In this paper, turning experiments of machining particle reinforced metal matri x composites(PRMMCs) SiC p/Al with PCD tools have been carried out. The cutting force characteristics in ultrasonic vibration turning com...In this paper, turning experiments of machining particle reinforced metal matri x composites(PRMMCs) SiC p/Al with PCD tools have been carried out. The cutting force characteristics in ultrasonic vibration turning compared with that in com mon turning were studied. Through the single factor experiments and multiple fac tor orthogonal experiments, the influences of three kinds of cutting conditions such as cutting velocity, amount of feed and cutting depth on cutting force were analyzed in detail. Meanwhile, according to the experimental data, the empirica l formula of main cutting force in ultrasonic vibration turning was conclude d. According to the test results, the cutting force is direct proportion to cutt ing depth basically according to the relation between cutting force and other fa ctors, which is similar to that of common cutting, so is the feed rate, but the influence is not so big. The influence of cutting speed is larger than that of f eed rate on cutting force because the efficient cutting time increases in vibrat ion cycle with the increase of cutting speed, which causes cutting force to incr ease. The research results indicate: (1) Ultrasonic vibration turning possesses much lower main cutting force than that in common turning when adopting smaller cutting parameters. If using larger cutting parameters, the difference will inco nspicuous. (2) There are remarkable differences of cutting force-cutting veloci ty characteristics in ultrasonic vibration turning from that in common turning m ainly because built-up edge does not emerge in ultrasonic turning unlike common turning in corresponding velocity range. (3) In ultrasonic vibration cutting, t he influence of cutting velocity on cutting force is most obvious among thre e cutting parameters and the influence of feed is smallest. So adopting lower cu tting velocity and larger cutting depth not only can reduce cutting force effect ively but also can ensure cutting efficiency. (4) The conclusions are useful in precision and super precision manufacturing thin-wall pieces.展开更多
Sessile drop technique was used to investigate the influence of Ti on the wetting behaviour of copper alloy on SiC substrate. A low contact angle of 15- for Cu alloy on SiC substrate is obtained at the temperature of ...Sessile drop technique was used to investigate the influence of Ti on the wetting behaviour of copper alloy on SiC substrate. A low contact angle of 15- for Cu alloy on SiC substrate is obtained at the temperature of 1 100 ℃. The interfacial energy is lowered by the segregation of Ti and the formation of reaction product TiC, resulting in the significant enhancement of wettability. Ti is found to almost completely segregate to Cu/SiC interface. This agrees well with a coverage of 99.8%Ti at the Cu/SiC interface predicted from a simple model based on Gibbs adsorption isotherm. SiCp/Cu composites are produced by pressureless infiltration of copper alloy into Ti-activated SiC preform. The volume fraction of SiC reaches 57%. The densification achieves 97.5%. The bending strength varies from 150 MPa to 250 MPa and increases with decreasing particle size.展开更多
The cutting performance of particulate reinforced me tallic matrix composites(PRMMCs) SiC p/Al in ultrasonic vibration cutting and c ommon cutting with carbide tools and PCD tools was researched in the paper. Mic rost...The cutting performance of particulate reinforced me tallic matrix composites(PRMMCs) SiC p/Al in ultrasonic vibration cutting and c ommon cutting with carbide tools and PCD tools was researched in the paper. Mic rostructure of machined surface was described, the relation between cutting para meters and surface roughness was presented, and characteristic of the surface re mained stress was also presented. Furthermore, wear regularity and abrasion resi stance ability of tools in ultrasonic vibration cutting and common cutting o f PRMMCs were discussed in detail. The test results show: (1) The surface config urations are obviously different when using different tools to machine such PRMM Cs. The surface machined with carbide tools looks luminous and orderly and there are seldom surface defects on it. The reason is that the soft basal body is apt to flow during cutting, therefore a layer of Al matrix film covers machined sur face. On the contrary, the surface machined with PCD tools looks lackluster. But the profile of machined surface is very clear. Superfine grooves, pits and blac k reinforce particulates can be seen easily without obvious Al film. (2) Because of unstable cutting process in common cutting, the surface is easy to produce s ome defects such as burrs, built-up edges and so on so that the quality of surf ace becomes very poor. Vibration cutting can reduce the influence of tearing, pl astic deformation and built-up edge in cutting and can restrain flutter so as t o make cutting process more stable. Therefore, surface roughness of vibration cu tting is better than that of common cutting. (3) There is an optimum value of fe ed rate in vibration cutting of PRMMCs due to the influence of material characte ristics. Whether feed rate is more than or less than this optimum value, surface roughness will increase. (4) According to analyzing the wear rate of tools in v ibration cutting PRMMCs, it can be concluded that abrasion resistance of tools w ill be improved remarkably when vibration cutting composites have a lower pe rcentage of reinforce particulate. If the percentage of reinforce particulate is higher, the influence on abrasion resistance of carbide tool in vibration cut ting will not be obvious. The research result indicates that vibration cutting effect has a close relation with material characteristics.展开更多
TiB_(2p)/Cu composites with high reinforcement content(φ_(p)=50%,58%and 65%)for electronic packaging applications were fabricated by squeeze casting technology.The microstructures and thermo-physical properties of th...TiB_(2p)/Cu composites with high reinforcement content(φ_(p)=50%,58%and 65%)for electronic packaging applications were fabricated by squeeze casting technology.The microstructures and thermo-physical properties of the TiB_(2p)/Cu composites were investigated.The results show that TiB2 particles are homogeneous and distribute uniformly,and the TiB2-Cu interfaces are clean and free-from interfacial reaction products and amorphous layers,the densifications of the TiB_(2p)/Cu composites are higher than 98.2%. The mean linear coefficients of thermal expansion at 20-100℃for TiB_(2p)/Cu composites range from 8.3×10^(-6)to 10.8×10^(-6)/K and decrease with increasing volume fraction of TiB2.The experimental coefficients of thermal expansion agree well with the predicted values based on Turner’s model.The thermal conductivities of TiB_(2p)/Cu composites range from 167.3 to 215.4 W/(m·K),decreasing with increasing volume fraction TiB2.展开更多
The thermal conductivity of diamond hybrid SiC/Cu,diamond/Cu and SiC/Cu composite were calculated by using the extended differential effective medium (DEM) theoretical model in this paper.The effects of the particle v...The thermal conductivity of diamond hybrid SiC/Cu,diamond/Cu and SiC/Cu composite were calculated by using the extended differential effective medium (DEM) theoretical model in this paper.The effects of the particle volume fraction,the particle size and the volume ratio of the diamond particles to the total particles on the thermal conductivity of the composite were studied.The DEM theoretical calculation results show that,for the diamond hybrid SiC/Cu composite,when the particle volume fraction is above 46% and the volume ratio of the diamond particles to the SiC particles is above 13:12,the thermal conductivity of the composite can reach 500 W·m-1·K-1.The thermal conduc-tivity of the composite has little change when the particle size is above 200μm.The experimental results show that Ti can improve the wettability of the SiC and Cu.The thermal conductivity of the diamond hybrid SiCTi/Cu is almost two times better than that of the diamond hybrid SiC/Cu.It is feasible to predict the thermal conductivity of the composite by DEM theoretical model.展开更多
In this study, a multilayer Al/Ni/Cu composite reinforced with Si C particles was produced using an accumulative roll bonding(ARB) process with different cycles. The microstructure and mechanical properties of this co...In this study, a multilayer Al/Ni/Cu composite reinforced with Si C particles was produced using an accumulative roll bonding(ARB) process with different cycles. The microstructure and mechanical properties of this composite were investigated using optical and scanning microscopy and hardness and tensile testing. The results show that by increasing the applied strain, the Al/Ni/Cu multilayer composite converted from layer features to near a particle-strengthening characteristic. After the fifth ARB cycle, a composite with a uniform distribution of reinforcements(Cu, Ni, and SiC) was fabricated. The tensile strength of the composite increased from the initial sandwich structure to the first ARB cycle and then decreased from the first to the third ARB cycle. Upon reaching five ARB cycles, the tensile strength of the composite increased again. The variation in the elongation of the composite exhibited a tendency similar to that of its tensile strength. It is observed that with increasing strain, the microhardness values of the Al, Cu, and Ni layers increased, and that the dominant fracture mechanisms of Al and Cu were dimple formation and ductile fracture. In contrast, brittle fracture in specific plains was the main characteristic of Ni fractures.展开更多
Studies on texture and microstructure evolution in hot extruded Al 6061 aluminium alloy reinforced with uncoated and nickel coated SiC p were carried out by electron backscattered diffraction technique.Textures of bot...Studies on texture and microstructure evolution in hot extruded Al 6061 aluminium alloy reinforced with uncoated and nickel coated SiC p were carried out by electron backscattered diffraction technique.Textures of both the alloy and its composite with nickel coated SiC p do exhibit strong β fiber with its axis parallel to the direction of extrusion.In addition to the dominant cube texture(001) 100,fully recrystallized grains with partially equiaxed structure have been observed in the alloy reinforced with uncoated SiC p.The recrystallization texture of this composite can be attributed to the particle stimulated nucleation(PSN) due to the presence of SiC p with size less than 5 μm.Under these conditions,the low value of Zener-Hollomon,Z(~1012s-1) confirms that PSN is one of the dominant mechanisms for recrystallization and is governed by formation of deformation zone rather than stored energy.展开更多
The semi solid compressive deformation behaviors of two kinds of SiC p/ZA27 composites, one was modified by Zr and the other was not modified, were investigated. The results indicate that with increasing strain, the s...The semi solid compressive deformation behaviors of two kinds of SiC p/ZA27 composites, one was modified by Zr and the other was not modified, were investigated. The results indicate that with increasing strain, the stress of the modified composite first increases to a peak value, then dramatically decreases to a plateau value, and again increases at the final stage of deformation; but for the unmodified composite, after being up to a peak value, the stress decreases slowly at all times. As the deformation temperature or the heating time decreases, or the strain rate increases, the stress level(the peak and the plateau values) and the degree of cracking of the modified specimens all increase, and the specimen with uniform deformation and without cracks is obtained after being held at 470 ℃ for 30 min and deformed at the strain rate of 9.33×10 -3 s -1 . But the degree of cracking of the unmodified is just inverse to that of the modified. Under the same deformation conditions, the stress level and the degree of cracking of the unmodified composite are higher than those of the modified one, and the degree of cracking is very serious under any conditions. These phenomena were mainly discussed through analyzing the microstructures under different conditions and deformation mechanisms occurred at different deformation stages.展开更多
The electroless Ni-P-SiC composite coatings were prepared and the influence of vacuum heat treatment on its structure and properties was analyzed. The Ni-P-SiC composite coatings were characterized by morphology,struc...The electroless Ni-P-SiC composite coatings were prepared and the influence of vacuum heat treatment on its structure and properties was analyzed. The Ni-P-SiC composite coatings were characterized by morphology,structure and micro-hardness. The morphology and structure of the Ni-P-SiC composite coatings were studied by scanning electron microscopy(SEM) and X-ray diffractometry(XRD),respectively. A great deal of particles incorporation and uniform distribution were found in Ni-P-SiC composite coatings. XRD results show a broad peak of nickel and low intensity SiC peaks present on as-deposited condition. Micro-hardness of as-deposited Ni-P-SiC composite coatings is improved greatly,and the best micro-hardness is obtained after heat treatment in a high vacuum at 400 ℃ .展开更多
SiC/Cu composites were prepared by hot pressing. The high temperature tribological properties of the composites were investigated. XRD, SEM techniques were carried out to characterize the samples. It is found that the...SiC/Cu composites were prepared by hot pressing. The high temperature tribological properties of the composites were investigated. XRD, SEM techniques were carried out to characterize the samples. It is found that the friction coefficient of SiC/Cu composites increases with the increasing SiC content. The SiC reinforcement particles are worn down other than removed by pulling out during the wear test. Oxidation of Cu debris leads to the smooth contacting surface. Ring crack is formed under the cyclic wear test. The crack propagates through the damaged matrix and along the brittle interface between SiC particles and Cu matrix.展开更多
The processes of mixed rare earth metal (REM) conversion coatings on 2024 alloy and Al6061/SiC p metal matrix composites (MMC) were introduced. The coatings were examined to be honeycomb like feature by scanning elect...The processes of mixed rare earth metal (REM) conversion coatings on 2024 alloy and Al6061/SiC p metal matrix composites (MMC) were introduced. The coatings were examined to be honeycomb like feature by scanning electron microscope. X ray diffraction analysis revealed that the coatings are amorphous structure. The results of X ray photoelectron spectroscopy indicated that the mixed REM conversion coatings consist predominantly of Ce and O, the contents of other rare earth elements (such as La, Pr) are relatively low, the coatings are about 2~4 μm thickness with excellent adhesion and wearability. The results of mass loss test showed that the mixed REM conversion coatings produce corrosion resistant surface of 2024 alloy and Al6061/SiC p. [展开更多
Two ingots were produced by centrifugal casting at mould rotational speeds of 600 rpm and 800 rpm using 20 vol%SiC p /AlSi9Mg composite melt,respectively.The microstructure along the radial direction of cross-sectiona...Two ingots were produced by centrifugal casting at mould rotational speeds of 600 rpm and 800 rpm using 20 vol%SiC p /AlSi9Mg composite melt,respectively.The microstructure along the radial direction of cross-sectional sample of ingots was presented.SiC particles migrated towards the external circumference of the tube,and the distribution of SiC particles became uniform under centrifugal force.Voids in 20 vol%SiC p /AlSi9Mg composite melt migrated towards the inner circumference of the tube.The quantitative analysis results indicated that not only SiC particles but also primaryαphases segregated greatly in centrifugal casting resulting from the transportation behavior of constitutions with different densities in the SiC p /AlSi9Mg composite melt.In addition,the eutectic Si was broken owing to the motion of SiC p /AlSi9Mg composite melt during centrifugal casting.展开更多
Influence of different extrusion pressures and pouring temperatures on comprehensive performance of(Al63Cu25Fe12)p/ZL101 composites is studied in this paper.The results show that the tensile strength,elongation and ha...Influence of different extrusion pressures and pouring temperatures on comprehensive performance of(Al63Cu25Fe12)p/ZL101 composites is studied in this paper.The results show that the tensile strength,elongation and hardness of(Al63Cu25Fe12)p/ZL101 composite increase with the squeezing pressure increasing from 50 MPa to 100 MPa,and gradually reduce from 100 MPa to 150 MPa.In addition,the mechanical properties of the composite can be improved with pouring temperature growing,while the temperature should not exceed 760℃.When squeezing pressure is 100 MPa and pouring temperature is 720℃,mechanical properties of composites are the best.Finally,the mechanical properties of(Al 63 Cu 25 Fe 12)p/ZL101 composite will be improved by suitable heat treatment technology展开更多
Superplasticity of AZ 31 magnesium matrix composites reinforced with 10 vol% SiC(2 μm) particulate i s investigated at temperature range from 365℃ to 565℃ and strain rate from 2.0 8×10<sup>-3</sup&g...Superplasticity of AZ 31 magnesium matrix composites reinforced with 10 vol% SiC(2 μm) particulate i s investigated at temperature range from 365℃ to 565℃ and strain rate from 2.0 8×10<sup>-3</sup> to 5.21×10<sup>-1</sup> s<sup>-1</sup>. The maximum total elongation of 228 % is obtained at a strain rate of 2.08×10<sup>-1</sup> s<sup>-1</sup>. The strain rate se nsitivity exponent (m) higher than 0.3, is observed when the strain rate is high er than 10<sup>-1</sup> s<sup>-1</sup> at 525℃. Increasing the test temperature to 540℃, the maximum total elongation exceeding 195% is achieved at a higher strain rate of 5.21×10<sup>-1</sup> s<sup>-1</sup> than that at 525℃. SiC in AZ31/SiCp composite ca n fine the matrix grain size. Filament is observed on the fracture surface of th e specimens showing superplasticity.展开更多
文摘In this paper, turning experiments of machining particle reinforced metal matri x composites(PRMMCs) SiC p/Al with PCD tools have been carried out. The cutting force characteristics in ultrasonic vibration turning compared with that in com mon turning were studied. Through the single factor experiments and multiple fac tor orthogonal experiments, the influences of three kinds of cutting conditions such as cutting velocity, amount of feed and cutting depth on cutting force were analyzed in detail. Meanwhile, according to the experimental data, the empirica l formula of main cutting force in ultrasonic vibration turning was conclude d. According to the test results, the cutting force is direct proportion to cutt ing depth basically according to the relation between cutting force and other fa ctors, which is similar to that of common cutting, so is the feed rate, but the influence is not so big. The influence of cutting speed is larger than that of f eed rate on cutting force because the efficient cutting time increases in vibrat ion cycle with the increase of cutting speed, which causes cutting force to incr ease. The research results indicate: (1) Ultrasonic vibration turning possesses much lower main cutting force than that in common turning when adopting smaller cutting parameters. If using larger cutting parameters, the difference will inco nspicuous. (2) There are remarkable differences of cutting force-cutting veloci ty characteristics in ultrasonic vibration turning from that in common turning m ainly because built-up edge does not emerge in ultrasonic turning unlike common turning in corresponding velocity range. (3) In ultrasonic vibration cutting, t he influence of cutting velocity on cutting force is most obvious among thre e cutting parameters and the influence of feed is smallest. So adopting lower cu tting velocity and larger cutting depth not only can reduce cutting force effect ively but also can ensure cutting efficiency. (4) The conclusions are useful in precision and super precision manufacturing thin-wall pieces.
基金Project(2006AA03Z557) supported by The High-tech Research and Development Program of ChinaProject(2006CB605207) supported by the National Basic Research Program of ChinaProject(I2P407) supported by MOE Program For Changjiang Scholars and Innovative Research Team in University
文摘Sessile drop technique was used to investigate the influence of Ti on the wetting behaviour of copper alloy on SiC substrate. A low contact angle of 15- for Cu alloy on SiC substrate is obtained at the temperature of 1 100 ℃. The interfacial energy is lowered by the segregation of Ti and the formation of reaction product TiC, resulting in the significant enhancement of wettability. Ti is found to almost completely segregate to Cu/SiC interface. This agrees well with a coverage of 99.8%Ti at the Cu/SiC interface predicted from a simple model based on Gibbs adsorption isotherm. SiCp/Cu composites are produced by pressureless infiltration of copper alloy into Ti-activated SiC preform. The volume fraction of SiC reaches 57%. The densification achieves 97.5%. The bending strength varies from 150 MPa to 250 MPa and increases with decreasing particle size.
文摘The cutting performance of particulate reinforced me tallic matrix composites(PRMMCs) SiC p/Al in ultrasonic vibration cutting and c ommon cutting with carbide tools and PCD tools was researched in the paper. Mic rostructure of machined surface was described, the relation between cutting para meters and surface roughness was presented, and characteristic of the surface re mained stress was also presented. Furthermore, wear regularity and abrasion resi stance ability of tools in ultrasonic vibration cutting and common cutting o f PRMMCs were discussed in detail. The test results show: (1) The surface config urations are obviously different when using different tools to machine such PRMM Cs. The surface machined with carbide tools looks luminous and orderly and there are seldom surface defects on it. The reason is that the soft basal body is apt to flow during cutting, therefore a layer of Al matrix film covers machined sur face. On the contrary, the surface machined with PCD tools looks lackluster. But the profile of machined surface is very clear. Superfine grooves, pits and blac k reinforce particulates can be seen easily without obvious Al film. (2) Because of unstable cutting process in common cutting, the surface is easy to produce s ome defects such as burrs, built-up edges and so on so that the quality of surf ace becomes very poor. Vibration cutting can reduce the influence of tearing, pl astic deformation and built-up edge in cutting and can restrain flutter so as t o make cutting process more stable. Therefore, surface roughness of vibration cu tting is better than that of common cutting. (3) There is an optimum value of fe ed rate in vibration cutting of PRMMCs due to the influence of material characte ristics. Whether feed rate is more than or less than this optimum value, surface roughness will increase. (4) According to analyzing the wear rate of tools in v ibration cutting PRMMCs, it can be concluded that abrasion resistance of tools w ill be improved remarkably when vibration cutting composites have a lower pe rcentage of reinforce particulate. If the percentage of reinforce particulate is higher, the influence on abrasion resistance of carbide tool in vibration cut ting will not be obvious. The research result indicates that vibration cutting effect has a close relation with material characteristics.
基金Project(20080430895)supported by China Postdoctoral Science FoundationProject(2008RFQXG045)supported by the Special Fund of Technological Innovation of Harbin,China。
文摘TiB_(2p)/Cu composites with high reinforcement content(φ_(p)=50%,58%and 65%)for electronic packaging applications were fabricated by squeeze casting technology.The microstructures and thermo-physical properties of the TiB_(2p)/Cu composites were investigated.The results show that TiB2 particles are homogeneous and distribute uniformly,and the TiB2-Cu interfaces are clean and free-from interfacial reaction products and amorphous layers,the densifications of the TiB_(2p)/Cu composites are higher than 98.2%. The mean linear coefficients of thermal expansion at 20-100℃for TiB_(2p)/Cu composites range from 8.3×10^(-6)to 10.8×10^(-6)/K and decrease with increasing volume fraction of TiB2.The experimental coefficients of thermal expansion agree well with the predicted values based on Turner’s model.The thermal conductivities of TiB_(2p)/Cu composites range from 167.3 to 215.4 W/(m·K),decreasing with increasing volume fraction TiB2.
基金financially supported by High-Technology Research and Development Program of China (No.2008AA03Z505)
文摘The thermal conductivity of diamond hybrid SiC/Cu,diamond/Cu and SiC/Cu composite were calculated by using the extended differential effective medium (DEM) theoretical model in this paper.The effects of the particle volume fraction,the particle size and the volume ratio of the diamond particles to the total particles on the thermal conductivity of the composite were studied.The DEM theoretical calculation results show that,for the diamond hybrid SiC/Cu composite,when the particle volume fraction is above 46% and the volume ratio of the diamond particles to the SiC particles is above 13:12,the thermal conductivity of the composite can reach 500 W·m-1·K-1.The thermal conduc-tivity of the composite has little change when the particle size is above 200μm.The experimental results show that Ti can improve the wettability of the SiC and Cu.The thermal conductivity of the diamond hybrid SiCTi/Cu is almost two times better than that of the diamond hybrid SiC/Cu.It is feasible to predict the thermal conductivity of the composite by DEM theoretical model.
文摘In this study, a multilayer Al/Ni/Cu composite reinforced with Si C particles was produced using an accumulative roll bonding(ARB) process with different cycles. The microstructure and mechanical properties of this composite were investigated using optical and scanning microscopy and hardness and tensile testing. The results show that by increasing the applied strain, the Al/Ni/Cu multilayer composite converted from layer features to near a particle-strengthening characteristic. After the fifth ARB cycle, a composite with a uniform distribution of reinforcements(Cu, Ni, and SiC) was fabricated. The tensile strength of the composite increased from the initial sandwich structure to the first ARB cycle and then decreased from the first to the third ARB cycle. Upon reaching five ARB cycles, the tensile strength of the composite increased again. The variation in the elongation of the composite exhibited a tendency similar to that of its tensile strength. It is observed that with increasing strain, the microhardness values of the Al, Cu, and Ni layers increased, and that the dominant fracture mechanisms of Al and Cu were dimple formation and ductile fracture. In contrast, brittle fracture in specific plains was the main characteristic of Ni fractures.
基金granting financial assistance to carry out this work which is a part of research project No.SR/S3/ME/019/2004-SERC
文摘Studies on texture and microstructure evolution in hot extruded Al 6061 aluminium alloy reinforced with uncoated and nickel coated SiC p were carried out by electron backscattered diffraction technique.Textures of both the alloy and its composite with nickel coated SiC p do exhibit strong β fiber with its axis parallel to the direction of extrusion.In addition to the dominant cube texture(001) 100,fully recrystallized grains with partially equiaxed structure have been observed in the alloy reinforced with uncoated SiC p.The recrystallization texture of this composite can be attributed to the particle stimulated nucleation(PSN) due to the presence of SiC p with size less than 5 μm.Under these conditions,the low value of Zener-Hollomon,Z(~1012s-1) confirms that PSN is one of the dominant mechanisms for recrystallization and is governed by formation of deformation zone rather than stored energy.
文摘The semi solid compressive deformation behaviors of two kinds of SiC p/ZA27 composites, one was modified by Zr and the other was not modified, were investigated. The results indicate that with increasing strain, the stress of the modified composite first increases to a peak value, then dramatically decreases to a plateau value, and again increases at the final stage of deformation; but for the unmodified composite, after being up to a peak value, the stress decreases slowly at all times. As the deformation temperature or the heating time decreases, or the strain rate increases, the stress level(the peak and the plateau values) and the degree of cracking of the modified specimens all increase, and the specimen with uniform deformation and without cracks is obtained after being held at 470 ℃ for 30 min and deformed at the strain rate of 9.33×10 -3 s -1 . But the degree of cracking of the unmodified is just inverse to that of the modified. Under the same deformation conditions, the stress level and the degree of cracking of the unmodified composite are higher than those of the modified one, and the degree of cracking is very serious under any conditions. These phenomena were mainly discussed through analyzing the microstructures under different conditions and deformation mechanisms occurred at different deformation stages.
基金Projects(05B008) supported by Scientific Research Fund of Hunan Provincial Education Departmentproject(104014) supported by Fok Ying Tong Education Foundation of Ministry of Education
文摘The electroless Ni-P-SiC composite coatings were prepared and the influence of vacuum heat treatment on its structure and properties was analyzed. The Ni-P-SiC composite coatings were characterized by morphology,structure and micro-hardness. The morphology and structure of the Ni-P-SiC composite coatings were studied by scanning electron microscopy(SEM) and X-ray diffractometry(XRD),respectively. A great deal of particles incorporation and uniform distribution were found in Ni-P-SiC composite coatings. XRD results show a broad peak of nickel and low intensity SiC peaks present on as-deposited condition. Micro-hardness of as-deposited Ni-P-SiC composite coatings is improved greatly,and the best micro-hardness is obtained after heat treatment in a high vacuum at 400 ℃ .
基金Funded by the National Natural Scince Foundation of China (50972132)the Science Fund for Distinguished Young Scholars of Henan Province(512002200)
文摘SiC/Cu composites were prepared by hot pressing. The high temperature tribological properties of the composites were investigated. XRD, SEM techniques were carried out to characterize the samples. It is found that the friction coefficient of SiC/Cu composites increases with the increasing SiC content. The SiC reinforcement particles are worn down other than removed by pulling out during the wear test. Oxidation of Cu debris leads to the smooth contacting surface. Ring crack is formed under the cyclic wear test. The crack propagates through the damaged matrix and along the brittle interface between SiC particles and Cu matrix.
文摘The processes of mixed rare earth metal (REM) conversion coatings on 2024 alloy and Al6061/SiC p metal matrix composites (MMC) were introduced. The coatings were examined to be honeycomb like feature by scanning electron microscope. X ray diffraction analysis revealed that the coatings are amorphous structure. The results of X ray photoelectron spectroscopy indicated that the mixed REM conversion coatings consist predominantly of Ce and O, the contents of other rare earth elements (such as La, Pr) are relatively low, the coatings are about 2~4 μm thickness with excellent adhesion and wearability. The results of mass loss test showed that the mixed REM conversion coatings produce corrosion resistant surface of 2024 alloy and Al6061/SiC p. [
基金Funded by Natural Science Foundation Project of CQ CSTC(No.2008BB4177)
文摘Two ingots were produced by centrifugal casting at mould rotational speeds of 600 rpm and 800 rpm using 20 vol%SiC p /AlSi9Mg composite melt,respectively.The microstructure along the radial direction of cross-sectional sample of ingots was presented.SiC particles migrated towards the external circumference of the tube,and the distribution of SiC particles became uniform under centrifugal force.Voids in 20 vol%SiC p /AlSi9Mg composite melt migrated towards the inner circumference of the tube.The quantitative analysis results indicated that not only SiC particles but also primaryαphases segregated greatly in centrifugal casting resulting from the transportation behavior of constitutions with different densities in the SiC p /AlSi9Mg composite melt.In addition,the eutectic Si was broken owing to the motion of SiC p /AlSi9Mg composite melt during centrifugal casting.
基金National Natural Science Foundation of China(Nos.U1610123,51674226,51574207,51574206)International Cooperation Project of the Ministry of Science and Technology of China(No.2014DFA50320)+3 种基金Science and Technology Major Project of Shanxi Province(No.MC2016-06)International Science and Technology Cooperation Project of Shanxi Province(No.2015081041)Research Project Supported by Shanxi Scholarship Council of China(No.2016-Key 2)Transformation of Scientific and Technological Achievements Special Guide Project of Shanxi Province(No.201604D131029)
文摘Influence of different extrusion pressures and pouring temperatures on comprehensive performance of(Al63Cu25Fe12)p/ZL101 composites is studied in this paper.The results show that the tensile strength,elongation and hardness of(Al63Cu25Fe12)p/ZL101 composite increase with the squeezing pressure increasing from 50 MPa to 100 MPa,and gradually reduce from 100 MPa to 150 MPa.In addition,the mechanical properties of the composite can be improved with pouring temperature growing,while the temperature should not exceed 760℃.When squeezing pressure is 100 MPa and pouring temperature is 720℃,mechanical properties of composites are the best.Finally,the mechanical properties of(Al 63 Cu 25 Fe 12)p/ZL101 composite will be improved by suitable heat treatment technology
文摘Superplasticity of AZ 31 magnesium matrix composites reinforced with 10 vol% SiC(2 μm) particulate i s investigated at temperature range from 365℃ to 565℃ and strain rate from 2.0 8×10<sup>-3</sup> to 5.21×10<sup>-1</sup> s<sup>-1</sup>. The maximum total elongation of 228 % is obtained at a strain rate of 2.08×10<sup>-1</sup> s<sup>-1</sup>. The strain rate se nsitivity exponent (m) higher than 0.3, is observed when the strain rate is high er than 10<sup>-1</sup> s<sup>-1</sup> at 525℃. Increasing the test temperature to 540℃, the maximum total elongation exceeding 195% is achieved at a higher strain rate of 5.21×10<sup>-1</sup> s<sup>-1</sup> than that at 525℃. SiC in AZ31/SiCp composite ca n fine the matrix grain size. Filament is observed on the fracture surface of th e specimens showing superplasticity.