The thermophysical properties of the SiC /Al composites mixed with diamond(SiC-Dia/Al) were studied through theoretical calculation and experiments. The thermal conductivity and the thermal expansion coefficient of ...The thermophysical properties of the SiC /Al composites mixed with diamond(SiC-Dia/Al) were studied through theoretical calculation and experiments. The thermal conductivity and the thermal expansion coefficient of the SiC-Dia/Al were calculated by differential effective medium(DEM) theoretical model and extended Turner model, respectively. The microstructure of the SiC-Dia/Al shows that the combination between SiC particles and Al is close, while that between diamond particles and Al is not close. The experimental results of the thermophysical properties of the SiC-Dia/Al are consistent with the calculated ones. The calculation results show that when the volume ratio of the diamond particles to the SiC particles is 3:7, the thermal conductivity and the thermal expansion coefficient can be improved by 39% and 30% compared to SiC/Al composites, respectively. In other words, by adding a small amount of diamond particles, the thermophysical properties of the composites can be improved effectively, while the cost increases little.展开更多
The dry friction and wear behaviors of co-continuous composites SiC/Fe–40Cr against SiC/Al 2618 alloy were investigated on a ring-on-ring friction and wear tester at sliding speed of 30-105 m/s under the load of 1.0-...The dry friction and wear behaviors of co-continuous composites SiC/Fe–40Cr against SiC/Al 2618 alloy were investigated on a ring-on-ring friction and wear tester at sliding speed of 30-105 m/s under the load of 1.0-2.5 MPa. The experimental result reveals that the characteristic of two body abrasive wear and oxidation wear mechanisms are present for SiCn/2618 Al composite under higher load and sliding speed. SiC ceramic continuous network as the reinforcement can avoid composite from the third body wear that usually occurs in traditional particle reinforced composite. The mechanically mixed layer (MML) controls greatly the wear rate and friction coefficient of the composites. The composites tested at higher sliding speed exhibit higher value of friction coefficient and fluctuation, which is associated with the intermittent formation and removal of the MML. The wear and stress—strain behaviors of SiCn/Fe–40Cr against SiCn/Al 2168 at 30-105 m/s under 1.0-2.5 MPa were analyzed by finite element method with the software Solidwork2012 Simulation, respectively. The wear and stress–strain behavior of the composite predicted by the FEM correlated well with the experimental results.展开更多
Hot compression tests of the extruded 7075Al/15%SiC (volume fraction) particle reinforced composite prepared by spray deposition were performed on Gleeble?1500 system in the temperature range of 300?450 °C and st...Hot compression tests of the extruded 7075Al/15%SiC (volume fraction) particle reinforced composite prepared by spray deposition were performed on Gleeble?1500 system in the temperature range of 300?450 °C and strain rate range of 0.001?1 s?1. The results indicate that the true stress?true strain curve almost exhibits rapid flow softening phenomenon without an obvious work hardening, and the stress decreases with increasing temperature and decreasing strain rate. Moreover, the stress levels are higher at temperature below 400 °C but lower at 450 °C compared with the spray deposited 7075Al alloy. Superplastic deformation characteristics are found at temperature of 450 °C and strain rate range of 0.001?0.1 s?1 with corresponding strain rate sensitivity of 0.72. The optimum parameters of hot working are determined to be temperature of 430?450 °C and strain rate of 0.001?0.05 s?1 based on processing map and optical microstructural observation.展开更多
The effect of SiC particles reinforcement with average size of 1, 5, 20 and 50 μm and volume fraction of 5%, 10% and 15% on the microstructure and tribological properties of Al-based composite was investigated. Compo...The effect of SiC particles reinforcement with average size of 1, 5, 20 and 50 μm and volume fraction of 5%, 10% and 15% on the microstructure and tribological properties of Al-based composite was investigated. Composites were produced by applying compocasting process. Tribological properties of the unreinforced alloy and composites were studied using pin-on-disc wear tester, under dry sliding conditions at different specific loads. The influence of secondary mechanical processing with different rolling reductions on the dry sliding wear characteristics of Al matrix composites was also assessed. Hardness measurement and scanning electron microscopy were used for microstructural characterization and investigation of worn surfaces and wear debris. The proper selection of process parameter such as pouring temperature, stirring speed, stirring time, pre-heated temperature of reinforcement can all influence the quality of the fabricated composites. The porosity level of composite should be minimized and the chemical reaction between the reinforcement and matrix should be avoided.展开更多
The residual stress in a 20%SiC w/6061Al composite as extruded was investigated by using X ray stress measurement method. It was found that, high residual stress existed in the composite and residual stress distributi...The residual stress in a 20%SiC w/6061Al composite as extruded was investigated by using X ray stress measurement method. It was found that, high residual stress existed in the composite and residual stress distribution in each direction are not uniform. Relaxation process of residual stress in the composite was dynamically measured during annealing at high temperature. It is verified that the relaxation of residual stress obeys the power law at high temperature. With the creep mechanism, the relaxation behavior of residual stresses at high temperature was analyzed. The results show that, the stress exponent and activation energy for stress relaxation of the composite are obviously higher than those of the matrix alloy.展开更多
In order to improve dry sliding wear resistance of pure aluminum against steel, aluminum-based composites reinforced with different contents of SiC,MoS2 and SiC/MoS2 particles were synthesized by press and sintering o...In order to improve dry sliding wear resistance of pure aluminum against steel, aluminum-based composites reinforced with different contents of SiC,MoS2 and SiC/MoS2 particles were synthesized by press and sintering of the corresponding powder mixtures. The microstructural evaluations showed a dense microstructure which were in good agreement with the result of density and hardness measurements. The results of pin on disk wear tests performed against an AISI 52100 steel pin at a constant load and sliding velocity showed that there was a critical content for both types of the reinforcements at which the lowest wear rate was obtained, i.e. 10 vol.% and 2 vol.%, respectively,for Al/SiC and Al/MoS2 composites. However,the lowest wear rate and friction of coefficient were attained for Al/10 SiC/2 MoS2 hybrid composite. According to the scanning electron microscope observations, the predominant wear mechanism was changed from adhesion to abrasion mostly whenMoS2 particles were incorporated in the pure aluminum. Mild delamination was identified as the main wear mechanism for Al/SiC and Al/SiC/MoS2 composites. The frictional traces and worn surfaces of Al/SiC/MoS2 composites approached to those of Al/SiC composites,indicating the dominant role of SiC particles in tribological behavior of the hybrid composites.展开更多
The effect of different regimes of heat treatment on the tensile strength of SiC coated composite of C fibers reinforced Al wires has been investigated.Their tensile strength may increase under treatment either at 500...The effect of different regimes of heat treatment on the tensile strength of SiC coated composite of C fibers reinforced Al wires has been investigated.Their tensile strength may increase under treatment either at 500℃ for 2h or 550℃ for 1h,but decrease over 600℃.After the strength tests of extracted fibers from composite wires,the SiC coating is an excellent protection to C fibers.EPMA and EDAX showed that the C/Al interface of the composite wires is stable under treatment below 600℃,but unstable at 650℃展开更多
The tensile properties of 2124Al alloy composites reinforced with various sizes of SiC particles were investigated at room temperature. The size of SiC p was changed from 0.2 μm to 48.0 μm with an identical volume f...The tensile properties of 2124Al alloy composites reinforced with various sizes of SiC particles were investigated at room temperature. The size of SiC p was changed from 0.2 μm to 48.0 μm with an identical volume fraction of 20%. The results show that the relative density of the composite decreased with increase of the SiC p size from 3.0 μm to 48.0 μm, whereas 0.2 μm SiC p reinforced composite has the lowest relative density. The pore density, interparticle spacing, SiC particle cracking, SiC p/Al interfacial debonding, the distribution of SiC particles, in the composites are considered as factors to determine the failure behavior of the composites. [展开更多
Al2024/SiC functionally graded materials (FGMs) with different numbers of graded layers and different amounts of SiC were fabricated successfully by powder metallurgy method and hot pressing process. The effects of in...Al2024/SiC functionally graded materials (FGMs) with different numbers of graded layers and different amounts of SiC were fabricated successfully by powder metallurgy method and hot pressing process. The effects of increasing SiC content and number of layers of Al2024/SiC FGMs on the microstructure and mechanical properties of the composite were investigated. X-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX) analyses indicated that Al and SiC were dominant components as well as others such as Al4C3, CuAl2, and CuMgAl2展开更多
β-SiC nanoparticle reinforced A1 matrix (nano-SiCp/A1) composite was prepared by a multi- step powder metallurgy strategy including presureless sintering, hot compacting process and hot extrusion. The microstructur...β-SiC nanoparticle reinforced A1 matrix (nano-SiCp/A1) composite was prepared by a multi- step powder metallurgy strategy including presureless sintering, hot compacting process and hot extrusion. The microstructures of the as-prepared composites were observed by scanning electronic microscopy (SEM), and the mechanical properties were characterized by tensile strength measurement and Brinell hardness test. The experimental results revealed that the tensile strength of the composite with the addition of 5wt%/3-SIC nanoprtieles could be increased to 215 MPa, increasing by 110% compared with pure A1 matrix. Comparative experiments reflected that theβ-SIC nanoprticles showed significant reinforcement effect than traditional a-SiC micro-sized particles. The preparation process and sintering procedure were investigated to develop a cost effective preparation strategy to fabricate nano-SiCp/A1 composite.展开更多
The oxidation of the Electrodeposited RE-Ni-W-P-SiC Composite materials at high temperature is investigated. The results show that during high temperature oxidation the relationship between the mass change of pure Ni,...The oxidation of the Electrodeposited RE-Ni-W-P-SiC Composite materials at high temperature is investigated. The results show that during high temperature oxidation the relationship between the mass change of pure Ni, Ni-W-P, Ni-W-P-SiC or RE-Ni-W-P-SiC coatings and the oxidation time follows a mixed curve, i.e. it is approximately a linear relationship when the oxidation time is less than 60 mins while it is a power function relationship when the oxidation time is over 60 mins. The order for the oxidation rate of the four coatings is Ni> Ni-W-P> Ni-W-P-SiC>RE-Ni-W-P-SiC. The mass change of Ni-W-P, Ni-W-P-SiC or RE-Ni-W-P-SiC coatings increases exponentially with a rise of oxidation temperature. The high temperature-oxidation resistance of RE-Ni-W-P-SiC composite material is 3-4 times than that of Ni-W-P alloy coating. The cross section morphologies and X-ray diffraction patterns indicate that the high temperature-oxidation resistance of RE-Ni-W-P-SiC composite coating is better than any other coatings.展开更多
With a micro mechanical model, the feasibility of modification of thermal residual stress of the composites treated by tensile pre plastic deformation was analyzed. The relationship between pre plastic strain and vari...With a micro mechanical model, the feasibility of modification of thermal residual stress of the composites treated by tensile pre plastic deformation was analyzed. The relationship between pre plastic strain and variation of thermal residual stress was established. By using the method of tensile pre plastic deformation, the thermal residual stress in 20%SiC w/6061Al composites was modified. The results show that, with increasing tensile pre plastic strain, the tensile residual stress in the matrix was decreased to zero gradually, and then it was turned into compressive stress. By comparison, it was found that the changing tendency of the test results is similar to that of theoretical analysis. In addition, due to pre plastic deformation, the dislocation density in the matrix was increased, and the yield strength of the composites was improved. The increasing yield strength is mainly due to the decreasing tensile residual stress and the changing of distribution of dislocation in the matrix.展开更多
Si/SiC ceramic composite and lnvar alloy were successfidly joined by vacuum brazing using Ti5OCu-W filler metals into which W was added to release the thermal stress of the brazed joint. Microstructures of the brazed ...Si/SiC ceramic composite and lnvar alloy were successfidly joined by vacuum brazing using Ti5OCu-W filler metals into which W was added to release the thermal stress of the brazed joint. Microstructures of the brazed joints were irwestigated by scanning electron micrascope (SEM) and energy dispersive spectrometer (EDS). The mechanical properties of the brazed joints were measured by shearing tests. The results showed that the brazed joints were composed of Ti-Cu phase, W phase and Ti-Si phase. W had no effect on the wettability and mobility of the .filler metals. The growth of Ti2 Cu phase was restrained, and the reaction between ceramic composite and filler metals was weakened. The specimen, brazed at 970°C for 5 rain, had the maximum shear strength of 108 MPa at room temperature.展开更多
The SiC_w/Al composite prepared by squeeze casting has a combination of superior room temperature specific strength and modulus together with excellent thermal properties.The extrusion can make an improvement on the s...The SiC_w/Al composite prepared by squeeze casting has a combination of superior room temperature specific strength and modulus together with excellent thermal properties.The extrusion can make an improvement on the strength and ductility of the composite from 582 MPa as squeeze casted up to 639 MPa,and on the transformation from isotropic to the anisotropic structure.This seems to be explained by the orientation of whiskers and the densification of dislocations in matrix.TEM observation indicates that the stacking fault is the usual planar defect on the SiC_w surface. composite;;SiC whisker;;Al alloy;;microstructure展开更多
The Al/Si/SiC composites with medium volume fraction for electronic packaging were fabricated by gas pressure infiltration.On the premise of keeping the machinability of the composites,the silicon carbide particles,wh...The Al/Si/SiC composites with medium volume fraction for electronic packaging were fabricated by gas pressure infiltration.On the premise of keeping the machinability of the composites,the silicon carbide particles,which have the similar size with silicon particles(average 13 μm),were added to replace silicon particles of same volume fraction,and microstructure and properties of the composites were investigated.The results show that reinforcing particles are distributed uniformly and no apparent pores are observed in the composites.It is also observed that higher thermal conductivity(TC) and flexural strength will be obtained with the addition of SiC particles.Meanwhile,coefficient of thermal expansion(CTE) changes smaller than TC.Models for predicting thermal properties were also discussed.Equivalent effective conductivity(EEC) was proposed to make H-J model suitable for hybrid particles and multimodal particle size distribution.展开更多
Studies on the mechanical behaviour of squeeze-cast SiCw / Al composites have been revjewed. The results show that SiCw / Al composites exhibit improved mechan ical properties and cyclic hard ening. The reasons leadin...Studies on the mechanical behaviour of squeeze-cast SiCw / Al composites have been revjewed. The results show that SiCw / Al composites exhibit improved mechan ical properties and cyclic hard ening. The reasons leading to the above results are discussed. Localized deformation near SiC whiskers plays an important role in the initiation of microcracks in the composites, and the fracture of the composites is caused by the abrupt linking of microcracks展开更多
Two ingots were produced by centrifugal casting at mould rotational speeds of 600 rpm and 800 rpm using 20 vol%SiC p /AlSi9Mg composite melt,respectively.The microstructure along the radial direction of cross-sectiona...Two ingots were produced by centrifugal casting at mould rotational speeds of 600 rpm and 800 rpm using 20 vol%SiC p /AlSi9Mg composite melt,respectively.The microstructure along the radial direction of cross-sectional sample of ingots was presented.SiC particles migrated towards the external circumference of the tube,and the distribution of SiC particles became uniform under centrifugal force.Voids in 20 vol%SiC p /AlSi9Mg composite melt migrated towards the inner circumference of the tube.The quantitative analysis results indicated that not only SiC particles but also primaryαphases segregated greatly in centrifugal casting resulting from the transportation behavior of constitutions with different densities in the SiC p /AlSi9Mg composite melt.In addition,the eutectic Si was broken owing to the motion of SiC p /AlSi9Mg composite melt during centrifugal casting.展开更多
SiC particulates reinforced alumina matrix composites were fabricated using Directed Metal Oxidation (DIMOX) process. Continuous oxidation of an Al-Si-Mg-Zn alloy with different interlayers (dopents) as growth promote...SiC particulates reinforced alumina matrix composites were fabricated using Directed Metal Oxidation (DIMOX) process. Continuous oxidation of an Al-Si-Mg-Zn alloy with different interlayers (dopents) as growth promoters, will encompasses the early heating of the alloy ingot, melting and continued heating to temperature in the narrow range of 950°C to 980°C in an atmosphere of oxygen. Varying interlayers (dopents) are incorporated to examine the growth conditions of the composite materials and to identification of suitable growth promoter. The process is extremely difficult because molten aluminum does not oxidize after prolonged duration at high temperatures due to the formation of a passivating oxide layer. It is known that the Lanxide Corporation had used a combination of dopents to cause the growth of alumina from molten metal. This growth was directed, i.e. the growth is allowed only in the required direction and restricted in the other directions. The react nature of the dopants was a trade secret. Though it is roughly known that Mg and Si in the Al melt can aid growth, additional dopents used, the temperatures at which the process was carried out, the experimental configurations that aided directed growth were not precisely known. In this paper we have evaluated the conditions in which composites can be grown in large enough sizes for evaluation application and have arrived at a procedure that enables the fabrication of large composite samples by determining the suitable growth promoter (dopant). Scanning electron microscopic, EDS analysis of the composite was found to contain a continuous network of Al2O3, which was predominantly free of grain-boundary phases, a continuous network of Al alloy. Fabrication of large enough samples was done only by the inventor company and the property measurements by the company were confirmed to those needed to enable immediate applications. Since there are a large number of variable affecting robust growth of the composite, fabrication large sized samples for measurements is a difficult task. In the present work, to identify a suitable window of parameters that enables robust growth of the composite has been attempted.展开更多
The 2024Al/Gr/SiC hybrid composite plates with 5%-10% SiC particles (volume fraction) and 3%-6% flaky graphite (Gr) (volume fraction) were fabricated by vacuum hot pressing and hot extrusion processing. The effe...The 2024Al/Gr/SiC hybrid composite plates with 5%-10% SiC particles (volume fraction) and 3%-6% flaky graphite (Gr) (volume fraction) were fabricated by vacuum hot pressing and hot extrusion processing. The effects of SiC and Gr on the microstructures and mechanical properties of the composites aged at 160, 175 and 190℃ were studied by optical microscopy, scanning electron microscopy (SEM), and hardness and tensile tests. The results indicate that the SiC particles have a more obvious effect on accelerating the aging response as compared with the Gr. Both the tensile strength and elongation are reduced by the Gr and SiC particles added into the matrix, while the Gr has a more negative influence on the elongation than the SiC particles. The tensile strength (ab), yield stress (as) and elongation (δ) of the 2024Al/3Gr/10SiC composite aged at 165℃ for 8 h are 387 MPa, 280.3 MPa and 5.7%, respectively. The hybrid composites are characterized by ductile fracture, which is associated with the ductile fracture of the matrix and the tearing of the interface between the matrix and the particles.展开更多
文摘The thermophysical properties of the SiC /Al composites mixed with diamond(SiC-Dia/Al) were studied through theoretical calculation and experiments. The thermal conductivity and the thermal expansion coefficient of the SiC-Dia/Al were calculated by differential effective medium(DEM) theoretical model and extended Turner model, respectively. The microstructure of the SiC-Dia/Al shows that the combination between SiC particles and Al is close, while that between diamond particles and Al is not close. The experimental results of the thermophysical properties of the SiC-Dia/Al are consistent with the calculated ones. The calculation results show that when the volume ratio of the diamond particles to the SiC particles is 3:7, the thermal conductivity and the thermal expansion coefficient can be improved by 39% and 30% compared to SiC/Al composites, respectively. In other words, by adding a small amount of diamond particles, the thermophysical properties of the composites can be improved effectively, while the cost increases little.
基金Project (2012BAE06B01) supported by the Key Technology R&D Program During the 12th Five-Year Plan Period, ChinaProjects(21201030, 51272039, 51032007) supported by the National Natural Science Foundation of ChinaProject (1099043) supported by the Science and Technology in Guangxi Province, China
文摘The dry friction and wear behaviors of co-continuous composites SiC/Fe–40Cr against SiC/Al 2618 alloy were investigated on a ring-on-ring friction and wear tester at sliding speed of 30-105 m/s under the load of 1.0-2.5 MPa. The experimental result reveals that the characteristic of two body abrasive wear and oxidation wear mechanisms are present for SiCn/2618 Al composite under higher load and sliding speed. SiC ceramic continuous network as the reinforcement can avoid composite from the third body wear that usually occurs in traditional particle reinforced composite. The mechanically mixed layer (MML) controls greatly the wear rate and friction coefficient of the composites. The composites tested at higher sliding speed exhibit higher value of friction coefficient and fluctuation, which is associated with the intermittent formation and removal of the MML. The wear and stress—strain behaviors of SiCn/Fe–40Cr against SiCn/Al 2168 at 30-105 m/s under 1.0-2.5 MPa were analyzed by finite element method with the software Solidwork2012 Simulation, respectively. The wear and stress–strain behavior of the composite predicted by the FEM correlated well with the experimental results.
基金Project(51271076)supported by the National Natural Science Foundation of China
文摘Hot compression tests of the extruded 7075Al/15%SiC (volume fraction) particle reinforced composite prepared by spray deposition were performed on Gleeble?1500 system in the temperature range of 300?450 °C and strain rate range of 0.001?1 s?1. The results indicate that the true stress?true strain curve almost exhibits rapid flow softening phenomenon without an obvious work hardening, and the stress decreases with increasing temperature and decreasing strain rate. Moreover, the stress levels are higher at temperature below 400 °C but lower at 450 °C compared with the spray deposited 7075Al alloy. Superplastic deformation characteristics are found at temperature of 450 °C and strain rate range of 0.001?0.1 s?1 with corresponding strain rate sensitivity of 0.72. The optimum parameters of hot working are determined to be temperature of 430?450 °C and strain rate of 0.001?0.05 s?1 based on processing map and optical microstructural observation.
文摘The effect of SiC particles reinforcement with average size of 1, 5, 20 and 50 μm and volume fraction of 5%, 10% and 15% on the microstructure and tribological properties of Al-based composite was investigated. Composites were produced by applying compocasting process. Tribological properties of the unreinforced alloy and composites were studied using pin-on-disc wear tester, under dry sliding conditions at different specific loads. The influence of secondary mechanical processing with different rolling reductions on the dry sliding wear characteristics of Al matrix composites was also assessed. Hardness measurement and scanning electron microscopy were used for microstructural characterization and investigation of worn surfaces and wear debris. The proper selection of process parameter such as pouring temperature, stirring speed, stirring time, pre-heated temperature of reinforcement can all influence the quality of the fabricated composites. The porosity level of composite should be minimized and the chemical reaction between the reinforcement and matrix should be avoided.
文摘The residual stress in a 20%SiC w/6061Al composite as extruded was investigated by using X ray stress measurement method. It was found that, high residual stress existed in the composite and residual stress distribution in each direction are not uniform. Relaxation process of residual stress in the composite was dynamically measured during annealing at high temperature. It is verified that the relaxation of residual stress obeys the power law at high temperature. With the creep mechanism, the relaxation behavior of residual stresses at high temperature was analyzed. The results show that, the stress exponent and activation energy for stress relaxation of the composite are obviously higher than those of the matrix alloy.
文摘In order to improve dry sliding wear resistance of pure aluminum against steel, aluminum-based composites reinforced with different contents of SiC,MoS2 and SiC/MoS2 particles were synthesized by press and sintering of the corresponding powder mixtures. The microstructural evaluations showed a dense microstructure which were in good agreement with the result of density and hardness measurements. The results of pin on disk wear tests performed against an AISI 52100 steel pin at a constant load and sliding velocity showed that there was a critical content for both types of the reinforcements at which the lowest wear rate was obtained, i.e. 10 vol.% and 2 vol.%, respectively,for Al/SiC and Al/MoS2 composites. However,the lowest wear rate and friction of coefficient were attained for Al/10 SiC/2 MoS2 hybrid composite. According to the scanning electron microscope observations, the predominant wear mechanism was changed from adhesion to abrasion mostly whenMoS2 particles were incorporated in the pure aluminum. Mild delamination was identified as the main wear mechanism for Al/SiC and Al/SiC/MoS2 composites. The frictional traces and worn surfaces of Al/SiC/MoS2 composites approached to those of Al/SiC composites,indicating the dominant role of SiC particles in tribological behavior of the hybrid composites.
文摘The effect of different regimes of heat treatment on the tensile strength of SiC coated composite of C fibers reinforced Al wires has been investigated.Their tensile strength may increase under treatment either at 500℃ for 2h or 550℃ for 1h,but decrease over 600℃.After the strength tests of extracted fibers from composite wires,the SiC coating is an excellent protection to C fibers.EPMA and EDAX showed that the C/Al interface of the composite wires is stable under treatment below 600℃,but unstable at 650℃
文摘The tensile properties of 2124Al alloy composites reinforced with various sizes of SiC particles were investigated at room temperature. The size of SiC p was changed from 0.2 μm to 48.0 μm with an identical volume fraction of 20%. The results show that the relative density of the composite decreased with increase of the SiC p size from 3.0 μm to 48.0 μm, whereas 0.2 μm SiC p reinforced composite has the lowest relative density. The pore density, interparticle spacing, SiC particle cracking, SiC p/Al interfacial debonding, the distribution of SiC particles, in the composites are considered as factors to determine the failure behavior of the composites. [
文摘Al2024/SiC functionally graded materials (FGMs) with different numbers of graded layers and different amounts of SiC were fabricated successfully by powder metallurgy method and hot pressing process. The effects of increasing SiC content and number of layers of Al2024/SiC FGMs on the microstructure and mechanical properties of the composite were investigated. X-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX) analyses indicated that Al and SiC were dominant components as well as others such as Al4C3, CuAl2, and CuMgAl2
基金Funded by the Research Collaborative Innovation Project of Jiangsu Province,China(BY2009129)the Science and Technology Project of Suzhou,China(SYG0905)
文摘β-SiC nanoparticle reinforced A1 matrix (nano-SiCp/A1) composite was prepared by a multi- step powder metallurgy strategy including presureless sintering, hot compacting process and hot extrusion. The microstructures of the as-prepared composites were observed by scanning electronic microscopy (SEM), and the mechanical properties were characterized by tensile strength measurement and Brinell hardness test. The experimental results revealed that the tensile strength of the composite with the addition of 5wt%/3-SIC nanoprtieles could be increased to 215 MPa, increasing by 110% compared with pure A1 matrix. Comparative experiments reflected that theβ-SIC nanoprticles showed significant reinforcement effect than traditional a-SiC micro-sized particles. The preparation process and sintering procedure were investigated to develop a cost effective preparation strategy to fabricate nano-SiCp/A1 composite.
文摘The oxidation of the Electrodeposited RE-Ni-W-P-SiC Composite materials at high temperature is investigated. The results show that during high temperature oxidation the relationship between the mass change of pure Ni, Ni-W-P, Ni-W-P-SiC or RE-Ni-W-P-SiC coatings and the oxidation time follows a mixed curve, i.e. it is approximately a linear relationship when the oxidation time is less than 60 mins while it is a power function relationship when the oxidation time is over 60 mins. The order for the oxidation rate of the four coatings is Ni> Ni-W-P> Ni-W-P-SiC>RE-Ni-W-P-SiC. The mass change of Ni-W-P, Ni-W-P-SiC or RE-Ni-W-P-SiC coatings increases exponentially with a rise of oxidation temperature. The high temperature-oxidation resistance of RE-Ni-W-P-SiC composite material is 3-4 times than that of Ni-W-P alloy coating. The cross section morphologies and X-ray diffraction patterns indicate that the high temperature-oxidation resistance of RE-Ni-W-P-SiC composite coating is better than any other coatings.
文摘With a micro mechanical model, the feasibility of modification of thermal residual stress of the composites treated by tensile pre plastic deformation was analyzed. The relationship between pre plastic strain and variation of thermal residual stress was established. By using the method of tensile pre plastic deformation, the thermal residual stress in 20%SiC w/6061Al composites was modified. The results show that, with increasing tensile pre plastic strain, the tensile residual stress in the matrix was decreased to zero gradually, and then it was turned into compressive stress. By comparison, it was found that the changing tendency of the test results is similar to that of theoretical analysis. In addition, due to pre plastic deformation, the dislocation density in the matrix was increased, and the yield strength of the composites was improved. The increasing yield strength is mainly due to the decreasing tensile residual stress and the changing of distribution of dislocation in the matrix.
文摘Si/SiC ceramic composite and lnvar alloy were successfidly joined by vacuum brazing using Ti5OCu-W filler metals into which W was added to release the thermal stress of the brazed joint. Microstructures of the brazed joints were irwestigated by scanning electron micrascope (SEM) and energy dispersive spectrometer (EDS). The mechanical properties of the brazed joints were measured by shearing tests. The results showed that the brazed joints were composed of Ti-Cu phase, W phase and Ti-Si phase. W had no effect on the wettability and mobility of the .filler metals. The growth of Ti2 Cu phase was restrained, and the reaction between ceramic composite and filler metals was weakened. The specimen, brazed at 970°C for 5 rain, had the maximum shear strength of 108 MPa at room temperature.
文摘The SiC_w/Al composite prepared by squeeze casting has a combination of superior room temperature specific strength and modulus together with excellent thermal properties.The extrusion can make an improvement on the strength and ductility of the composite from 582 MPa as squeeze casted up to 639 MPa,and on the transformation from isotropic to the anisotropic structure.This seems to be explained by the orientation of whiskers and the densification of dislocations in matrix.TEM observation indicates that the stacking fault is the usual planar defect on the SiC_w surface. composite;;SiC whisker;;Al alloy;;microstructure
基金Project (60776019) supported by the National Natural Science Foundation of ChinaProject (61-TP-2010) supported by the Research Fund of the State Key Laboratory of Solidification Processing (NWPU),China
文摘The Al/Si/SiC composites with medium volume fraction for electronic packaging were fabricated by gas pressure infiltration.On the premise of keeping the machinability of the composites,the silicon carbide particles,which have the similar size with silicon particles(average 13 μm),were added to replace silicon particles of same volume fraction,and microstructure and properties of the composites were investigated.The results show that reinforcing particles are distributed uniformly and no apparent pores are observed in the composites.It is also observed that higher thermal conductivity(TC) and flexural strength will be obtained with the addition of SiC particles.Meanwhile,coefficient of thermal expansion(CTE) changes smaller than TC.Models for predicting thermal properties were also discussed.Equivalent effective conductivity(EEC) was proposed to make H-J model suitable for hybrid particles and multimodal particle size distribution.
文摘Studies on the mechanical behaviour of squeeze-cast SiCw / Al composites have been revjewed. The results show that SiCw / Al composites exhibit improved mechan ical properties and cyclic hard ening. The reasons leading to the above results are discussed. Localized deformation near SiC whiskers plays an important role in the initiation of microcracks in the composites, and the fracture of the composites is caused by the abrupt linking of microcracks
基金Funded by Natural Science Foundation Project of CQ CSTC(No.2008BB4177)
文摘Two ingots were produced by centrifugal casting at mould rotational speeds of 600 rpm and 800 rpm using 20 vol%SiC p /AlSi9Mg composite melt,respectively.The microstructure along the radial direction of cross-sectional sample of ingots was presented.SiC particles migrated towards the external circumference of the tube,and the distribution of SiC particles became uniform under centrifugal force.Voids in 20 vol%SiC p /AlSi9Mg composite melt migrated towards the inner circumference of the tube.The quantitative analysis results indicated that not only SiC particles but also primaryαphases segregated greatly in centrifugal casting resulting from the transportation behavior of constitutions with different densities in the SiC p /AlSi9Mg composite melt.In addition,the eutectic Si was broken owing to the motion of SiC p /AlSi9Mg composite melt during centrifugal casting.
文摘SiC particulates reinforced alumina matrix composites were fabricated using Directed Metal Oxidation (DIMOX) process. Continuous oxidation of an Al-Si-Mg-Zn alloy with different interlayers (dopents) as growth promoters, will encompasses the early heating of the alloy ingot, melting and continued heating to temperature in the narrow range of 950°C to 980°C in an atmosphere of oxygen. Varying interlayers (dopents) are incorporated to examine the growth conditions of the composite materials and to identification of suitable growth promoter. The process is extremely difficult because molten aluminum does not oxidize after prolonged duration at high temperatures due to the formation of a passivating oxide layer. It is known that the Lanxide Corporation had used a combination of dopents to cause the growth of alumina from molten metal. This growth was directed, i.e. the growth is allowed only in the required direction and restricted in the other directions. The react nature of the dopants was a trade secret. Though it is roughly known that Mg and Si in the Al melt can aid growth, additional dopents used, the temperatures at which the process was carried out, the experimental configurations that aided directed growth were not precisely known. In this paper we have evaluated the conditions in which composites can be grown in large enough sizes for evaluation application and have arrived at a procedure that enables the fabrication of large composite samples by determining the suitable growth promoter (dopant). Scanning electron microscopic, EDS analysis of the composite was found to contain a continuous network of Al2O3, which was predominantly free of grain-boundary phases, a continuous network of Al alloy. Fabrication of large enough samples was done only by the inventor company and the property measurements by the company were confirmed to those needed to enable immediate applications. Since there are a large number of variable affecting robust growth of the composite, fabrication large sized samples for measurements is a difficult task. In the present work, to identify a suitable window of parameters that enables robust growth of the composite has been attempted.
文摘The 2024Al/Gr/SiC hybrid composite plates with 5%-10% SiC particles (volume fraction) and 3%-6% flaky graphite (Gr) (volume fraction) were fabricated by vacuum hot pressing and hot extrusion processing. The effects of SiC and Gr on the microstructures and mechanical properties of the composites aged at 160, 175 and 190℃ were studied by optical microscopy, scanning electron microscopy (SEM), and hardness and tensile tests. The results indicate that the SiC particles have a more obvious effect on accelerating the aging response as compared with the Gr. Both the tensile strength and elongation are reduced by the Gr and SiC particles added into the matrix, while the Gr has a more negative influence on the elongation than the SiC particles. The tensile strength (ab), yield stress (as) and elongation (δ) of the 2024Al/3Gr/10SiC composite aged at 165℃ for 8 h are 387 MPa, 280.3 MPa and 5.7%, respectively. The hybrid composites are characterized by ductile fracture, which is associated with the ductile fracture of the matrix and the tearing of the interface between the matrix and the particles.