step hydrothermal method followed by in-situ polymerization and coating by pyrrole.Leveraging the nanosheet-stacked Sb_(2)WO_(6)microflower structure,the improved electronic conductivity,and the architectural protection offered by the PPy coating,Sb_(2)WO_(6)@PPy exhibits boosted potassium storage properties,thereby demonstrating an outstanding rate property of 110.3 m A h g^(-1)at 5 A g^(-1)and delivering a long-period cycling stability with a reversible capacity of 197.2 m A h g^(-1)after 500 cycles at 1 A g^(-1).In addition,the conversion and alloying processes of Sb_(2)WO_(6)@PPy in PIBs with the generation of intermediates,K_(2)WO_(4)and K_(3)Sb,is determined by X-ray photoelectron spectroscopy,transmission electron microscopy,and exsitu X-ray diffraction during potassiation/depotassiation.Density functional theory calculations demonstrate that the robust coupling between PPy and Sb_(2)WO_(6)endues it with a much stronger total density of states and a built-in electric field,thereby increasing the electronic conductivity,and thus effectively reduces the K^(+)diffusion barrier.
基金supported by Beijing Natural Science Foundation(JQ22028)National Natural Science Foundation of China(U21A2080)+1 种基金Jilin Province Science and Technology Major Project(20210301021GX)Ministry of Science and Technology Rare Earth Special(2022YFB3506300).
文摘All-solid-state lithium metal batteries(ASSLMBs)featuring sulfide solid electrolytes(SEs)are recognized as the most promising next-generation energy storage technology because of their exceptional safety and much-improved energy density.However,lithium dendrite growth in sulfide SEs and their poor air stability have posed significant obstacles to the advancement of sulfide-based ASSLMBs.Here,a thin layer(approximately 5 nm)of g-C_(3)N_(4)is coated on the surface of a sulfide SE(Li_(6)PS_(5)Cl),which not only lowers the electronic conductivity of Li_(6)PS_(5)Cl but also achieves remarkable interface stability by facilitating the in situ formation of ion-conductive Li3N at the Li/Li_(6)PS_(5)Cl interface.Additionally,the g-C_(3)N_(4)coating on the surface can substantially reduce the formation of H_(2)S when Li_(6)PS_(5)Cl is exposed to humid air.As a result,Li-Li symmetrical cells using g-C_(3)N_(4)-coated Li_(6)PS_(5)Cl stably cycle for 1000 h with a current density of 0.2 mA cm^(-2).ASSLMBs paired with LiNbO_(3)-coated LiNi_(0.6)Mn_(0.2)Co_(0.2)O_(2)exhibit a capacity of 132.8 mAh g^(-1)at 0.1 C and a high-capacity retention of 99.1%after 200 cycles.Furthermore,g-C_(3)N_(4)-coated Li_(6)PS_(5)Cl effectively mitigates the self-discharge behavior observed in ASSLMBs.This surface-coating approach for sulfide solid electrolytes opens the door to the practical implementation of sulfide-based ASSLMBs.
文摘In order to improve the hardness and tribological performance of Ti6Al4V alloy,NiCoCrAlY-B_(4)C composite coatings with B_(4)C of 5%,10%and 15%(mass fraction)were fabricated on its surface by laser cladding(LC).The morphologies,chemical compositions and phases of obtained coatings were analyzed using scanning electronic microscope(SEM),energy dispersive spectrometer(EDS),and X-ray diffraction(XRD),respectively.The effects of B_(4)C mass fraction on the coefficient of friction(COF)and wear rate of NiCoCrAlY-B_(4)C coatings were investigated using a ball-on-disc wear tester.The results show that the NiCoCrAlY-B_(4)C coatings with different B_(4)C mass fractions are mainly composed of NiTi,NiTi_(2),α-Ti,CoO,AlB_(2),TiC,TiB and TiB_(2)phases.The COFs and wear rates of NiCoCrAlY-B_(4)C coatings decrease with the increase of B_(4)C content,which are contributed to the improvement of coating hardness by the B_(4)C addition.The wear mechanisms of NiCoCrAlY-B_(4)C coatings are changed from adhesive wear and oxidation wear to fatigue wear with the increase of B_(4)C content.
文摘The tribology behaviors of Ti6Al7Nb,its alloy with N-ion implantation,and its alloy with diamond-like carbon(DLC)coating were investigated in artificial saliva.Fretting wear tests of untreated,N-ion implanted and DLC coated Ti6Al7Nb alloys plate against a Si3N4ball were carried out on a reciprocating sliding fretting wear test rig.Based on the analysis of X-ray diffraction,Raman spectroscopy,3-D profiler,SEM morphologies and frictional kinetics behavior analysis,the damage behavior of surface modification layer was discussed in detail.The results indicated that the fretting wear behavior of Ti6Al7Nb alloy with N-ion implantation was increased with the dose increase of the implanted nitrogen ions.Moreover,the DLC-coated Ti6Al7Nb alloy with low ion implantation could improve the fretting wear behavior greatly.In addition,the Ti6Al7Nb with DLC coating had better ncorrosion resistance due to the special compact structure.All results suggested that the Ti6Al7Nb with DLC coating had better wear resistance than that with N-ion implantation in artificial saliva.
基金Project (50171026) supported by the National Natural Science Foundation of China
文摘Compound ceramic coatings on Ti-6Al-4V alloy were prepared for different time by pulsed bi-polar micro-plasma oxidation (MPO) in NaAlO2 solution. The phase composition was studied by XRD. And the electrochemical impedance spectra (EIS) of the coatings were measured to study the structure of the coatings, combined with the surface morphology. Using the proper EIS interpreting software, the "equivalent circuit" of the coatings was established, and meanwhile fitting values of equivalent element were obtained. The results show that the coating is composed of Al2 TiO5, α-Al2O3 and rutile TiO2, of which Al2 TiO5 is the main crystalline. Increasing the MPO time, the contents of Al2TiO5, rutile TiO2 and α-Al2O3 in the surface of the coating increase. And the EIS analysis and the surface morphology of the coatings illustrates the double-layer structure of the coatings, and the outer layer is loosen and the inner layer is compact. With the increase of the oxidizing time, the surface coarse degree of the coatings and the porosity of the outer layer of the coating are increased while the compactness of the inner layer of the coating is improved.
文摘Al-FeCoNiCrAl high entropy alloy(HEA) composite coatings were prepared on Ti-6Al-4V via highenergy mechanical alloying(MA). The microstructures and phase composition of the coatings were studied. A continuous and dense coating could be fabricated at a ratio of 35%(weight fraction)Al-FeCoNiCrAl after 4 h milling.The results showed that the thickness of the composite coatings increased first and then decreased with the increase of milling time. And the hardness of coating increased with the increase of milling time. The phase changed during the annealing process. Part of the initial body-centered cubic(BCC)phase of the composite coatings changed into the L12 phase,(Ni,Co)3Al4 and σ phase after annealing above 550 ℃. Ordered BCC was found in the coatings after annealing above 750 ℃. Only BCC and ordered BCC appeared in coatings after annealing above 1 050 ℃. The hardness of the coatings after annealing at 550 ℃ and 750 ℃ was higher than before because of spinodal decomposition and high hardness σ phase. The hardness of the coatings after annealing at 1 050 ℃ decreased because residual stress released.
基金This study was supported by the National Key Program of the Tenth Five-Year Plan of China (05-MKP-089).
文摘A NiCrAlY coating was deposited on the TC6 titanium substrate by arc ion plating (ALP). The structure and morphologies of the NiCrAlY coating were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), and the influence of vacuum heat treatment on the element diffusion behavior was studied. The results showed that the y'-Ni3Al phase was precipitated on the NiCrAlY coating after heat treatment. The Ni3(AI,Ti), TiNi, and Ti2Ni intermetallic layers appeared at the interface from the outside to the inside at 700℃, and the thickness of the intermetallic layers increased with the increase in temperature. At 700℃ Ti and Ni were the major diffusion elements, and the diffusion of Cr was observed when the heat treatment temperature increased up to 870℃. The violent inward diffusion of Ni at 950℃ resulted in the degradation of the NiCrAlY coating.
基金Funded in part by the Key Laboratory of Inorginic Coating MaterialsChinese Academy of Sciences(No.KLICM-2014-11)the Shanghai Municipal Natural Science Foundation Sponsored by Shanghai Municipal Science and Technology Commissions(No.15ZR1428300)
文摘Ti6Al4V substrates were anodized in a 0.5 mol/L H_2SO_4 solution at applied voltages of 90-140 V.A hydroxyapatite-titanium oxide(HA-TiO2)coating was then deposited on the anodized Ti6Al4 V substrates via a hydrothermal-electrochemicalmethod at a constant current.The obtained films and coatings were characterized by X-ray diffraction,scanning electron microscopy,energy-dispersive X-ray spectroscopy,and Fourier-transform infrared spectrometry.The microstructures of the porous films on the Ti6Al4 V substrates were studied to investigate the effect of the anodizing voltage on the phase and morphology of the HATiO_2 coating.The results indicated that both the phase composition and the morphology of the coatings were significantly influenced by changes in the anodizing voltage.HA-TiO_2 was directly precipitated onto the surface of the substrate when the applied voltage was between 110 and 140 V.The coatings had a gradient structure and the HA exhibited both needle-like and cotton-like structures.The amount of cotton-like HA structures decreased with an increase in voltage from 90 to 120 V,and then increased slightly when the voltage was higher than 120 V.The orientation index of the(002)plane of the coating was at a minimum when the Ti6Al4 V substrate was pretreated at 120 V.
基金This work is financially supported by Project 985-Automotive Engineering of Jilin University
文摘The aluminide coating process of Ti-6Al-4V alloys with different fillers(100wt.% Al_2O_3,50wt% Y_2O_3+50wt.% Al_2O_3 and 100wt.% Y_2O_3) for improvement of the oxidation resistance were investigated.The results show that the filler does not only participate in the aluminizing process,but also has much effect on the coating composition.The XRD analysis reveals that the aluminide coating with filler Al_2O_3 is predominant with TiAl_3 and TiAl phases;while the aluminide coatings with filler Y_2O_3+Al_2O_3 are predominant with Ti_3Al phase.The oxidation kinetics shows that different fillers affect greatly the oxidation resistance of aluminide coating,and the oxidation resistance of aluminized specimens with pack aluminizing filler Al_2O_3 are about 5-8 times than that of the aluminized specimens with other pack aluminizing fillers.
基金the High Technology Research and Development Programme of China
文摘Oxidation and hot corrosion behaviors of Ni3Al-Mo (IC6) alloy were studied. Surface protective coatings were also developed for the engineering application of the alloy. The sputtered NiCrAlY coating may greatly improve the oxidation and hot corrosion resistance of IC6 alloy by forming a protective Al2O3 scale, and the coating shows little effect on the mechanical properties of IC6 alloy.
基金financially supported by the National Natural Science Foundation of China(nos.21773060,51774002,and 21601054)Fundamental Research Funds for the Central Universities(no.N182304014)+1 种基金Youth Innovation Team Project of Science and technology of Heilongjiang University(2018-KYYWF-1593)Young Scholar Project of the Long Jiang Scholars Program(Q201818)
文摘SrLi_(2)Ti_(6)O_(14)(SLTO)coated with different amount of ZrO_(2)was successfully prepared.The as-obtained composites are stacked by a series of particles with a pure phase structure and a good crystallinity.Furthermore,ZrO_(2)coating not only enhances the structural stability of the materials but also facilitates the diffusion of lithium through the SEI film.As a result,the redox polarization was reduced,and the reversibility of the electrochemical reaction was enhanced.Particularly,SLTO-ZrO_(2)-2 sample delivers a high initial lithiation capacity of 283.6 mA h g^(-1),and the values maintain at 251.7,228.0,207.4,175.3,and 147.7 mA h g^(-1)at the current densities of 0.13,0.26,0.54,1.31,and 2.62 A g^(-1),respectively.Our experiment also confirmed that SLTO materials coated with ZrO_(2)are suitable for high power density applications,and the lithiation specific energy efficiency of SLTO-ZrO_(2)-2 is 200%as high as that of pure SLTO at a power density of 1257 W kg^(-1).