Ceramic matrix composites (CMCs) are the preferred materials for solving advanced aerospace high-temperature structural components;it has the comprehensive advantages of higher temperature (~1500˚C) and low density. I...Ceramic matrix composites (CMCs) are the preferred materials for solving advanced aerospace high-temperature structural components;it has the comprehensive advantages of higher temperature (~1500˚C) and low density. In service environments, CMCs exhibit complex damage mechanisms and failure modes, which are affected by constituent materials, meso-architecture and inhere defects. In this paper, the in-plane tensile mechanical behavior of a plain-woven SiCf/SiC composite at room and elevated temperatures was investigated, and the factors affecting the tensile strength of the material were discussed in depth. The results show that the tensile modulus and strength of SiCf/SiC composites at high temperature are lower, but the fracture strain increases and the toughness of the composites is enhanced;the stitching holes significantly weaken the tensile strength of the material, resulting in the material is easy to break at the cross-section with stitching holes.展开更多
Ti3SiC2/SiC composites were fabricated by reactive hot pressing method. Effects of hot pressing temperature, the content and particle size of SiC on phase composition, densification, mechanical properties and behavior...Ti3SiC2/SiC composites were fabricated by reactive hot pressing method. Effects of hot pressing temperature, the content and particle size of SiC on phase composition, densification, mechanical properties and behavior of stress-strain of the composites were investigated. The results showed that : ( 1 ) Hot-pressing temperature influenced the phase composition of Ti3SiC2/SiC composites. The flexural strength and fracture toughness of composites increased with hot pressing temperature. (2) It became more difficult for the composites to densify when the content of SiC in composites increased. It need be sintered at higher temperature to get denser composite. The flexural strength and fracture toughness of composites increased when the content of SiC added in composites increased. However, when the content of SiC reached 50 wt%, the flexural strength and fracture toughness of composites decreased due to high content of pore in composites. (3) When the content of SiC was same, Ti3SiC2/SiC composites were denser while the particle size of SiC added in composites is 12. 8 μm compared with the composites that the particle size of SiC added is 3 μm. The flexural strength and fracture toughness of composites increased with the increase of particle size of SiC added in composites. (4) Ti3SiC2/SiC composites were non-brittle fracture at room temperature.展开更多
Interfacial reaction and its mechanism of SiC/Ti composite were revealed by chemical kinetic studies. A two-step dynamic model of interfacial reaction in SCS-6 SiC/Ti composites was built up, and the rate constant and...Interfacial reaction and its mechanism of SiC/Ti composite were revealed by chemical kinetic studies. A two-step dynamic model of interfacial reaction in SCS-6 SiC/Ti composites was built up, and the rate constant and the activation energy of the interfacial reactions were obtained based on the quantum chemistry calculation. The results show that the first step, in which the atomic Ti, C and Si are decomposed from Ti matrix and SiC fiber, respectively, is a rate-determined step because the activation energy of the step is much larger than that of the second one in which deferent interfacial reaction products form. The theoretically predicted result of the interfacial reaction is coincident with that of experimental observation.展开更多
C f/SiC composites were prepared by precursor pyrolysis hot pressing, and the effect of fiber characteristics on the fracture behavior of the composites was investigated. Because the heat treatment temperature of fibe...C f/SiC composites were prepared by precursor pyrolysis hot pressing, and the effect of fiber characteristics on the fracture behavior of the composites was investigated. Because the heat treatment temperature of fiber T300 (below 1?500?℃) was much lower than that of fiber M40JB (over 2?000?℃), fiber T300 had lower degree of graphitization and consisted of more impurities compared with fiber M40JB, suggesting that T300 exhibits higher chemical activity. As a result, the composite with T300 showed a brittle fracture behavior, which is mainly ascribed to a strongly bonded fiber/matrix interface as well as the degradation of fibers during the preparation of the composite. However, the composite with M40JB exhibits a tough fracture behavior, which is primarily attributed to a weakly bonded fiber/matrix interface and higher strength retention of the fibers.展开更多
SiC/7075 aluminum matrix composites were prepared by a liquid stirring method.The role of Ti facilitating the preparation of SiC/7075 aluminum matrix were studied by means of direct-reading spectrometer,scanning elect...SiC/7075 aluminum matrix composites were prepared by a liquid stirring method.The role of Ti facilitating the preparation of SiC/7075 aluminum matrix were studied by means of direct-reading spectrometer,scanning electron microscope,energy dispersive spectrometer,X-ray diffraction and the sessile drop method.The results show that the SiC content in the SiC/7075 composite increases with an increase of Ti addition.The addition of Ti can significantly improve the wettability of SiC/Al system,there is a critical value of above 0.5%of Ti content in improving the wettability of the Al/SiC system at 1173K.The temperature of the"non wetting-wetting"transition for the(Al-2Ti)/SiC system is about 1123K,the contact angle decreases to 88°at 200 seconds and reaches a stable contact angle of 28°at 2100 seconds.展开更多
Si/SiC ceramic composite and lnvar alloy were successfidly joined by vacuum brazing using Ti5OCu-W filler metals into which W was added to release the thermal stress of the brazed joint. Microstructures of the brazed ...Si/SiC ceramic composite and lnvar alloy were successfidly joined by vacuum brazing using Ti5OCu-W filler metals into which W was added to release the thermal stress of the brazed joint. Microstructures of the brazed joints were irwestigated by scanning electron micrascope (SEM) and energy dispersive spectrometer (EDS). The mechanical properties of the brazed joints were measured by shearing tests. The results showed that the brazed joints were composed of Ti-Cu phase, W phase and Ti-Si phase. W had no effect on the wettability and mobility of the .filler metals. The growth of Ti2 Cu phase was restrained, and the reaction between ceramic composite and filler metals was weakened. The specimen, brazed at 970°C for 5 rain, had the maximum shear strength of 108 MPa at room temperature.展开更多
概述了国外碳化硅连续纤维增强钛基复合材料的研制、性能及应用情况 ,并对箔压法制备 Si Cf/Ti复合材料的工艺及材料性能进行了研究。结果表明 ,本研究采用 FFF法制作的 Si Cf/Ti复合板材性能达到国外同类材料水平。此外 ,本研究还对 Si...概述了国外碳化硅连续纤维增强钛基复合材料的研制、性能及应用情况 ,并对箔压法制备 Si Cf/Ti复合材料的工艺及材料性能进行了研究。结果表明 ,本研究采用 FFF法制作的 Si Cf/Ti复合板材性能达到国外同类材料水平。此外 ,本研究还对 Si Cf/Ti复合材料各主要制作工艺进行了分析比较 ,认为真空等离子喷涂工艺是较有前途的。展开更多
文摘Ceramic matrix composites (CMCs) are the preferred materials for solving advanced aerospace high-temperature structural components;it has the comprehensive advantages of higher temperature (~1500˚C) and low density. In service environments, CMCs exhibit complex damage mechanisms and failure modes, which are affected by constituent materials, meso-architecture and inhere defects. In this paper, the in-plane tensile mechanical behavior of a plain-woven SiCf/SiC composite at room and elevated temperatures was investigated, and the factors affecting the tensile strength of the material were discussed in depth. The results show that the tensile modulus and strength of SiCf/SiC composites at high temperature are lower, but the fracture strain increases and the toughness of the composites is enhanced;the stitching holes significantly weaken the tensile strength of the material, resulting in the material is easy to break at the cross-section with stitching holes.
文摘Ti3SiC2/SiC composites were fabricated by reactive hot pressing method. Effects of hot pressing temperature, the content and particle size of SiC on phase composition, densification, mechanical properties and behavior of stress-strain of the composites were investigated. The results showed that : ( 1 ) Hot-pressing temperature influenced the phase composition of Ti3SiC2/SiC composites. The flexural strength and fracture toughness of composites increased with hot pressing temperature. (2) It became more difficult for the composites to densify when the content of SiC in composites increased. It need be sintered at higher temperature to get denser composite. The flexural strength and fracture toughness of composites increased when the content of SiC added in composites increased. However, when the content of SiC reached 50 wt%, the flexural strength and fracture toughness of composites decreased due to high content of pore in composites. (3) When the content of SiC was same, Ti3SiC2/SiC composites were denser while the particle size of SiC added in composites is 12. 8 μm compared with the composites that the particle size of SiC added is 3 μm. The flexural strength and fracture toughness of composites increased with the increase of particle size of SiC added in composites. (4) Ti3SiC2/SiC composites were non-brittle fracture at room temperature.
基金Project(50371069) supported by the National Natural Science Foundation of ChinaProject(2006E121) supported by the Natural Science Foundation of Shaanxi Province, China+1 种基金Project(05JF21) supported by the Key Laboratory Foundation of Shaanxi Province, ChinaProject(XGJ07005) support by the Foundation of Xi’an Polytechnic University, China
文摘Interfacial reaction and its mechanism of SiC/Ti composite were revealed by chemical kinetic studies. A two-step dynamic model of interfacial reaction in SCS-6 SiC/Ti composites was built up, and the rate constant and the activation energy of the interfacial reactions were obtained based on the quantum chemistry calculation. The results show that the first step, in which the atomic Ti, C and Si are decomposed from Ti matrix and SiC fiber, respectively, is a rate-determined step because the activation energy of the step is much larger than that of the second one in which deferent interfacial reaction products form. The theoretically predicted result of the interfacial reaction is coincident with that of experimental observation.
文摘C f/SiC composites were prepared by precursor pyrolysis hot pressing, and the effect of fiber characteristics on the fracture behavior of the composites was investigated. Because the heat treatment temperature of fiber T300 (below 1?500?℃) was much lower than that of fiber M40JB (over 2?000?℃), fiber T300 had lower degree of graphitization and consisted of more impurities compared with fiber M40JB, suggesting that T300 exhibits higher chemical activity. As a result, the composite with T300 showed a brittle fracture behavior, which is mainly ascribed to a strongly bonded fiber/matrix interface as well as the degradation of fibers during the preparation of the composite. However, the composite with M40JB exhibits a tough fracture behavior, which is primarily attributed to a weakly bonded fiber/matrix interface and higher strength retention of the fibers.
基金the Natural Science Foundation of Shanxi Province,China(No.201801D121108)。
文摘SiC/7075 aluminum matrix composites were prepared by a liquid stirring method.The role of Ti facilitating the preparation of SiC/7075 aluminum matrix were studied by means of direct-reading spectrometer,scanning electron microscope,energy dispersive spectrometer,X-ray diffraction and the sessile drop method.The results show that the SiC content in the SiC/7075 composite increases with an increase of Ti addition.The addition of Ti can significantly improve the wettability of SiC/Al system,there is a critical value of above 0.5%of Ti content in improving the wettability of the Al/SiC system at 1173K.The temperature of the"non wetting-wetting"transition for the(Al-2Ti)/SiC system is about 1123K,the contact angle decreases to 88°at 200 seconds and reaches a stable contact angle of 28°at 2100 seconds.
文摘Si/SiC ceramic composite and lnvar alloy were successfidly joined by vacuum brazing using Ti5OCu-W filler metals into which W was added to release the thermal stress of the brazed joint. Microstructures of the brazed joints were irwestigated by scanning electron micrascope (SEM) and energy dispersive spectrometer (EDS). The mechanical properties of the brazed joints were measured by shearing tests. The results showed that the brazed joints were composed of Ti-Cu phase, W phase and Ti-Si phase. W had no effect on the wettability and mobility of the .filler metals. The growth of Ti2 Cu phase was restrained, and the reaction between ceramic composite and filler metals was weakened. The specimen, brazed at 970°C for 5 rain, had the maximum shear strength of 108 MPa at room temperature.
文摘概述了国外碳化硅连续纤维增强钛基复合材料的研制、性能及应用情况 ,并对箔压法制备 Si Cf/Ti复合材料的工艺及材料性能进行了研究。结果表明 ,本研究采用 FFF法制作的 Si Cf/Ti复合板材性能达到国外同类材料水平。此外 ,本研究还对 Si Cf/Ti复合材料各主要制作工艺进行了分析比较 ,认为真空等离子喷涂工艺是较有前途的。
基金Supported by the Natural Science Foundation of China (50371069)the Basic Defence Research Program of China (K1802060814)+3 种基金the Doctoral Foundation of the Educational Ministry of China (20030699013)the Aviation Science Foundation (04G53044)the Opening Foundation of Jiangxi Materials Engineering Center (ZX200301014) the Doctoral Innovation Foundation of Northwestern Polytechnical University (CX200306)
基金Project (50871086) supported by the Natural Science Foundation of ChinaProject (KP200906) supported by the Research Fund of State Key Laboratory of Solidification Processing (NPU),China